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ABSTRACT
Evaluating user interfaces of interactive applications in terms of
correctness has always been a lengthy and error-prone task, as
it would be executed by humans. This has led to this aspect of
development being severely neglected, which poses a fundamental
problem in terms of usability. In this work, we present a novel
approach based on the creation of a formal representation from a
given user interface, which is transformed into a reference net and
finally converted into an SMT formula. As SMT formulae can be
evaluated easily using highly efficient SMT solvers, this approach
promises good efficiency in real-world scenarios.
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1 INTRODUCTION
Since the middle of the past century, user interfaces have developed
from a charming idea into a serious professional tool indispensable
for digital interactive systems [20]. They can be found nearly every-
where, even in areas where errors can cause tremendous financial
and human costs [18, 26]. This evolution was also accompanied
by the emergence of more complex interfaces embodying highly
complex interaction processes, specifically in case of safety critical
systems such as aircrafts [2] or medical devices [14]. Therefore,
this fundamental shift in their relevance and size increased the
relevance of ensuring their validity in regards of usability criteria.
This includes that users can perform their tasks effectively with a
given user interface. Hence, in this paper we will focus on a funda-
mental aspect of effectiveness as usability criteria, which we will
depict as correctness of a user interface. In this work, we under-
stand correctness as whether the actual functionality offered by
a user interface to a user fits previously defined requirements in
terms of its effectiveness. Thus, if correctness cannot be ensured, a
user will not be able to work with a user interface in a meaningful
way, regardless of how it is designed. Two processes of showing
correctness are often distinguished: validation and verification as
defined below, where validation focuses on showing whether a user
interface is doing the right thing, whereas verification rather aims
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at showing that a user interface is doing the thing right (following
the terminology as presented in [11]).

Various approaches have been suggested to validate or ver-
ify user interfaces in terms of various types of requirements. For
instance, model checking approaches have been used to investi-
gate the actual interaction space of given user interfaces to check
whether unwanted states of the system can be reached by interact-
ing with the given user interface [7, 8]. Other examples are using
formal specification and simulation to show the correctness of user
interfaces such as presented by Bowen et al. [5, 6]. A further ap-
proach has been presented, which uses Petri net-based models for
describing the functional space of a user interface and thus being
able to check for dead locks or other relevant characteristics of the
created model [3, 17].

Since the underlying problem is a computationally very complex
one, this is a costly, error-prone and lengthy task, so that modern
user interfaces are usually only verified in excerpts, specifically in
cases where safety concerns apply [2, 14, 15].

Therefore, there is still a need for further research in terms of ver-
ification approaches as only small examples of interactive systems
can be verified due to high computational costs or only experts are
able to apply verification methods to a given user interface.

Therefore, this work will present an outline of an automated
system for verifying user interfaces. The automation lies in

(a) using transformation algorithms based on formal description
concepts,

(b) a visual modeling language aiming at reducing the needed
expertise to model and describe interaction logic and

(c) a verification method, which picks up standardized meth-
ods and implementations and thus relies on well developed
approaches.

In this regard, methods are desirable that already operate close
to the maximum possible efficiency. Checking the satisfiability of
propositional logic formulae (SAT) has been used to model com-
plex situations since the early days of computer science [9] and
automated solvers are extremely efficient nowadays [12, 21], which
makes it a reasonable approach for our work. Thus, we will concen-
trate on SMT (satisfiability modulo theories) formulae instead of
the classic SAT formulae, since the former offer the concept of data
types in the solving process, which simplifies the comprehensibility,
but are still about as efficiently solvable as the latter [16]. A refer-
ence implementation is currently work in progress and will support
this proposition soon, giving the possibility to evaluate code of an
existing software in order to derive and verify a formal model of it.
This paper at hand aims at describing the overall process as well as
the central idea of using SMT solvers in terms of the verification
of user interfaces with a specific focus on effectiveness as usability
criteria. This novel approach should support the evaluation process
of user interfaces in terms of correctness fundamentally and also
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enable users to verify adaptations applied to a given user interface
on the go (i.e. [24]).

2 METHOD
Themethod presented in this paper consists of amulti-tier approach.
It is based on a model analogously to the one used in [23] based
on three layers, which consisted of the physical representation,
the interaction logic and the system layer. Those three layers were
defined as follows:

(1) The physical representation contained all graphical widgets
and all elements the user can use for immediate interaction;
for example buttons, checkboxes or tooltips.

(2) Below this – seen from a logical perspective – there exists
the interaction logic defining the behavior of all elements
which can be contained in the physical representation, be
it either a reaction to events on the physical elements or a
reaction to information from the system, which represents
the bottom layer.

(3) Since viewing the system in full detail would increase the
difficulty of a correct separation of the layers and complicate
a clear isolation of user interface issues, the bottom layer is
assumed as a black box, but is characterized by a well-defined
state set.

This architecture poses some similarities to slightly extended ver-
sions of the famous Model-View-Controller pattern.

For modeling the actual behavior of a user interface, in this case
the interaction logic, we used a visual language called Formal Inter-
action Logic Language (FILL). It should be noted that FILL has roots
in the Business Process Modelling Notation (BPMN)1 maintained
by the Object Management Group (OMG) to some extent in terms
of basic formalisms. For a solid introduction into BPMN, we refer
to works like [1]. The major goal of this work at hand is that the
interaction logic is taken and processed into an SMT formula, which
requires multiple complex steps, as explained below. Afterwards,
this formula can be combined with SMT formulae representing con-
ditions to test against, such that an SMT solver is able to check this
combined formula for correctness. If the requirements are included
in negated form into the formulae and the SMT solver is able to
find a model for it, we can infer that the interaction logic violates
the actual condition or requirement.

As this approach is not trivial, a short graphical overview of this
idea is presented in Figure 1.

2.1 Interaction Logic – The Gist of the Matter
As mentioned in [22], interaction can be basically described as
data exchanges while conforming to a certain formalism, whereas
interaction logic can be defined as follows:

Definition 2.1. Interaction logic is a model of interaction repre-
senting a set of models of interactions processes. Interaction pro-
cesses model processes of data flow between a system interface
and its environment. Interaction logic can be described formally,
semi-formally or informally.

It should be clear that this work will focus on the formal de-
scription of interaction processes. Therefore, we will make use
1https://www.omg.org/spec/BPMN/2.0/

Figure 1: A structural overview of the concept: The figure
uses a notation slightly similar to UML. Thin arrows with
filled head denote data flows, while ones with empty arrow
head specify additional information. Bold arrows denote the
functionalities described in this work. The dashed bold arrow
denotes future work.

of FILL, which was introduced in [22]. FILL is a modelling lan-
guage describing the processing of user events or data between
the interface a user is presented and the system to be controlled,
which is assumed as a black box, in accordance with the previous
remarks. In a nutshell, FILL models the interaction logic as system
and interaction-logic operations together with input and output
ports (connecting an operation to a different one or a proxy), as
well as input and output proxies (connecting to elements from the
physical layer) and at last two sets of tuples characterizing the
non-static part of the interaction logic.

More precisely, we will use an extended variant of FILL called
TFILLEXT. This variant is additionally capable of representing com-
plex data types, which are assigned to every port and proxy, as well
as – in short – capable of modelling more complex interaction pro-
cesses by supporting more elements like input and output channels
or even elements from the language BPMN. This is very helpful for
creating branches or combinations in interaction processes.

For FILL, we aim to use an implementation in Java, which has
the advantage of being cross-platform usable. This also offers the
option to use Java annotations for the definition of invariants as
well as the syntax.

2.2 Interaction Logic as Reference Nets
In order to generate automatically evaluable and executable repre-
sentations, those FILL expressions are converted to reference nets.
As a variant of the famous Petri nets, the latter introduced by Carl
A. Petri in [19], reference nets provide on the one hand – a quite
well-understood – semantics. Reference nets were introduced in
[13] and provide better options for representing interaction logic
as well as a more high-level view, since they support complex data
types for example. They are very suitable for this use-case, since
they are also a deterministic graph-based representation and offer
a way to describe (typed) data objects, which is of interest, because
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this approach should not be realized entirely on the basic Boolean
level, as mentioned initially. Another aspect supporting the usage
of reference nets is the availability of well-supported tools, like
Renew2.

These properties have also gained attention in other works on
formal modelling of user interfaces [25]. In the present work, only
the necessary aspects of Petri nets and reference nets are covered,
sincemore is not within the scope of the present work. For a detailed
general introduction, we refer to standard textbooks like [4].

The conversion between FILL-based representation and refer-
ence nets was already presented in [22]. As this process is non-
trivial and represents not the focus of this work, we refer for a
detailed explanation to the original work. In short, this procedure
takes an empty reference net and the given (non-empty) FILL in-
stance and transforms it element by element. It can be noted that
the conversion does not increase the graph size by much, since most
of the operations can be modeled in a similar way again, e.g. system
and interaction-logic operations are transformed into places (1:1)
and operations are transformed into two transitions (call/return
value).

In this case, we also aim for the usage of Java, since it is also part
of the reference net’s inscription language, and was also used for
the the systems presented in [13].

2.3 The Gap – From Reference Nets to SMT
Formulae

These reference net-based representations of the interaction logic
are now transformed automatically into SMT formulae. Such an
automatization is characterized by low manual efforts, which is
required for the usage in scenarios of realistic dimensions. Au-
tomatization is also required in order to address another aspect of
realistic scenarios: the reconfiguration of interaction logic, which
may be applied by the later user and thus renders into actual adap-
tations of the user interface’s behavior rather than a simpler change
in the physical representation of the interface [24]. Since modern in-
terfaces also cover use cases that make the adaptability of interfaces
highly desirable or even necessary, it is obvious that automation is
in no way circumventable, should this concept not end up in the
proverbial ivory tower. The (repeated) verification of reconfigured
user interfaces will be an aspect for future works. In the current
work, the focus will be on a transformation-driven approach for
validating the reference nets generated from a FILL-based repre-
sentation by creating an SMT formula from the net. After that, the
formula can be combined with the relevant constraints for the test
and a solver is able to decide if the interaction logic is correct with
respect to the given constraints as previously described above.

In detail, the validation of those colored Petri nets will consist
of four steps:

(i) Extract the dynamics of the net.
(ii) Map these information onto a SMT formula.
(iii) Generate the invariants and integrate them into the SMT

formula.
(iv) Evaluate the complete SMT formula via SMT solver.

2http://www.renew.de

Before giving more detail of this process at hand, the next ques-
tion to answer is which solver to use in the setup we describe here.
We aim for an industry-grade software suite ensuring a high stabil-
ity together whose further development is also more than likely in
the future. For that reasons, we chose Microsoft’s Z33, introduced
in [10], which also offers the great benefit of supporting numerous
operating systems (Windows, Linux, MacOS, etc.), processing ar-
chitectures (e.g. x64, ARM64) and contains bindings for a large part
of the currently relevant programming languages (.NET, C/C++,
Python, Java, JavaScript/TypeScript/Web Assembly and more).

2.3.1 The Algorithm. A core problem of this transformation is that
the logic has to be verified against a formulation of the requirements,
which need a similar representation as well in order to generate
an evaluable SMT expression. For the first implementations, we
will restrict to a simplified variant of Petri nets and consider the
restrictions regarding the Java code resulting from the use of refer-
ence nets later on, since this first idea is a basic demonstration that
the (fully automatic) process is possible in general. Therefore, we
assume that the (already known) step of converting a FILL-based
representation into a reference net is already performed.

(1) As explained above, all inscriptions which represent the
coloring of the reference net are removed.

(2) Afterwards, an initial marking is generated, i.e., only one
transition is always active.

(3) From the resulting net, a reachability graph is generated.
(4) The sequences of the firing transitions from this net are

extracted:
(a) A reachability graph is generated.
(b) From that graph, the path tree is extracted.
(c) The transition tuples are collected to a fire sequence.

(5) In order to avoid unnecessary complexity, the fire sequences
are simplified:

(a) The sequences are sorted.
(b) Repeated transitions are deleted.
(c) Repeated sequences are deleted.

(6) The SMT assertions and declarations are now generated:
(a) The variable scope is set, as the original variables from the

reference net have a very local scope and might collide
when used (globally) in an SMT formula. We will simply
use an unique variable name by adding the transition ID.

(b) The SMT assertions are generated.
(7) The SMT assertions for the verifications (e.g. from invariants)

are generated.
(8) The SMT formula is generated by adding the assertions in a

negated form.
The SMT solver is now started on that formula. If it produces a neg-
ative output, it can be concluded that the formula is not satisfiable
at all, meaning that there exists no model containing our system to-
gether with the opposite of the assertion for the verification. Hence,
there exist no errors regarding those criteria.

3 FINAL REMARKS AND FUTUREWORK
In this work, we presented a first insight into a novel approach for
evaluating the correctness of existing user interfaces by deriving

3https://github.com/Z3Prover/z3
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and afterwards validating a formal model in a fully automated way.
In order to practically underpin this theoretical work, an implemen-
tation is in preparation. Proven and well-supported software suites
will be used, but the crucial step of processing will have to be done
by custom-built software, as – to our knowledge – this approach
has never been considered or even implemented in this way before.

As a sidemark, it should be noted that the computational com-
plexity of this problem is still very high. For example, an “explosion”
of the number of states is possible, which should be considered
during the implementation. In some cases, reductions of multiple
reductions to a single one might help.

The approach presented above provides significant additions
to the current situation. However, there are some aspects which
would be of major interest in the future. As mentioned earlier, it is
of major interest to embed the reconfiguration in our approach.

Another future aspect is the inclusion of Java Code in the net-
work, since for this first approach, we only intend to create a first
running demonstrator in order to prove the feasibility of the trans-
formation representations of user interfaces in formal languages
into propositional logic formulae.
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