
Model-based UI Modernization:
From Legacy UIs to Self-adaptive UIs

Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer
Software Innovation Lab, Paderborn University, Germany

Zukunftsmeile 1, 33102 Paderborn
{ivan.jovanovikj|enes.yigitbas|stefan.sauer}@upb.de

Abstract
Due to constantly changing conditions, either business-
driven or legal-driven, software systems often need to
be changed or adapted to a new environment. Such a
software modernization process of a legacy system has
to address three main aspects: data access, business
logic and user interface. As the user interfaces of
interactive systems become increasingly complex due
to new interaction paradigms, required adaptability,
use of innovative technologies, multi-media, and in-
teraction modalities, the topic of UI modernization
demands for sophisticated processes and methods to
systematically transform the UI of a legacy software
system to a more flexible UI in the target platform.
In this paper, we present a model-based UI modern-
ization approach for enhancing legacy UIs towards
self-adaptive UIs that are able to automatically adapt
to the context-of-use at runtime.

1 Introduction
The user interface (UI) is a key component of any in-
teractive software application and is crucial for the ac-
ceptance of the application as a whole. However, a UI
is not independent from its context-of-use, which is de-
fined in terms of the user, platform and environment
[1]. As today’s UIs of interactive systems become
increasingly complex since many heterogeneous con-
texts of use have to be supported, it is no longer suf-
ficient to provide a single "one-size-fits-all" UI. How-
ever, most of the existing software systems are pro-
viding UIs that are static "one-size-fits-all" UIs. In
some cases they consider manually adaptable UIs for
personalization purposes or device sensible UIs based
on the widespread paradigm of responsive web design
in the context of web. Nonetheless, existing software
systems, do not incorporate self-adaptive UIs that
can automatically react to context changes regard-
ing user characteristics (e.g., age, role, skills, prefer-
ences etc.), platform characteristics (e.g., screen size,
resolution, sensors etc.) and environmental factors
(e.g., light, loudness, weather etc.) by adapting the
UI through layout, navigation, task-feature set mini-
mization/maximization changes at runtime.

In our previous work, we have already addressed
the problem of model-driven engineering of self-
adaptive UIs [2]. In this context, we have presented
different complementary domain specific languages
(ContextML and AdaptML) to OMGs UI modeling
language IFML1, which support the specification of
various context-of-use situations and UI adaptation
rules.

1http://www.ifml.org/

While this existing approach primarily focuses on
the forward engineering process of self-adaptive UIs,
it does not consider existing legacy UIs. Therefore, to
close the gap and support an automatic transition of
non-adaptive legacy UIs to self-adaptive UIs, in this
paper we address the reverse engineering process to
enable the extraction of IFML models from legacy
UIs. Once the IFML model is extracted for legacy
UIs, we restructure and enrich it with self-adaptivity
features by applying our existing forward engineering
approach for self-adaptive UIs [2].

2 Challenges in UI Modernization
Figure 1 depicts the general solution idea for a model-
based UI modernization process of Legacy UIs to-
wards a Final UI which is self-adaptive. In the fol-
lowing, we discuss the related challenges in tackling
this complex task of UI modernization.
• Challenges in Reverse-Engineering: Based on the
Legacy UI code base, a user interface model has
to be discovered in terms of a Legacy Concrete
UI Model. As the extracted Legacy Concrete UI
Model contains platform specific details, a further
abstraction is needed to obtain an Abstract UI
Model.

• Challenges in Restructuring: Based on the Ab-
stract UI Model, a platform-independent descrip-
tion of the UI, further enrichments and changes
regarding content, structure and navigation of
the UI can be pursued. Moreover, it is possible
to abstract to a Tasks&Concepts Model from the
Abstract UI Model by applying Tasks&Concepts
Recovery to adjust the task-feature set of the en-
visioned UI. These changes have to be reflected
back to the Abstract UI Model when applying UI
Derivation.

Sy
st

em
La

ye
r

Pl
at

fo
rm

-
In

de
pe

nd
en

t
La

ye
r

Pl
at

fo
rm

-
Se

pc
ifi

c
La

ye
r

C
om

pu
ta

tio
na

l-
In

de
pe

nd
en

t
La

ye
r

Final
UI

Legacy
UI

Legacy
Concrete UI

Model

Abstract UI
Model

Tasks &
Concepts

Model

Concrete UI
Model

User Interface
Abstraction

User Interface
Concretiztaion

User Interface
Code Generation

(M2T)

User Interface
Model Discovery

(T2M)

Tasks &Concepts
Recovery

User Interface
Derivation

Enrichment

Enrichment

Exogenous Model
Transformation

Model

Code

Activity Specification

Artefact Specification

Text-to-Model /
Model-to-Text

Transformation

Endogenous Model
Transformation

Figure 1: Model-based UI modernization approach

http://www.ifml.org/

The restructured Abstract UI Model is then trans-
formed to a Concrete UI Model based on which the Fi-
nal UI for a specific target platform is generated. Be-
side UI code generation, the forward engineering ap-
proach requires also the generation of code for context
services (components to observe context-of-use prop-
erties mainly through context sensors) and adapta-
tion services (components to realize adaptation logic
for runtime UI adaptation) for delivering self-adaptive
UIs (for further details the interested reader may refer
to [2]).

3 Solution Idea
For tackling the described challenges of model-based
UI modernization, we envision a concrete solution idea
in the context of web UIs. Nowadays, there is still
a huge amount of web applications around providing
web UIs, which are using outdated web technologies
and UI frameworks, thus suffering from usability and
maintainability problems.

Figure 2 shows an instantiation of our model-based
UI modernization approach for web UIs. As a starting
point, we consider legacy web UIs based on older web-
technologies (HTML 1.0, JS 1.0, CSS 1.0). At that
point, those web UIs are not providing self-adaptivity
features, meaning that they are not able to auto-
matically adapt to the dynamically changing context-
of-use parameters. By using an existing JavaScript
Parser2 (T2M), we extract an abstract syntax tree
as an intermediate representation. This is used as a
basis for obtaining a platform-specific model of the
legacy UI which in our case is represented as a rich
internet application model (RIA Model)3. We use a
RIA Model, as it is well-suited for representing web
applications and especially web UIs. The extraction
of abstract UI models based on the RIA model is es-
tablished through a model-to-model (M2M) transfor-
mation, where relevant UI model elements from the
RIA model are mapped to specific representations in
the IFML model. The M2M transformations, speci-
fied by a Software Developer are executed by a Model-
Transformation Engine. Compared to the general ap-
proach in Figure 1, we have decided to exclude the
abstraction to the Tasks&Concepts Model in the in-
stantiation for the sake of simplicity.

After extracting an IFML Model, the restructuring
of the legacy UI begins. In this step, the Web/UI
Designer can make adjustments on the IFML Model
by manipulating the structure, content and naviga-
tion of the UI. In addition to that, the Web/UI De-
signer is able to specify a context model (CML Model)
characterizing various potential context-of-use situa-
tions and an adaptation model (AML Model) char-
acterizing UI adaptation rules that will be triggered
at runtime through a rule-based execution environ-
ment to react to the possible context-of-use changes.
The CML Model and the AML Model are instances
of our domain specific languages ContextML[2] and
AdaptML[2] respectively.

2https://github.com/acornjs/acorn
3https://uwe.pst.ifi.lmu.de/publications/maewa_rias_

report.pdf

Sy
st

em
La

ye
r

Pl
at

fo
rm

-
In

de
pe

nd
en

t
La

ye
r

Pl
at

fo
rm

-
Se

pc
ifi

c
La

ye
r

RIA Model

M2M

T2M

Enrichment

HTML 1.0
JS 1.0

CSS 1.0

IFML Model

CML Model

AML Model

M2TM2TM2T

AS CS FUI

Self-adaptive UI

monitors
adapts

Web/UI
Designer

Software
Developer

Exogenous Model
Transformation

Model

Code

Activity Specification

Artefact Specification

Text-to-Model /
Model-to-Text

Transformation

Endogenous Model
Transformation

Tool Specification

Role Specification
Tool

Role

Model
Transformation

Engine

Code
Generator

Parser

Figure 2: Modernization of web UIs towards self-
adaptive UIs

In the forward engineering process, our approach
provides specific code generators to generate the final
UI (FUI), context service (CS), and adaptation ser-
vice (AS). Please note, that we generate code directly
from the platform-independent layer in the instanti-
ated approach as we focus on web UIs that may be run
as a browser-based application on different platforms.
The code generators realize a model-to-text (M2T)
transformation and are mainly template based. The
generated artefacts of the Self-adaptive UI are based
on Angular 2 and TypeScript. At runtime, we have an
interplay between the components AS, CS and FUI.
The generated FUI consists of an HTML template,
which is used to render the UI in the browser, and an
Angular 2 component, which is implemented in Type-
Script and manages the view. Likewise, the AS is gen-
erated as Angular 2 service and is also implemented in
TypeScript. The AS uses Nools, a JavaScript based
rule engine, for monitoring the context information
provided by the CS. At runtime, the AS monitors
the context information and executes those adapta-
tion rules whose conditions are satisfied.

4 Conclusion and Future Work
In this paper, we discussed the challenges and ideas for
a model-based UI modernization approach. Such an
approach enhances legacy UIs towards self-adaptive
UIs that are able to automatically adapt to the
context-of-use at runtime. Future work will cover
the improvement of our approach regarding efficiency
and effectiveness in extracting IFML models from
legacy UI code and its application for diverse legacy
interactive software systems.

References
[1] G. Calvary et al. A unifying reference framework

for multi-target user interfaces. INTERACTING
WITH COMPUTERS, 2003.

[2] E. Yigitbas et al. Adapt-UI: An IDE supporting
model-driven development of Self-adaptive UIs. In
EICS 2017.

https://github.com/acornjs/acorn
https://uwe.pst.ifi.lmu.de/publications/maewa_rias_report.pdf
https://uwe.pst.ifi.lmu.de/publications/maewa_rias_report.pdf

	Introduction
	Challenges in UI Modernization
	Solution Idea
	Conclusion and Future Work

