
Quantitative Model-Based Safety Analysis:
A Case Study

Matthias Güdemann∗, Frank Ortmeier
matthias.guedemann@ovgu.de, frank.ortmeier@ovgu.de

Abstract:
The rising complexity of many safety-critical systems necessitates new analysis

methods. Model-based safety analysis approaches aim at finding critical failure com-
binations by analysis of models of the whole system (i.e. software, hardware, and fail-
ure modes). The big advantage of these methods compared to traditional approaches
is that the results are of very high significance.
Until now, model-based approaches have only to a limited extent been applied to an-
swer quantitative questions in safety analysis. Model-based approaches in this context
are often limited to analysis of specific failure propagation models. They do not in-
clude system dynamics and behavior. A consequence is, that the methods are very
error-prone because of wrong assumptions.
New achievements in the domain of (probabilistic) model-checking now allow for
overcoming this problem. This paper illustrates how such an approach for quantitative
model-based safety analysis is used to model and analyze a real-world case study from
the railway domain.

1 Introduction

Due to the rising complexity and basically ubiquitous application, more and more soft-
ware intensive systems become safety-critical. The amount of software in such systems is
increasing at the same time, posing an additional challenge to build these dependable and
fault-tolerant.
In order to prevent as many accidents as possible, a lot of effort is being put into safety in
many domains. Requirements for the development and life cycle of safety-critical systems
are now specified in many different norms like the general IEC 61508 [Lad08], DO178-
B [RTC92] for aviation or ISO 26262 [ISO09] for automotive. In addition to requirements,
they present guidelines to make systems more fault-tolerant. All these norms require some
sort of safety assessment before a system is put into operation. Many of these methods
have a long history (some dating back to the 60ies). However, they are more or less only
methodologies and purely rely on skill and expertise of the safety engineer. A poten-
tial source of safety-critical problems can only be anticipated if an engineer thinks of it
a design time. But this foreseeing becomes ever harder, because of rising hardware and
software complexity.

∗Acknowledgement: Matthias Güdemann is funded by the German Ministry of Education and Science
(BMBF) within the ViERforES project (no. 01IM08003C)

To counter these problems, new model-based safety analysis methods get applied. This
means that a model of the system under consideration as well as its environment is built.
Then the analysis is not solely based on the engineer’s skill but also on the formal anal-
ysis of this model. Some examples of such methods are explained in [ABB+06, ORS06,
ADS+04, BV03]. In some cases it is even possible to semi-automatically deduce cause-
consequence relationships between component failures and loss of system.
These are mostly qualitative methods, which can only show fault tolerance by giving crit-
ical combinations of failure modes. But for the assessment of the dependability the most
important question is: “What is/are the probabilities of any of the systems hazards?” For
a satisfying answer, accurate quantitative safety analysis methods must be applied.
In this paper we show the application of a new, quantitative model-based safety analysis
technique – probabilistic deductive cause-consequence analysis [GO10] – to a real-world
case study and report on our experiences. The paper starts with a short presentation of the
case study (Sect. 2). Sect. 3 explains the formal modeling and analysis of the case study
and observations made from a comparison to a traditional safety analysis, Sect. 4 discusses
some related work and Sect. 5 concludes the paper.

2 Case Study

The following case study of a radio-based railroad control was used as a reference case
study used in the priority research program 1064 “Integrating software specifications tech-
niques for engineering applications” of the German Research foundation (DFG), it was
supplied by the German railway organization, Deutsche Bahn. The scenario addresses a
novel technique for controlling railroad crossings. This technique aims at medium speed
routes, i.e. routes with maximum speed of 160 km/h. An overview is given in [KT02].

radio communication

central office

route
profile defects

Figure 1: Radio-based railroad crossing

The main difference between this technology and the traditional control of railroad cross-
ings is that signals and sensors on the route are replaced by radio communication and
software computations in the train and railroad crossing. This offers cheaper and more
flexible solutions, but also shifts safety critical functionality from hardware to software.
Instead of detecting an approaching train by a fixed sensor on the track, the train contin-
uously computes the position where it has to send a signal to secure the level crossing.
To calculate this activation point the train uses data about its position, maximum decel-
eration and the position of the crossing. Therefore the train has to know the position of

the railroad crossing, the time needed to secure the railroad crossing, and its current speed
and position. The first two items are memorized in a data store and the last two items are
measured by an odometer. For safety reasons a safety margin is added to the activation
distance. This allows compensating some deviations in the odometer. The system works
as follows:
The train continuously computes its position. When it approaches a crossing, it broad-
casts a ‘secure’-request to the crossing. When the railroad crossing receives the command
‘secure’, it switches on the traffic lights, first the ‘yellow’ light, then the ‘red’ light, and
finally closes the barriers. When they are closed, the railroad crossing is ‘secured’ for a
certain period of time. The ‘stop’ signal on the train route, indicating an insecure crossing,
is also substituted by computation and communication. Shortly before the train reaches the
‘latest braking point’ (latest point, where it is possible for the train to stop in front of the
crossing), it requests the status of the railroad crossing. When the crossing is secured, it
responds with a ‘release’ signal which indicates, that the train may pass the crossing. Oth-
erwise the train has to brake and stop before the crossing. Behind the crossing, a sensor
detects that the train has passed and an ‘open’ signal is sent to the crossing. The railroad
crossing periodically performs self-diagnosis and automatically informs the central office
about defects and problems. The central office is responsible for repair and provides route
descriptions for trains.

3 Model-Based Safety Analysis

Our model-based safety analysis consists of building a formal system model which can
then be analyzed using formal analysis techniques based on temporal logics and model
checking. The accuracy of the formal system model is the most important factor in the
accuracy of the whole analysis, especially the modeling of the probabilistic behavior.

3.1 Building a formal model

For model-based safety analysis it is necessary to model (a) the controlling software, (b)
the controlled hardware, (c) the environment and (d) possible failure modes. We can not
show the full case study here, but only show one part of it. Fig. 2 shows a model of the
crossing in state charts notation1.
Initially the barriers (of the crossing) are opened. When the crossing receives a close
request from an arriving train - i.e. condition Close becomes true, the barriers start closing.
This process takes some time. After a certain amount of time the barriers are closed. They
will remain closed until the train has passed the crossing (detected by a sensor). The
barriers reopen automatically after a defined time interval. This is a standard procedure in
railroad organization, as car drivers tend to ignore closed barriers at a railroad crossing if

1In this paper, we use a basic (but very precise) semantics for state charts. Basically no queues are allowed,
events do not persist and parallel composition is synchronous. This semantics is very intuitive on the one hand
and very easy to translate into model checker input languages on the other hand.

O
pe

ne
d

C
lo

si
ng

C
lo

se
d

ClosingTimer = 0
Close

C
ro

ss
in

g

Open OR Timer = 0Closed

Figure 2: Model of the crossing

the barriers are closed too long. So it is better to reopen the barriers, than having car drivers
slowly driving around the closed barriers. Analogously the other parts of the system (i.e.
the train, radio communication, brakes, cars, control software) are modeled. Together this
forms a functional model of the system. This means it is a model of the system in an ideal
world, where no errors occur.
The safety goal of the system is clear: it must never happen that the train is on the crossing
and a car is passing the crossing at the same time. A well designed control system must
assure this property at least as long as no component failures occur. The corresponding
hazard H is “a train passes the crossing and the crossing is not secured”. This is the only
hazard which we will consider in this paper.

3.2 Modeling failure modes

The next step is to extend this model such that failures are also correctly described. In this
paper we do not address the question which failure modes are necessary to model2, we
assume, that this has already been determined. For the example the following six failure
modes are considered: failure of the brakes (error brake) which describes the failure of
the brakes, failure of the communication (error comm) which describes the failure of
the radio communication, failure of the barriers closed sensor (error closed) which de-
scribes that the crossing signals closed, although it is not closed, failure of the barriers’
actuator (error actuator) which describes that the actuator of the crossing fails, failure
of the train passed sensor (error passed) which describes that the sensor detecting trains
which passed the crossing fails and deviation in the odometer (error odo) which de-
scribes that the odometer does not give 100% precise data.
These failure modes are integrated into the formal model. Modeling of failures can always
be split into two (sub-)tasks: modeling of the occurrence pattern and modeling of the di-
rect effect of the failure mode. Occurrence patterns describe how and when a given failure
mode may occur and are modeled by failure charts.
The most basic failure chart has two states, one state yes modeling the presence of the fail-
ure and one state no modeling its absence. The transitions between these states determine

2There are numerous other techniques for answering this question. They range from experienced based
approaches like component specific list of failure modes to formally grounded methods like failure-sensitive
specification [OR04].

the type of failure mode. For example: if the state yes can never be left once it became
active, the failure mode is called persistent. If the state may non-deterministically switch
between yes and no, it is called transient. More complex occurrence patterns (e.g. broken
until repair) are also possible. Which occurrence pattern is best fitting for a given failure
mode is a design/analysis decision.
Modeling of the direct effects of the failures of a failure mode basically comes down to
adding transitions and/or states to the functional model, which are activated or in the case
of additional states, reachable, if the failure occurs (resp. if the corresponding failure au-
tomaton is in state “yes”).
Correct modeling of failures is a difficult and error-prone task. From a formal point of
view the semantics of the original model (without failure modes) and the extended model
have little to do with each other. From an intuitive point of view, one would expect some
sort of trace-inclusion, i.e. the original behavior of the functional system must still be pos-
sible in the extended system model. This property can be assured, if some syntactic rules
are followed during modeling of failure modes’ direct effects [OGR07].
Fig. 3(b) shows the modeling of the failure effect of the failure modes error comm and
error passed for the crossing, Fig. 3(a) shows the transient failure automaton for er-
ror comm. If it is active then state Opened will not be left although a Close signal was
sent, i.e. the communication failed. The failure effect of error passed is modeled such
that state Closed may be left if the corresponding failure automaton is in state yes, i.e. a
misdetection of the sensor happened.

yes no

Error_Comm

(a) Failure Automaton

O
pe

ne
d

C
lo

si
ng

C
lo

se
d

Closing

Closed OR ! Errror = no

Timer = 0
Close

Open OR Timer = 0

CommAND Errror = no

C
ro

ss
in

g

Passed

(b) Failure Effects Modeling

Figure 3: Modeling of error comm failure mode

3.3 Modeling for Quantitative Safety Analysis

For an accurate quantitative model-based analysis, probabilistic information must be added
to the extended system model. Accurate modeling of the occurrence pattern and the oc-
currence probability of failure modes is very important. There exist two main types of
failure probabilities. The first is per demand failure probability, which is the probability of
the system component failing its function at a given demand (comparable to low demand
mode in IEC 61508). The second is per time probability, which is the rate of failures over
a given time interval (comparable to high demand or continuous mode in IEC 61508).
Which type of failure probability is best fitting for a given failure mode can only be de-
cided on a case-by-case basis. Transient sensor failures will very often be modeled as a

per time failure mode, as they are active the whole time. Other failure modes, like the ac-
tivation of a mechanical device, will often be modeled as a per demand failure, as a clear
moment of activation exists. Per demand failures often are of persistent nature3.

3.3.1 Discrete Time Model

The underlying semantics of the formal model is a discrete time model in which the tem-
poral behavior of the failure modes and system model must be integrated. For each time
step the system performs, an equal amount of time δt passes, which is called the temporal
resolution. For the example case study, the formal model consists of 10km of railroad
tracks. The average speed is 115km

h
. The formal system model in built in a way that this

translates to a temporal resolution of δt = 5s, i.e. for every system time step, 5s pass.

3.3.2 Modeling per time failure modes

Transitions of the failure automata are labeled with constraints of the form (p : φ) which
translates to: “If φ holds, then the transition is taken with probability p”. This can be
abbreviated by omitting p which then results in probability 1. In order to be a well defined
probabilistic model, for each transition label, the outgoing transition probabilities must
always sum up to 1. This assures that a valid probability measure is defined.
A per time failure mode can be modeled by adding the failure probability to the transition
from state no to state yes as shown in Fig. 4(a). Making its potentially non-deterministic
behavior probabilistic. The activation condition is always true and the sum of probabilities
of outgoing transitions is always 1. In the case shown, the failure automaton enters state
yes with a probability p, stays in this state with the same probability and enters (and stays
in) state no with probability 1− p.
The parameter for a per-time failure is normally given as a failure rate λ and interpreted as
the parameter for the exponential distribution function (Eq. 1) which computes the prob-
ability that a failure occurs before time t. This continuous function can be approximated
in discrete time using a per-time failure automaton as shown in Fig. 4(a). This leads to
a geometric distribution function (Eq. 2) which computes the probability that a per-time
failure appears in at most k time-steps. Setting time t = k · δt, gives a good discrete time
approximation of the exponential distribution [GO10].

P (X ≤ t) =

∫
t

0

e−λtdt (1) P (X ≤ k) = 1− (1− p)k (2)

With the given δt, the failure rates for the per-time failures can be converted to transition
probabilities for per-time failure automata. Modeling the error passed as per time failure
mode with a failure rate of 7e−9 1

s
and the failure of the odometer with a failure rate

of 6e−5 1

s
, the transition failure probabilities are 3.5e−8 for error passed and 3e−4 for

error odo. The deviation of the odometer is then modeled by choosing a deviation from
the set {−3,−2,−1, 0, 1, 2, 3}. The probability of the deviation is modeled to be normally
distributed with μ = 0m

s
and σ = 1m

s
.

3But there exist of course other failure modes, which are transient and should be modeled as per demand
probabilities resp. persistent failure modes, which should be modeled with per time failure rates.

yes no

Per Time Failure

(p : true)

(1−p : true)

(1−
p : true)(p

 :
 tr

ue
)

(a) Per-time

Per Demand Failure

yes no

O
R

 (1−
p : dem

and)
not dem

and

OR (1−p : demand)
not demand

(p : demand)

(p
 :

 d
em

an
d)

(b) Per-demand

Figure 4: Failure Automata for quantitative failure mode modeling

3.3.3 Modeling per-demand failure modes

Correct modeling of a per demand failure mode is more complex. The challenge is to
specify a correct occurrence pattern such that assures that the failure mode can only ap-
pear if a demand to the component is given and is then taken only with the given failure
probability. To accomplish this, the failure probability is first added to the transitions to
state yes and the state no may only be left if there is a demand to the component. In other
words, a predicate demand is a necessary condition for the occurrence of the failure mode.
A failure automaton for a per demand failure mode is shown in Fig. 4(b).
The failure mode error comm is integrated in this way. In this case, there is a demand if
the crossing is in state Opened and the Close signal is sent. If error comm is not present,
then the crossing enters state Closing, if the failure mode is present or no Close signal is
sent, the state Opened is not left. When demand holds ((Crossing = Opened)∧Close),
the failure automaton can change to state yes with probability p or stay in state no with
probability 1 − p. This means that in the next time step, it is possible that the crossing is
either in Opened or Closing. To model this correctly, the state Undecided is introduced
which represent either of these states.
In addition a decide automaton as shown in Fig. 5(b) is added, which changes from
state undef to [Opn, Clg] if demand holds. Based on these two automata the predicates
in(Opened) and in(Closing) are defined as shown in equation (3) and (4) which indi-
cate the “real” state of the crossing, Crossing’ refers to the model of the crossing with
per-demand failure mode modeling.

in(Opened) := Crossing′ = Opened ∨ (Crossing′ = undecided

∧decide = [Opn,Clg] ∧ ¬failure = no) (3)

in(Closing) := Crossing′ = Opened ∨ (Crossing′ = undecided

∧decide = [Opn,Clg] ∧ failure = no) (4)

As Undecided represents either state Opened or Closing, depending on the state of the
failure automaton, the transitions of these states must be added to the state Undecided , in
conjunction with the the above predicates.

• For the state Opened

– to state Opened, activation condition ¬Close ∧ in(Opened), i.e. in state
Opened and there is no demand

– to state Undecided, activation condition Close ∧ in(Opened), i.e. there is a
demand that possibly fails

• For the state Closing the following transitions must be added to Undecided:

– to state Closing, activation condition ¬T imer = 0 ∧ in(Closing)

– to state Closed, activation condition T imer = 0 ∧ in(Closing)

The complete modeling of the per demand failure effect for error passed is shown in
Fig. 5(a). The decide automaton, Crossing and the per-demand failure automaton together
show the same observable behavior as the qualitative failure modeling. It becomes clear
why such a complex construction is necessary: the state Opened has successor states if
there is a demand and successors states if there is no demand. Therefore only being in state
Opened is not sufficient to specify the demand predicate, because the failure automaton
could then make a transition at the wrong time, resulting in wrong overall probabilities,
especially important for persistent failures which cannot disappear after their occurrence.
We give an example trace that shows the relevant predicates and states of the automata
to illustrate that the resulting traces of the probabilistically modeled system are the same
as for the system for qualitative analysis, if the per demand failure modes are correctly
integrated as described. The first trace shows the behavior of the extended system model

Tim
er =

 0
C

losing

Opened

not Timer = 0
Closing

Timer = 0Closing

C
lo

se
A

N
D

 in
(O

pe
ne

d)

Crossing’

Closing

Closed

C
losed

O
pen O

R
 Tim

er =
 0

O
R

 not E
rrror =

 no
P

assed

Close

not Close

AND in(Closing)

AND in(Closing)

AND in(Opened)

Undecided

(a) Failure Effects Modeling (Crossing’)

Decide

undef

no
t d

em
an

d

demand

not demand

[Opn, Clg]

dem
and

(b) Decide Automaton

Figure 5: Modeling of per-demand failure mode error com

without explicit modeling of the per demand failure mode. The failure appears after the
first time step, but has no effect there because there no Close command was sent. At the
third time step, the failure appears again, now it has an effect (Close command was sent)
causing the crossing to stay in state Opened. Afterwards the failure disappears, Close is
sent again and the crossing enters state Closing. The following trace is the corresponding
trace of the extended system model with probabilistic modeling of the per demand failure.
Here the failure can only appear at the fourth time step, as there was no demand before.
This causes the decide automaton to enter the state [Opn,Clg] and the crossing to enter

time-step 1 2 3 4 5
error comm no yes yes no no

Crossing Opened Opened Opened Opened Closing
Close false false true true false

state Undecided. The failure is active at the fourth time step, therefore in(Opened) holds
and the “real” state of the crossing is Opened. At the fifth time step, the Close command
is sent again, this time the failure disappears and in(Closing) holds. Both traces show the

time-step 1 2 3 4 5
error comm no no no yes no
Crossing’ Opened Opened Opened Undecided Undecided
decide undef undef undef [Opn,Clg] [Opn,Clg]
in(Opened) true true true true false

in(Closing) false false false false true
Close false false true true false

same observable behavior, i.e. the states of the crossing and therefore the failure effects
are the same in both cases. Nevertheless it can easily be seen that the failure mode can
only appear at the time of a demand, whereas in the modeling without per demand failures
the failure can appear at any time, but its effect manifests only at certain time steps (the
demands in the probabilistic modeling). This illustrates again that in order to compute
accurate probabilities, this distinction is necessary although the correct integration in not
trivial. A much more detailed discussion about the integration of both per-demand and
per-time failure modes can be found in [GO10].

3.4 Analysis Results

The constructed probabilistic model was analyzed using the PRISM model checker using
hybrid models (sparse matrices and MTBDDs) on an Athlon 64 X2 4800+ CPU with 2
Gbyte of RAM. The overall model consisted of 11295021 reachable states and 518674960
transitions resulting from the parallel composition of the state machines of the model de-
scription. The duration of the analysis was approx. 190 minutes and 279.7 MByte of RAM
were allocated. The hazard H was defined as “the position of the train is on the crossing
and the crossing is not in state closed”. Equation (5) shows the result of the quantitative
analysis. The probabilistic temporal logic formula is explained in [GO10].

P (H) = 4.47363 · 10−6 (5)

Compared to a more traditional analysis method based on the a-posteriori estimation
of the hazard probability on the resulting critical combinations of failures (for details
see [ORS05]), this result is much more accurate. The following equation shows the re-
sult using the standard approach for quantitative fault tree analysis (FTA) [VDF+02] as

shown in formula (6).

PFTA(H) ≤
∑

Δ∈mcs

∏
δ∈Δ

P (δ) (6)

PFTA(H) ≤ P (error passed) + P (error odo) + P (cut sets of size ≥ 2)

PFTA(H) ≤ 2.8 · 10−6 + 2.5 · 10−2 +O(1 · 10−14) ≈ 2.5 · 10−2 (7)

For this calculations, the probabilities for error passed and error odo must be estimated
for one train passing the crossing. In the example, it was assumed that the train needs
roughly4 400s. These coarse results (Eq. (7)) could then be refined with constraint proba-
bilities. For example, one could deduce that only deviations of at least 2m

s
are dangerous.

This would then lower the probability for error odo by the order of 2. It is still rather
obvious that this estimation is very coarse compared to quantitative model based analysis.
Another drawback of the traditional approach is that if the system is not carefully analyzed
for temporal behavior, the estimation can easily be too optimistic. Just try to decide if a
deviation of 3m

s
could also be justified or not.

The biggest advantage of the model-based quantitative analysis is that the stochastic de-
pendencies5 which often are inherent in such a system are automatically considered in the
system model, whereas all a-posteriori methods depend on the stochastic independence
which is often not satisfied.

4 Related Work

Some related model-based analysis methods like [BV03, ABB+06, ADS+04] have al-
ready been mentioned. Together with basic fault tree analysis [VDF+02] they have the
disadvantage that the results of a qualitative analysis are used for quantitative estimations.
As already discussed, these estimations rely on the assumption of stochastic independence,
which is often not fulfilled.
Notable approaches for doing quantitative safety analysis directly on a formal system
model is presented in [BPRW08]. In this work, critical combinations of failures, anal-
ogously to the minimal cut sets of FTA or minimal critical sets of DCCA are analyzed for
their relative impact. They are sorted according to their contribution to the overall hazard
probability. The difference is that the analyzed system behavior is limited to allow only
failure modes in such a set. This alters the set of possible traces of the system models and
the probabilities in such a way that no overall hazard probability can be computed.
Very interesting approaches are developed in the COMPASS [BCK+09a] project with its
SLIM modeling language [BCK+09b] and in [GCW07]. Both approaches are similar to
ours in analyzing whole system models. The difference is, that solely continuous time
models are used. This is well suited to asynchronous interleaved systems but not to syn-

4Derived from the formal model of the railroad crossing.
5Consider for example that the faster the train, the more likely is the situation that the sensor is passed without

sensor failure. A slower train speed translates to a higher probability of a error passed failure mode, as the
more time passes the more the probability shrinks that the failure does not occur.

chronous parallel systems [HKMKS00]. This also means that per-demand failure modes
are not supported, as these are not directly expressible in the continuous time semantics.

5 Conclusion

The quantitative model-based safety analysis method presented in [GO10] was applied to
a real world case study of a radio-based railroad crossing. The modeling included both
per-time and per-demand failure modes and normally distributed deviations of a sensor.
The limiting factor of the analysis method is the size of the state space (which is larger
for probabilistic analyses than for qualitative analyses) and the running time of the model-
checking. But as we have shown, a realistic case study is analyzable in that way and
probabilistic model-checking is an active research area. Different abstractions to reduce
the state space have been proposed, multi-terminal BDDs [KNP02] are already in use in
PRISM, bisimulation- based abstractions are integrated in MRMC [KKZJ07] and the nec-
essary numerical analysis can be moved to massive parallel GPU computation [BES09].
The analysis results are very promising, as all the stochastic dependencies are automat-
ically reflected in the analysis, resulting from the analysis using probabilistic model-
checking techniques. The different types of failure modes can be integrated into the model
and although the system is modeled in a discrete time context, accurate continuous time
approximation is possible. Future work will include developing a modeling framework
for the combined usage of qualitative safety analysis, to compute the critical combinations
and quantitative safety analysis to compute the overall hazard probabilities.

References

[ABB+06] O. Akerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider, C. Castel, A. Cav-
allo, M. Cifaldi, J. Gauthier, A. Griffault, O. Lisagor, A. Luedtke, S. Metge, C. Pa-
padopoulos, T. Peikenkamp, L. Sagaspe, C. Seguin, H. Trivedi, and L. Valacca.
ISAAC, a framework for integrated safety analysis of functional, geometrical and
human aspects. In Proceedings of ERTS 2006, 2006.

[ADS+04] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stalmarck, Herman Agren, and Ove
Akerlund. Designing Safe, Reliable Systems using SCADE. In Proceedings of
ISOLA’04. Springer-Verlag, 2004.

[BCK+09a] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen
Nguyen, Thomas Noll, and Marco Roveri. COMPASS project webpage.
http://compass.informatik.rwth-aachen.de/, 2009.

[BCK+09b] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas
Noll, and Marco Roveri. Model-Based Codesign of Critical Embedded Systems. In
2nd International Workshop on Model Based Architecting and Construction of Em-
bedded Systems, pages 87–91. CEUR-WS.org, 2009.

[BES09] D. Bosnacki, S. Edelkamp, and D. Sulewski. Efficient Probabilistic Model Checking
on General Purpose Graphics Processors. In C. Pasareanu, editor, Proc. 16th Interna-
tional SPIN Workshop, volume 5578 of LNCS, pages 32–49. Springer, 2009.

[BPRW08] Eckard Böde, Thomas Peikenkamp, Jan Rakow, and Samuel Wischmeyer. Model
Based Importance Analysis for Minimal Cut Sets. Reports of SFB/TR 14 AVACS 29,
SFB/TR 14 AVACS, Apr 2008. ISSN: 1860-9821, http://www.avacs.org.

[BV03] M. Bozzano and Adolfo Villafiorita. Improving System Reliability via Model Check-
ing: theFSAP/NuSMV-SA Safety Analysis Platform. In Proceedings of SAFE-
COMP’03, pages 49–62. Springer, 2003.

[GCW07] L. Grunske, R. Colvin, and K. Winter. Probabilistic Model-Checking Support for
FMEA. In Proc. 4th International Conference on Quantitative Evaluation of Systems
(QEST’07), 2007.

[GO10] Matthias Güdemann and Frank Ortmeier. Probabilistic Model-based Safety Analy-
sis. In Proceedings of the 8

th Workshop on Quantitative Aspects of Programming
Languages (QAPL10). EPTCS, 2010.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle.
A Markov Chain Model Checker. In TACAS ’00: Proceedings of the 6th International
Conference on Tools and Algorithms for Construction and Analysis of Systems, pages
347–362, London, UK, 2000. Springer-Verlag.

[ISO09] ISO/WD 26262: Road Vehicles-Functional Safety, 2009.

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen. Bisimulation
Minimisation Mostly Speeds Up Probabilistic Model Checking. In TACAS, pages 87–
101, 2007.

[KNP02] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model Check-
ing with PRISM: A Hybrid Approach. In TACAS ’02: Proceedings of the 8th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 52–66, London, UK, 2002. Springer-Verlag.

[KT02] J. Klose and A. Thums. The STATEMATE Reference Model of the Reference Case
Study ‘Verkehrsleittechnik’. Technical Report 2002-01, Universität Augsburg, 2002.

[Lad08] Peter B. Ladkin. An Overview of IEC 61508 on EEPE Functional Safety, 2008.

[OGR07] Frank Ortmeier, Matthias Güdemann, and Wolfgang Reif. Formal Failure Models. In
First IFAC Workshop on Dependable Control of Discrete Systems (DCDS 07). Else-
vier, 2007.

[OR04] F. Ortmeier and W. Reif. Failure-Sensitive Specification: A Formal Method for Find-
ing Failure Modes. Technical Report 3, Institut für Informatik, Universität Augsburg,
2004.

[ORS05] F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety analysis of a radio-based
railroad crossing using Deductive Cause-Consequence Analysis (DCCA). In Pro-
ceedings of 5th European Dependable Computing Conference EDCC, volume 3463
of LNCS. Springer, 2005.

[ORS06] F. Ortmeier, W. Reif, and G. Schellhorn. Deductive Cause-Consequence Analysis
(DCCA). In Proceedings of IFAC World Congress. Elsevier, 2006.

[RTC92] RTCA. DO-178B: Software Considerations in Airborne Systems and Equipment Cer-
tification, December, 1st 1992.

[VDF+02] Dr. W. Vesley, Dr. Joanne Dugan, J. Fragole, J. Minarik II, and J. Railsback. Fault
Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission
Assurance, August 2002.

