
 383

Parameter – Confidentiality∗

Sigrid Gürgens, Peter Ochsenschläger, Carsten Rudolph
Fraunhofer – Institute Secure Telecooperation, Germany
{guergens,ochsenschlaeger,rudolphc}@sit.fraunhofer.de

Abstract: Confidentiality of certain parameters is an essential security requirement
for many security sensitive applications. In terms of formal language theory we
introduce the notion of parameter-confidentiality relative to an agent’s knowledge
about the system. By considering publicly known dependencies of parameter
values, exact specifications of the required confidentiality properties are possible.
The new notion complements previous concepts of non-interference, secrecy and
indistinguishability.

1 Introduction
In many security sensitive systems confidentiality plays a central role: keys for
decryption should be confidential, the occurrence of certain actions as for instance
access to a data base perhaps has to be confidential, and different prices offered to
different customers may have to be confidential as well. A closer look at these examples
shows that the term confidentiality is used with different meanings.

On the other hand, formal security models as well as security analysis and design of
security sensitive systems need precise definitions of the security goals. So the variety of
meanings of the term confidentiality shows the necessity to formalize its different
aspects, which we will illustrate now using the three above examples.

Confidentiality of a key requires that the key cannot be guessed, because a correct guess
of a key used for decryption can be verified by an attacker if the plaintext is either
known or contains redundancy, which drastically violates the desired security property.
However, in practice non-guessability is not realizable. Therefore, the keyspace must be
chosen in a way that a key is only correctly guessable with negligible probability.
Confidentiality properties of this type are usually formalised using concepts of
probability theory or complexity theory [MvOV96].

Confidentiality of occurence of certain actions (like database access) or certain data (like
prices offered to a customer) poses a different problem as a correct guess of some action
or some data may occur or may even be impossible to prevent. For instance the range of
possible prices can be very restricted and therefore a correct guess of the price has a
…hh

∗Part of this work is based on results of a project funded by Siemens AG, and part of this work was developed
within the project CASENET funded by the European Commission (IST-2001-32446)

high probability. Consequently, the verification of the guess has to be prevented, i.e. the
information necessary to verify the guess must not be known to an attacker.

Confidentiality of actions (as in the data base access example) is typically addressed by
the well-known concept of non-interference or information flow control: the occurrence
or non-occurrence of certain actions of an agent shall not be deducible for another agent
based on what it observes. In the literature there is a variety of formalizations of this
concept starting with the work of Goguen and Meseguer [GM82]. Mantel [Man00] gives
a good insight into this topic. The subtle differences between these definitions show the
spectrum of this kind of confidentiality.

Similar to the data base access example, the price example illustrates a so called possi-
bilistic security property discussing which system behaviour seems to be possible to an
agent depending on its observations, and what can it deduce from that. In contrast to non-
interference where the goal of such a deduction is the occurrence of certain actions, in the
price example the goal are parameter values of certain actions. In this case the occurrence
of the actions itself may be known.

A formalization of this third aspect of confidentiality, which we call parameter-confidentia-
lity, is the focus of our paper. Motivated by two characteristic electronic commerce exam-
ples we present two definitions, which show different aspects of parameter-confidentiality.
Similar to the subtle differences in the definitions of non-interference, the differences of
our definitions reflect subtle characteristics of the required properties. In particular, our
definitions capture correlations of parameter values in different occurrences of actions.
Satisfaction of these properties is relative to an agent’s view of what has happened in the
system and which system behaviour it considers possible according to its knowledge about
the system. The definitions are formulated in terms of formal language theory and fit in
our design method for security sensitive systems [GO01, Rud01, GOR02].

This method has been successfully applied to authenticity and provability: Security re-
quirements have been formulated on a high level of abstraction. On a lower level they
have been realized by so called abstract secure channels modelling cryptographic primi-
tives. Correctness of such a realization has been proven by specific language homomor-
phisms which transport the security properties.

Parameter-confidentiality is related to the notion of indistinguishability used to define se-
curity of public key cryptography [GM84, BDPR98]. This notion is equivalent to the no-
tion of semantic security describing that no information about the plaintext can be deduced
from a ciphertext. Semantic secure encryption might be used to implement the transfer of
confidential parameter values over insecure communication channels. Our definition how-
ever not only captures confidentiality of parameter transmission but also formalizes confi-
dentiality of any kind of information that allows to draw conclusions about the parameter
values.

For security analysis of cryptographic protocols in [AG99], indistinguishability of param-
eter values is introduced in terms of the �-calculus and is used to express secrecy of keys,
nonces, etc. As it correlates a parameter value to a complete protocol run and as it ex-
presses no assumptions on the knowledge of an attacker it is tailored to key-establishment
and authentication protocols and therefore more restrictive than our approach.

384

2 System behaviour and agent’s knowledge about a system

In this section we first give a short summary of the necessary concepts of formal languages
to describe system behaviour. Then we describe how an agent P’s knowledge about such
a system can be formalised.

The behaviour � of a discrete system can be formally described by the set of its possible
sequences of actions. Therefore � � �� holds where � is the set of all actions of the
system, and �� is the set of all finite sequences of elements of �, including the empty
sequence denoted by �. This terminology originates from the theory of formal languages
[Eil74], where � is called the alphabet (not necessarily finite), the elements of � are called
letters, the elements of �� are referred to as words and the subsets of �� as formal lan-
guages. Words can be composed: if � and � are words, then �� is also a word. This
operation is called the concatenation; especially �� � �� � �. A word � is called a prefix
of a word � if there is a word � such that � � ��. The set of all prefixes of a word � is
denoted by pre���; � � pre��� holds for every word �.

Formal languages which describe system behaviour have the characteristic that pre��� � �
holds for every word � � �. Such languages are called prefix closed . System behaviour
is thus described by prefix closed formal languages.

Different formal models of the same application/system are partially ordered with respect
to different levels of abstraction. Formally, abstractions are described by so called alpha-
betic language homomorphisms. These are mappings � � � �� �� ��� with ������ �
���������� , ����� � � and ����� � �� � ���. So they are uniquely defined by corre-
sponding mappings � � � �� �� � ���. In the following we denote both the mapping �
and the homomorphism �� by �.

Let � be a set of agents. For each � � � we denote by 	� ��� � �� the set of those
sequences agent � considers to be possible. 	� ��� formalizes P’s knowledge about a
system �. If the related system behaviour is obvious, we shortly write	� .

We assume � � 	� , i.e. every agent considers the system behaviour to be possible.
Security properties can now be defined relative to	� .

After a sequence of actions
 � � has happened, every agent can only use its local view of

 to determine the sequences of actions it considers to be possible. In order to determine
what is the local view of an agent, we first assign every action to exactly one agent. Thus
� � ��

������ (where ��� denotes all actions performed by agent � , and �� denotes the
disjoint union). The homomorphism �� � �� � ��

�� defined by �� ��� � � if � � ���

and �� ��� � � if � � ����� formalizes the assignment of actions to agents and is called
the ��
�����
� on P.

The projection �� is the correct representation of � ’s view of the system if all informa-
tion about an action � � ��� is available for agent � . In automata models, for example,
the elements of � may contain information about the global system state (e.g. all agents’
memory) and may be represented by a triple (global state, transition label, global succes-
sor state). However, an agent P generally cannot “see” the complete global state (it cannot
see, for example, other agents’ memory). Therefore, the projection � � may be too fine to

385

define the local view of an agent � � �. Thus, we generally denote the local view of an
agent P on � by �� � �� � ��

� .

For a sequence of actions
 � � and agent � � �, ���� ��� �
�� � �� is the set of
all sequences that look exactly the same from P’s local view after
 has happened. But
depending on its knowledge about the system �, underlying security mechanisms and
system assumptions, P does not consider all sequences in this set possible. Thus it can use
its knowledge to reduce this set: ���� ��� �
�� 		� describes all sequences of actions P
considers to be possible when
 has happened.

3 The formal definitions

We want to formalize the following property: An agent � that monitors a sequence of ac-
tions
 of a system � cannot distinguish between the possible values of a certain parameter
(a certain part of the message, the agent performing the action, etc.) of a specific action
or set of actions of the sequence, even if it knows the set of possible parameter values.
Consider for example an application consisting of the following actions: a user requests a
price for a certain service, the request is received by a service provider and then an offer
for this service is sent and received. In this example, one critical parameter might be the
price. The service provider might have different rates for different users and these rates
can change. We assume the price is supposed to be confidential, i.e. no other agent shall
be able to tell which price has been offered. In the remainder of the paper the external
agent (the attacker) is denoted R, the user U and the service provider SP. The actions in
the system are send-price-request(U,SP), rec-price-request(SP,U), send-offer(SP,U,price)
and rec-offer(U,SP,price). The first parameter denotes the agent executing the particular
action. An additional observe action obs is defined for R which enables R to learn some
information about the previous action. Therefore, obs has only one parameter representing
the previous action. However, R may not be able to learn all parameters of the previous
action. What R learns from obs actions is specified in the set	� which corresponds to all
sequences of actions R considers to be possible. We say R monitors a sequence
 if after
each action of U or SP an obs action is executed. R can only “see” actions performed by
itself. Consequently, in the example, R’s local view ���
� is defined as ���
� �� ���
�
and contains only
������ actions.

In the sequences of actions that � considers possible after having monitored
, only the
actions where a price is sent and received are of interest. Thus we disregard all other ac-
tions, i.e. we map them with a suitably chosen homomorphism � onto the empty word.
From those actions not mapped onto �, � extracts the confidential parameter that occurs
in the action. Generally not only the parameter itself but also the “type” of its occurrence
has to be considered. This type can be, for example, that a certain user � has received an
offer. The parameter associated with this type is the price included in the offer. By con-
sidering only the type, actions from � are divided into classes the elements of which can
be distinguished essentially by the parameter values. Each of these classes is represented
by one type.

386

Hence ������ ����
�� 		�� is a set of sequences of actions that consist of the types of
those actions that are of interest with respect to parameter confidentiality, paired with the
respective parameter values being possible from �’s local view.

If �� denotes the set of types of the parameter occurrences and if � denotes the set of
parameter values then ����� � �� � ���
��� is a homomorphism. For simplicity we
write � if the related parameter set and the types are obvious. Such a homomorphism �
can be defined as follows:
��send-offer������ ������� � ������� � ������
��rec-offer��� ��� ������ � ����� � ������
��send-price-request��� �� �� � ��rec-price-request������� � ��
���� � ��� � �

In order to explain our formalism, we use the price offer system �. Our aim is now to
formalize that ������ ����
�� 		�� “contains all possible parameter values”.

3.1 �����–Completeness

For the following, we assume that R monitors all sequences of actions. Let us consider as
an example the following sequence of actions:

 � send-price-request(U,SP) obs(send-price-request(U,SP))
rec-price-request(SP,U) obs(rec-price-request(SP,U))
send-offer(SP,U,price�) obs(send-offer(SP,U,price�))
rec-offer(U,SP,price�) obs(rec-offer(U,SP,price�))
send-price-request(U,SP) obs(send-price-request(U,SP))
rec-price-request(SP,U) obs(rec-price-request(SP,U))
send-offer(SP,U,price�) obs(send-offer(SP,U,price�))

Let us further assume that for� �� �� �� it shall be confidential which price was sent and
received, respectively. Let �������� ������� be the set of possible prices, and � the set
of resulting possible actions. As described above, �’s local view of this sequence is the
following:

���
� � obs(send-price-request(U,SP)) obs(rec-price-request(SP,U))
obs(send-offer(SP,U,price�)) obs(rec-offer(U,SP,price�))
obs(send-price-request(U,SP)) obs(rec-price-request(SP,U))
obs(send-offer(SP,U,price�))

Now if � does not know which of the possible two parameters was sent, but does know
that the same parameter that was sent was also received,� considers four different types of
actions possible: two in which SP sends and U receives twice the same parameter (either
������ or ������), one in which first ������ is sent and received and then ������, and one
in which the parameters are sent and received in reverse order.

The function � now maps these sequences of actions onto sequences with types for the
send and receive actions, each one being paired with the respective parameter. All other
actions, including the
������ actions, are mapped onto �. This results in

387

������ ����
�� 		�� � �������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������

If we want to describe a situation where � does not know any correlation between the
parameter of a send and the respective receive action, the �-image of the sequence of
actions monitored by � contains eight different sequences of pairs ������ ���� �����
with no order on the parameters ������ and ������:

������ ����
�� 		�� � �������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������

In general we have the requirement that in each group of actions that � knows to be
correlated, it considers each of the parameters possible. In order to formalize this, we
assign each group a number. We then built the �-image of the sequences of actions that
R considers possible after
 has happened, with the parameters being substituted by the
number of the respective group they belong to. Then we check that when mapping these
numbers arbitrarily onto possible parameters, this results in the �-image of R’s inverse
view of
, i.e. we check that the �-image is �����–complete for a specific language �
and parameter set� .

For the formal definition of �����–completeness, we need some notations: For ! �
� ��� � and " � # �� # � we define �!� "� ��
��� �
� by �!� "���� �� ��

�!���� "����. The identity on� is denoted by �� � � �� � , while � IN denotes the
set of all mappings from IN to� .

Definition 1 Let � � ���
 IN�� and let � be a set of parameters. A language $ �
���
��� is called �����–complete if

$ �
�

���IN
����
� !����

In this definition, the set � consists of sequences of pairs (action type,number). The func-
tions ! �� IN map the numbers to parameter values in M. Therefore, ����

� !���� consists
of sequences of pairs (action type, parameter value). These sequences are in accordance
with the correlations between parameter values defined by�. Now,$ is �����–complete
if it consists of all possible sequences of pairs (action type, parameter value) derived by
applying ����

� !� to � for all possible mappings ! from IN to� .

This property allows the formalization of any of the above described situations. Let us
consider as an example again the sequence of actions
.

388

For the set ������� � ����� of relevant action types we now choose a numbering that
assigns the same number to those actions that are correlated:

�� � �������� � ������� � ��������� � ��� Having chosen the language �� in this man-
ner and considering the set � � �������� ������� of parameter values, ������ ����
��
		�� is ������–complete if and only if

������ ����
�� 		�� � �������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������
������� � ������������ � �������������� � ��������

This exactly describes the situation in which� knows that the same price was received that
was sent, but does not know which of the prices was sent. Note that if � considers more
parameter values possible (i.e. if ������ ����
��		�� contains more than the above four
sequences), � still does not know which parameter was sent.

If � shall not know that there is a correlation between send and receive actions, the action
types have to be numbered differently: no actions are correlated. This results in

�� � �������� � ������� � ��������� � ���

The requirement of ������–completeness results in the above mentioned eight sequences
of pairs ������ ���� �����. However, if� knows the correlation between ���� and���,
i.e. if ������ ����
��		�� contains only the four different sequences above (in which the
same parameter value is sent and received), then ������ ����
�� 		�� is not ������–
complete: Using !��� � ������� !��� � ������ and any !��� we obtain

������� � ������������ � �������������� � ������� �� ���
��

� ����
�� 		��

Thus by appropriately numbering the action types, i.e. by appropriately choosing the lan-
guage�, we can formalize which correlations between actions� is allowed to know, or in
other words, which sequences of actions have to be included in	�. This gives rise to the
following definition:

Let � be a parameter set, � a set of actions, �� a set of types, � � �� � ���
���

a homomorphism, and � � ���
 IN��. Then� is parameter-confidential for R after

with respect to �����–completeness if there exists an �����–complete language $ �
���
��� with ������ ����
�� 		�� � $.

Instead of separately defining different languages � for different sequences
 and the
resulting set of sequences ������ ����
�� 		��, it is sufficient to have an appropriate �
and an �����–complete language $ � ���
��� serving for all
 � �. Using the
function �� that denotes the projection on the first component of a tuple, we introduce the
following definition:

Definition 2 Let � be a parameter set, � a set of actions, �� a set of types, � � �� �
���
��� a homomorphism, and � � ���
 IN��. Then� is parameter-confidential for
agent � � � with respect to �����–completeness if there exists an �����–complete
language $ � ���
 ��� with $ � ��	�� such that ������ ����
�� 	 	�� �
���
�

�������
��

� ����
�� 		���� 	$ for each
 � �.

389

Applying the projection �� and then the inverse ���
�

to ������ ����
�� 	 	�� results
in sequences of actions where all parameter values occur and no grouping according
to correlated actions has yet taken place. The intersection with the �����–complete
language $ removes those sequences that do not match the respective grouping. Note
that in the case of no correlation between actions, ���

�
�������

��

� ����
�� 		���� 	$
� ���

�
�������

��

� ����
�� 		����.

More generally, the above equation can be used to define, for an arbitrary language$ �
���
��� with$ � ��	��,$–completeness of ������ ����
��		��. This allows to
capture more sophisticated correlations between parameters.

3.2 A different property:�–rich

In some cases there is no adequate language � to describe that � cannot recognize the
respective parameters used. We introduce a new example to motivate a weaker confi-
dentiality property and we show that this weaker property may not be adequate for our
previous price example. Let us consider a system which models an auction. In this sys-
tem we look at the bidding phase. For simplicity we assume there are only two bidders
U1 and U2. The only possible action for bidders is bid with the parameters bidder and
amount. In the same manner as above, agent R can observe the bidding actions using the
action obs. We want to model the property that R may observe the amount which a bidder
has made but is not allowed to know which bidder has made which bid. In contrast to
(L,M)–completeness of the price in the previous section, R is allowed to know which bids
have been made by the same bidder. For example, R may know that bids have been made
alternately by two agents, but it is not allowed to know which bidder has started and which
bidder has placed the winning bid. The homomorphism � for this example can be defined
as follows (for simplicity we neglect the values of the amount):

�������� �
����� � �%��� ��
��
��������� �
������ � �

Now we consider the following sequence of actions:

Æ � bid(U2,amount�) obs(bid(U2,amount�)) bid(U1,amount�) obs(bid(U1,amount�))
bid(U2,amount�) obs(bid(U2,amount�)) bid(U1,amount�) obs(bid(U1,amount�))

After having monitored Æ, the following sequences of parameter values are possible in�’s
view of the system:

������ ����Æ�� 		�� � ��%��� ����%��� ����%��� ����%��� ����
�%��� ����%��� ����%��� ����%��� ����

This knowledge of R corresponds to the confidentiality property that � cannot tell which
bidder has placed which bid while knowing that �� and �� bid alternately. However, it is
not possible to find a language L such that ������ ����Æ�� 		�� is �����–complete for
� � ���� ���. Considering the correlations between actions known to R the following
language�� seems to be appropriate at first sight, as R knows that bidders place their bids
alternately:

390

�� � ��%��� ���%��� ���%��� ���%��� ���

However, for the language�� chosen in this manner,������ ����Æ��		�� is not ������–
complete as !��� � !��� � �� results in

�%��� ����%��� ����%��� ����%��� ��� �� ������ ����Æ�� 		��

Nevertheless � does not know which of the two parameter values occured: for each of
the bids it considers both bidders possible. To formalize this situation we need a property
that does not consider the complete possible sequences of actions from �’s local view but
that considers only a “cut” through all sequences at the respective interesting actions. The
following property describes the fact that from�’s local view at each separate point in the
sequence of actions, each of the parameter values is possible:

� � ����������
��

� ����Æ�� 		���� �

�����!���
��

�
��� 	 ���������� ����Æ�� 		����� ��

Starting with the sequence of actions Æ, we use ���� , �� and 	� to generate the set of
possible sequences of actions that are identical to Æ in �’s local view. From these we
extract, using the function �, the relevant types with the respective parameter values, and
��� generates all possible prefixes (i.e. we cut off the last action, the second last, etc.). With
�� we disregard the parameters having been extracted by �. Every � in a set of sequences
generated in this manner is a sequence of types that correspond to those actions in Æ that we
are interested in, without the respective parameter values. ���

�
again adds all parameter

values in all possible combinations. The intersection with ���������� ����Æ�� 	 	���
disregards those sequences that � does not consider possible because of its knowledge
about correlation of actions. From each of the resulting sequences, we consider only the
last element by applying ��!� (where ��!	(
) returns the suffix of
 with length i). ��
then determines those parameter values that � considers possible in the respective action.
The resulting set must include the complete set� of parameter values.

For the above example we get

����������
��

� ����Æ�� 		���� � ���%���%��%���%��%��%���%��%��%��%���

� � %��%�� for example results in

���
�

��� � ��%��� ����%��� ���� �%��� ����%��� ���� �%��� ����%��� ����
�%��� ����%��� ����

We now intersect this set with the set of sequences of types (with parameters) that �
considers possible as described above.

���
�

��� 	 ���������� ����Æ�� 		��� � ��%��� ����%��� ���� �%��� ����%��� ����

��!� reduces the resulting ������ ���� ����� sequences to the respective last ������ �����
 ����� (that is, to �%��� ���), and finally �� extracts the parameters that � considers pos-
sible in this ������ ���� �����. If this set does not include� completely then � knows
more about the parameters that are possible in this action than it should know after hav-
ing monitored Æ. In our example, �����!����%��� ����%��� ���� �%��� ����%��� ������
� ���� ��� �� .

Analogously to definition 1 we give the following general definition:

391

Definition 3 For a given set� of parameter values and a set �� of action types we call
the language$ � ���
��� �–rich if

� � �������$�� � �����!���
��

�
��� 	 ����$��� ��

Analogously to �����–completeness, we can now define a different kind of parameter
confidentiality:

Definition 4 Let � be a parameter set, � a set of actions, �� a set of types, and � �
�� � ���
��� a homomorphism. Then� is parameter-confidential for R with respect
to�–richness if ������ ����Æ�� 		�� is�–rich for all
 � �.

For the price-offer example explained in section 3.1, the property �–rich may be too
weak. Consider for example a case with only two possible prices and SP offering alter-
nately the two different prices to U. Now, if ������ ����
��		�� is M–rich, R cannot tell
which price has been offered in which action. However, as R can observe that two prices
have been offered alternately, R can calculate the average price offered to U, which may
be undesirable.

For a given ���� sequence, �����–completeness of a language$ � �� �
��� exactly
determines the set of ������ ���� ����� sequences which have to be in $. This is not
true in the case of�–richness: As mentioned above, the equation

������ ����
�� 		�� � ������� � ������
� �������� � ���
������ � ������
� �������� � ���

implies�–richness of ������ ����
�� 		��. But also the equation

������ ����
�� 		�� � ������� � ������
� �������� � ���
������ � ������
� �������� � ���

would imply�–richness of ������ ����
��		��. So two different languages$ express
the required parameter variety.

Therefore, to bridge the formal gap between �����–completeness and �–richness we
need to consider the family � of all languages$ � �� �
��� which are�–rich. Now
������ ����
�� 	 	�� is �–rich if and only if �$ � � � ������ ����
�� 	 	�� �
���
�

�������
��

� ����
�� 		���� 	$.

4 Correlation between the two different properties

It can be shown that �����–completeness of the language ������ ����
��		�� implies
its �–richness (see Theorem 1 below). However, the reverse statement does not hold in
general. Yet, if considering only one action when applying �, both properties are equiva-
lent (see Theorem 2). We again use the bidding example to illustrate this. Let us assume
we are only interested in the last bidding action of Æ (i.e. � � � �������� �
������) and

392

the system shall guarantee that � does not know who of the two agents placed the bid.
Trivially, the only language � to choose is � � ��%��� ���. Thus, �����–completeness
implies ������ ����Æ�� 		�� � ��%��� ���� �%��� ����.

In other words, the image of � contains sequences of types with parameters, each of
the sequences having only one element. On the other hand, �–richness implies that
�����!����%��� ���� �%��� ���� 	 ���

��

� ����Æ�� 	 	�� � � , which is the case if
������ ����Æ�� 		�� � ��%��� ���� �%��� ����.

Theorem 1 For prefix closed languages$ � ���
��� and � � ���
 IN��, �����–
completeness of$ implies�–richness.

Proof: Let us assume that$ is an �����–complete language which is not�–rich. Thus
there exists � � �������$�� with �����!���

��

�
���	����$��� �� , i.e. � � ���$� with

�����!���
��

�
��� 	 $�� � � ($ is prefix closed). Hence there exists � � ��� ��

�����!���
��

�
��� 	$�� which means that none of the sequences in $ that correspond to

� with respect to the type (generated by ��� contains � as parameter in the last element.
Let us further consider � � � that equals � with respect to the type components, i.e.
����� � �����, and the map � � IN �� � with ���� � � for all � � IN. Clearly, as in
particular the last element of ����

� ����� contains the parameter� as the second component
(all elements contain this parameter), and as � is not contained as parameter of the last
element in any of the sequences in$ corresponding to �, ����

� ����� �� $. But then$ is
not �����–complete.

Theorem 2 For a set $ � ���
�� and � � ����$�
 IN�,�–richness of $ implies
�����–completeness.

Proof: Let $ �� � (the statement is trivial for the empty set) and � � ���$�. Because
of &��� � �, �������$�� � ���$� � ���� holds. Furthermore ��!���

��

�
�������� �

���
�

������� and �����!���
��

�
��������� � � . This implies that �����!���

��

�
�������

	����$�� �� if and only if ����
��

�
������� 	$� �� .

Let now ! � � IN. For each � � �, ����� � ���$� holds because of � � ����$�
 IN�.
Thus, for each � � �, there is an ' � $ with ���'� � �����. As $ is �–rich,
�����!���

��

�
������� 	 ����$�� � � , thus ����

��

�
����'�� 	 $� � � . It follows

����
� !���� � $ for all ! � IN ��� . Hence$ is �����–complete.

5 Conclusion

We have introduced the new notion of parameter-confidentiality in terms of formal lan-
guages. In contrast to previous definitions, confidentiality of certain parameters can be
specified relative to an agent’s knowledge about the system, especially about dependencies
between parameter values in different actions. A wide variety of confidentiality properties
for communicating systems can be exactly specified using the two definitions of (L,M)–
completeness and M–richness. The universality of our formal definitions allows to apply

393

them to any specification language with a semantics based on labeled transition systems.
Parameter-confidentiality complements existing concepts of non-interference, information
flow, secrecy and indistinguishability.

The definitions introduced in this paper fit in our design method for security sensitive
systems, where security properties are specified independently from the abstraction level.
Suitable language homomorphisms map from lower to higher levels of abstraction. Our
design method is successfully applied in the project CASENET funded by the European
Commission (IST-2001-32446), where it is used to develop real life applications with cer-
tain security properties. In a forthcoming paper, conditions on homomorphisms under
which they preserve parameter-confidentiality will be presented.

References

[AG99] M. Abadi and A Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.
Information and Computation, 148(1):1–70, 1999.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In H. Krawczyk, editor, Advances in
Cryptology - Crypto 98, Lecture Notes in Computer Science, pages 26–45. Springer
Verlag, 1998.

[Eil74] S. Eilenberg. Automata, Languages and Machines. Academic Press, New York, 1974.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

[GO01] R. Grimm and P. Ochsenschläger. Binding Cooperation, A Formal Model for Electronic
Commerce. Computer Networks, 37:171–193, 2001.

[GOR02] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and provability, a for-
mal framework. In Infrastructure Security Conference InfraSec 2002, volume 2437 of
Lecture Notes in Computer Science, pages 227–245. Springer Verlag, 2002.

[Man00] H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In Proceedings of
the IEEE Computer Security Foundations Workshop, pages 185–199, 2000.

[MvOV96] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[Rud01] C. Rudolph. A Model for Secure Protocols and its Application to Systematic Design of
Cryptographic Protocols. PhD thesis, Queensland University of Technology, 2001.

394

