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Abstract: For half a decade model-based testing has been applied at Microsoft in
the internal development process. Though a success story compared to other formal
quality assurance approaches like verification, a break-through of the technology on
a broader scale is not in sight. What are the obstacles? This paper describes the
application of MBT at Microsoft, discusses the problems in the adoption, and draws
some conclusions for the design of MBT tools.1

1 Introduction

Testing is one of the most cost-intensive activities in the industrial software development
process. Yet, not only is current testing practice laborious and expensive but often also
unsystematic, lacking engineering methodology and discipline, and adequate tool support.

Model-based testing (MBT) is one of the most promising approaches to address these
problems. At Microsoft, MBT technology has been applied in the production cycle since
1999 [Rob, BGN+03, Sto04, CGN+05]. One key for the relative success of MBT at
Microsoft is its attraction for a certain class of well-educated, ambitious test engineers, to
which it is one way to raise testing to a systematic engineering discipline.

However, at the larger picture, an estimate based on the number of subscriptions to internal
mailing lists for MBT would count only about 10% of product teams which are using or
have tried using MBT for their daily tasks. While these numbers can be considered a
success compared to other formal quality assurance approaches like verification, they are
certainly not indicating a break-through. So what are the obstacles in applying MBT, and
how can a larger group of users be attracted to the technology?

This paper attempts to answer this question, based on feedback of the user base of the Spec
Explorer tool [CGN+05], its predecessor AsmL-T [BGN+03], and other internal MBT
tools at Microsoft. The major issues, apart of the ubiquitous problem in the industry that
people do not have enough time to try out new technology and educate themselves, seem to
be the steep learning curve for modeling notations together with the lack of state-of-the-art
authoring environments, missing support for scenario-based (interaction-based) modeling,
thus involving not only the test organization but also other stakeholders in the process, poor
documentation of the MBT tools, and last not least technical problems like dealing with
state explosion, fine-grained test selection, and integration with test management tools.

The analysis presented led to the design of a new model-based testing tool generation at
Microsoft Research. This tool tries to address the identified challenges by providing a full

1An extended version of parts of this paper appears in [Gri06]
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integration into the development environment of Visual Studio, providing users an author-
ing experience they are used to. The new tool moreover emphasizes a multi-paradigmatic
approach to MBT, allowing to describe models on different levels of abstraction, using sce-
nario and state oriented paradigms as well as diagrammatic and programmatic notations,
and enabling the combination of those diverse artifacts for a given modeling and testing
problem. A full discussion goes behind the scope of this paper; more details can be found
in [Gri06], including the semantic foundations in [GKT06].

2 Model-Based Testing at Microsoft

MBT has a long application tradition at Microsoft, and various tools have been and are
in use. The first tool, the Test Modeling Toolkit (TMT), was deployed in 1999, and is
based on extended finite state machines (EFSM). Microsoft Research deployed two tools,
AsmL-T in 2002 [BGN+03] and Spec Explorer in 2004 [CGN+05], both using executable
specification languages based on the the abstract state machine paradigm (ASM) [Gur95]
as the modeling notation. Other internal tools which have not been published are also
around. The general mailing alias used for internal discussion of MBT issues at Microsoft
currently exceeds 700 members.

All these tools, though quite different in details and expressiveness, share some common
principles. Models are described by guarded-update rules on a global data state. The rules
describe transition between data states and are labeled with actions which correspond to
invocations of methods in a test harness or in the actual system-under-test (SUT). Rules can
be parameterized (and the parameters then usually also occur in the action labels). A user
provides value domains for the parameters, using techniques like pairwise combination or
partitioning. In the approach as realized by AsmL-T and Spec Explorer, the parameter
domains are defined by expressions over the model state, such that for example they can
enumerate the dynamically created instances of an object type in the state where the rule
is applied.

Sample A very simple example to demonstrate the basic concepts as they appear in Spec
Explorer today is considered. The model describes the publish-subscribe design pattern
which is commonly used in object-oriented software systems. According to this pattern,
various subscriber objects are registered with a publisher object to receive asynchronous
notification callbacks when information is published via the publisher object (in fact, the
subscribers can dynamically register and unregister at a publisher, but this aspect is simpli-
fied here.) Thus this example includes dynamic object creation as well as reactive behavior.

The model is given in Fig. 1 (top). The state of the model consists of publisher and sub-
scriber instances. A publisher has a field containing the set of registered subscribers, and
a subscriber has a field representing the sequence of data it has received but not yet han-
dled (its “mailbox”). The model simply describes how data is published by delivering it to
the mailboxes of subscribers, and how it is consumed by a subscriber in the order it was
published. The precondition of the handling method of the subscriber enables it only if
the mailbox is not empty, and if the data parameter equals to the first value in the mailbox.
Note that the Handle method is an observable action, which comes out as spontaneous
output from the system under test (SUT).
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class Publisher {
Set<Subscriber> subscribers = Set{};
[Action(ActionKind.Controllable)]
Publisher(){}
[Action(ActionKind.Controllable)]
void Publish(object data)
{

foreach (Subscriber sub
in subscribers)

sub.mbox += Seq{data};
}

}

class Subscriber {
Seq<object> mbox = Seq{};
[Action(ActionKind.Controllable)]
Subscriber(Publisher publisher)
{
publisher.subscribers += Set{this};

}
[Action(ActionKind.Observable)]
void Handle(object data)
requires mbox.Count > 0 &&

mbox.Head.Equals(data);
{
mbox = mbox.Tail;

}
}

Figure 1: Publisher-Subscriber Model

Fig 1 (bottom) shows an excerpt from the state graph generated by Spec Explorer from
this model. This kind of graph corresponds to an interface automaton [dAH01]. In this
fragment, one publisher and two subscribers are configured (the state graph omits the
configuration phase). From state S3, a Publish invocation is fired, leading to state S4,
which is an observation state where the outgoing transitions are observable actions. The
meaning of an observation state is that the SUT has an internal choice to do one of the
outgoing transitions, as opposed to a control state (S3) where it must accept all of the
outgoing transitions. Thus, effectively, the model gives freedom to an implementation to
process the subscribers of a publisher in any given order.

In order to generate the state graph, the model was augmented with further information:
the parameters passed to the Publish method have been specified (here, "foo"), the
number of publishers and subscribers to be created has been bounded, as well as the num-
ber of messages in the mailbox of a subscriber.

Such state graphs are then input to traversal algorithms to generate a test suite which can
be executed offline, or are dynamically traversed using online/on-the-fly testing. For both
cases, the test execution environment takes care of binding object values in the model to
objects in the implementation, as well as queuing asynchronous observable action invoca-
tion events in the SUT for consumption by the model. For details, see [CGN+05].

In practice, models written with Spec Explorer are significantly larger than this simple ex-
ample; yet they are rarely on the scale of real programs. In the applications at Microsoft,
models typically introduce about 10 to 30 actions, with up to 2000 lines of model code, in
exceptions over 10000 lines. Yet, these models are able to test features with a code-base
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which is larger by an order of magnitude or more. This stems from the level of abstraction
chosen in modeling. Model-based testing is used for a wide range of application types, in-
cluding user interfaces, protocols, windows core components, frameworks, device drivers,
and hardware abstraction layers.

While in general successfully used in practice, the technology of Spec Explorer, as well of
the other available tools at Microsoft, raises some challenges which hinder wider adoption.
These will be discussed in the remainder of this paper.

3 The Adoption Problems
Authoring Computer folklore says: “every editor is better than a new editor”. Though
clearly this statement is sarcastic, one should not underestimate its wisdom. The author
of this paper, for example, used to apply the vi editor (a great relic of very early Unix
times) for his programming over many years, even though on the development platform
Visual Studio was available, which provides automatic indentation, incremental compila-
tion, context-sensitive completion, refactoring, and many more nice features.

When initially rolling out one approaches’ favorite modeling notation to end users, the
gravity of habits is even stronger: users are asked to use a new language in an authoring
environment which usually does not provide the convenience features they are acquainted
with from modern environments.

Notations have perhaps become less important today than the environments which support
them. This at least applies to users which are heavily using these modern development
environments – among those are most younger testers and developers. It might apply less
to other stakeholders (like the author of this text, which is still using a vi emulation mode
under Emacs to write this document in LATEX).

The lesson learned is that if one comes up with a new notation, one should better be sure
that either the users of that notation do not care about modern authoring support, or one
should match this support. The later is unfortunately not trivial. The effort for decent
authoring support for a language is probably an order of magnitude higher than providing
its compiler.

Executable Specifications vs Programming Languages The first generation of the Mi-
crosoft Research MBT tools was based on the Abstract State Machine Language (AsmL), a
high-level executable specification language. Though the basic concepts of this language
seem to be simple and intuitive (it is using a “pseudo-code” style notation and avoids
any mathematical symbols), apart of some stellar exceptions, for most testers the learning
curve was too steep (see [Sto04] for a discussion).

Testers struggled with concepts like universal and existential quantification and set com-
prehensions. Under the assumption that the problem was not the concept itself but perhaps
the unfamiliar way in which it is presented, the next generation, Spec Explorer, offered
in addition to AsmL the Spec# notation, which disguised the high-level concepts in C#
concrete syntax. Though this approach was more successful, the basic problems remained.
Typically, beginners and even intermediate levels in Spec# prefer to write a loop where a
comprehension would be much more natural and concise.
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This phenomena is not just explained by the inability of users. It is more the unwilling-
ness to learn many new concepts at the same time, in particular if they are not obviously
coherent. Confronted with a new technology like MBT and the challenges to understand
the difference between model and implementation and finding the right abstraction levels,
having in addition the challenge to learn a new language, is mastered only by a minority.

The conceptual distance between programming languages like C# and executable speci-
fication languages like Spec# is shrinking steadily. The new forthcoming C# version 3.0
will contain – in addition to the relatively declarative notational features C# has already
now – support for comprehension notations (as part of the LINQ project [Mic06]).

The lesson learned here is that it appears wiser to not mix evangelizing executable speci-
fication languages with the very core of what model-based testing makes up. This should
not mean that those notations do not have a place in MBT – they are indeed rather impor-
tant. It just means that users should not be forced to use a new notation and environment
in order to write their first models. Let them use existing programming notations and their
authoring environments if they like so. The core of a model-based testing approach and
tool should be agnostic about this choice; it should be multi-paradigmatic.

Scaling up to Model-Based Development One of the promises of MBT is to be an entry
door for model-based development. In course of applying MBT at Microsoft, several test
teams have attempted to incorporate program managers, domain experts, business analysts,
and the like into the modeling process. This has not been very successful so far, though
some exceptions exist.

One interesting observation is that executable specification languages like AsmL, which
provide a high-level pseudo-code style notation, are more attractive to those stakeholders
than programming-oriented notations like Spec#. AsmL had more users authoring system
models, compared to just models for test, whereas with the introduction of Spec# and Spec
Explorer, these applications diminished. This is a strong argument to continue supporting
high-level executable specification languages like AsmL for MBT (just do not make them
the only choice).

However, it seems that the main obstacle here is not the language but the modeling style.
AsmL, Spec#, or any of the other MBT approaches used at Microsoft are not attrac-
tive in the requirements phase since they are state-based instead of scenario-based. In
this way they represent a design by itself – even if on an higher-level of abstraction. These
high-level designs are well suited for analysis, but less well for understanding and commu-
nicating usage scenarios. Thus to incorporate stakeholders from the requirements league,
scenario-based modeling must be supported.

Scenarios are also heavily used in the test organizations themselves. For example, test
plans are commonly used at Microsoft to describe (in an informal way) what usage sce-
narios of a feature should be tested. These test plans, as well as the scenarios coming from
the requirements phase, are intrinsically partial, omitting a lot of details, in particular or-
acles, parameter assignments, and so on. It is the job of the test engineers to “implement”
these test plans.

The challenge for MBT to scale up to model-based development is the support of both
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the state-based and the scenario-based paradigm in one approach, where it is possible to
combine (compose) models coming from those different sources. For example, a scenario
might provide the control flow, and a state machine the oracle, and the composition of
both produces an instantiated test suite. Thereby, scenarios written in textual as well as
diagrammatic languages should be supported.

4 The Technology Problems

State Explosion MBT is famous to easily generate a huge amount of tests from even
small models. But this turns out to be more a problem in practice than an advantage,
commonly referred to as the “state explosion problem”, a number one concern mentioned
by users of MBT tools at Microsoft.

The state explosion problem has a number of facets. First, the time required to run a
test-suite is a significant cost factor. For example, at Microsoft, developers need to run so-
called “basic verification tests” (BVT) before they can submit sources to a shared depot.
The time required to run the BVT is important for development productivity. If BVT’s
require hours to finish, developers tend to submit their changes in larger time intervals,
which raises problems with the integration of their changes with other developers changes.

This is also a reason why stochastic on-the-fly/online testing is not the solution for the state
explosion problem. It is not realistic to run millions of tests “over night” in the standard
development process. Indeed, this kind of testing has its proper use in test deployments
which run in test labs asynchronously with the development process and in larger time
intervals.

Test Selection The notion of test selection is generally used in the MBT community to
name the process of selecting some representative set of tests from the model – and thus
should provide the tools to battle state explosion. Test selection traditionally covers graph
traversal techniques which can be applied to models which are boiled down to some finite
state machine representation, as well as techniques for generating parameters of tested
actions, like pairwise combination, partitioning, and so on. In the context of models which
have an unbounded state space, like Spec Explorer models, test selection can also include
bounds, filters, state grouping, and other techniques to prune the state space.

While these techniques are mostly automated and well understood, it is a regular complain
of MBT users at Microsoft that they have not enough fine-grained control over the test
selection process. A typical user problem is for example to choose the set of tests from
the model where during some initialization phase an arbitrary path is sufficient, in the
operation phase paths should be chosen such that all transitions are covered, and in the
shutdown phase again an arbitrary path is good enough. MBT tools need to support this
kind of fine-grained control over the test selection process.

Some tools support defining so-called test purposes which are combined with the model
to slice some desired behavior, using special notations for that [FJJV97, TB03]. Instead of
introducing a further notation for describing test purposes, it looks desirable to use models
to express test purposes and view the test selection problem with test purposes as a model
composition problem. Test purposes then fall together with test plans and requirement
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scenarios, as discussed previously. Even more than for those applications, models used as
test purposes must allow to express partial behavior which omits many details.

Model Analysis Another facet of the state explosion problem is the understanding of
what the model actually does. Since models represent human abstractions they can be
error-prone, missing some intended behaviors because of over-abstraction. Therefore, they
require “debugging”. Debugging a model for MBT effectively means exploring and ana-
lyzing the state space it spans, both by humans and automatically.

The Spec Explorer tool invests a great lot of detail to support human analysis by its view-
ing capabilities, which allow to visualize the state space directly or using projection tech-
niques. These capabilities are one major cornerstone for the success of the tool, and need
to be maintained and extended.

The Spec Explorer tool also supports model-checking with safety and liveness properties.
However, this support is not very well developed in comparison to decent model-checking
tools, and temporal property checking is not available. Model checking is a key feature
that makes modeling more attractive for stakeholders outside of the test organization, and
consequently, user requests for it came from this side.

Test Management Test automation does not end with the generation of test cases. In
particular, if it comes to testing of distributed systems and/or testing of software on het-
erogeneous hardware, test management is a significant effort of the overall process.

At Microsoft, a variety of test management tools are in use which allow distribution of
test jobs on matching hardware and execution of orchestrated tests inclusive of logging
for collecting the test results. Other tools support measuring coverage of test suites. The
integration of this set of tools with model-based testing tools is only marginally developed,
and an improvement here is an often requested feature. For example, users want end-to-
end tracking of test case execution with the model source, test versioning, automatic bug
filing, generation of repros for failed test runs, and so on.

5 Conclusion
Model-based testing promises a significant contribution in raising software testing to a sys-
tematic engineering discipline, and providing an entry door to model-based development.
Its application in internal development at Microsoft for half a decade is considered a suc-
cess, though a break-through of the technology is not in sight. This paper attempted to
identify some of the obstacles for wider adoption of MBT at Microsoft, which are typical
at least for software development at enterprise level.

The conclusion drawn is that in order to address different concerns both inside the testing
organizations as well as in the broader scope of model-based development, a model-based
testing tool and approach should be multi-paradigmatic, supporting programmatic and di-
agrammatic notations, as well as state-based and scenario-based styles. Programmatic
notations with decent authoring support should be provided for test engineers, best using
mainstream programming languages, whereas diagrammatic, scenario-based notations as
well as executable specification language should be provided for test architects and stake-
holders outside of test. Moreover, model-checking should be seen as an integral part of
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model-based testing tools. A tool which follows these design principles is currently under
development at Microsoft Research; an overview can be found in an extended version of
this paper [Gri06].

The general message of this paper does not come as a surprise: multi-paradigmatic ap-
proaches are ubiquitous in model-based development, as for example reflected in UML.
However, model-based testing requires that there are full programmatic notations, and not
only diagrammatic ones, and puts strong demands on the semantic and tool-technical inte-
gration of the various behavioral notations, requiring them to be composable for a common
testing goal. This demand is indeed also a long term goal for model-based development
in general – yet the model-based testing application provides very concrete requirements,
the implementation of which promises immediate payoff.
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