
cba

Gesellschaft für Informatik e.V. (GI) (Hrsg.): INFORMATIK 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Classifying figures and illustrations in electronics datasheets:
A comparative evaluation of recent computer vision models
on a custom collection of 4000 technical documents

Lymperis Perakis1, Julian Balling2, Frank Binder2, Gerhard Heyer2, Franz Kreupl3

Abstract: We report findings from a comparative evaluation of several recent object detection models
applied to a domain-specific use case in technical document analysis and graphics recognition. More
specifically, we apply models from the EfficientDet and YOLO model families to detect and classify
figures in electronics datasheets according to a custom classification scheme. We identify YOLOv7-D6
as the most accurate model in our study and show that it can successfully solve this task. We highlight
an iterative approach to figure annotation in document page images for creating a comprehensive
and balanced custom dataset for our use case. In our experiments, the object detection models show
impressive performance levels on par with state-of-the-art results from the literature and related
studies.

Keywords: Computer Vision; Object Detection; Document Analysis; Graphics Recognition; Electronic
Design Automation; Machine Learning

1 Introduction

The design and development process of electronics components, for example, for automotive
or IoT markets, is complex and time-consuming. The market need for embedded software
and hardware engineers is continuously growing and cannot be covered by the number of
professionals in the market. Using intelligent software algorithms and AI can automate some
development tasks, enabling a broader spectrum of companies, engineers, and technicians to
contribute to the development of embedded systems. In this context, many challenges must
be addressed to better assist engineers and to automate certain process steps in hardware
and software development.

The KIRESys project aims to contribute to the automation in hardware development towards
an automatic generation of PCB layouts. A prerequisite for such automatic generation is the
availability of machine-processable knowledge and information on electronic components.
However, to date such knowledge is primarily represented texts, tables, and figures in PDF
1 CELUS GmbH, Ridlerstraße 57, 80339 Munich, Germany lymperis.perakis@celus.io
2 Institute for Applied Informatics (InfAI) e.V. at Leipzig University, Goerdelerring 9, 04109 Leipzig, Germany
{balling,binder,heyer}@infai.org

3 Department of Hybrid Electronic Systems, TUM School of Computation, Information and Technology,
Technical University of Munich, Arcisstraße 21, 80333 München, Germany franz.kreupl@tum.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:lymperis.perakis@celus.io
mailto:{balling,binder,heyer}@infai.org
mailto:franz.kreupl@tum.de


12 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

documents, i.e., datasheets and reference designs, intended to be consumed by humans. This
paper targets one particular challenge in information extraction from these richly structured
documents: Extracting and classifying illustrations and figures from electronic datasheets
and reference designs.4

This paper reports the results of our study on the following questions: How well can
current machine learning approaches recognize, extract, and classify illustrations and
figures from electronic component datasheets. Which results can currently be achieved with
different state-of-the-art and efficient object detection models? To answer those questions,
we developed and curated a custom dataset from datasheets from the design automation
domain and compared the performance of several state-of-the-art object detection models
from computer vision when applied to detecting and classifying figures and illustrations in
these documents.

2 Background and related work

2.1 Information extraction from technical documents

Information extraction from documents is a long-standing research area with a multitude
of subfields, as documented, for instance, by the International Association for Pattern
Recognition (IAPR)’s established series of conferences, workshops, and journals in the
field.5 Information extraction from non-textual contents in document images had started to
thrive as early as the 1980s, driven by industry needs for establishing computer-assisted
design processes (CAD) and geographical information systems (GIS), among others [LR14].
An early example of aligning visual and textual information for product and component
data, such as interpreting electronic diagrams and engineering drawings for conversion
into operational CAD data, was presented in 1997 by Boeing [BBK98], as reported in
[LO14]. It is also noted there, that as of 10 years ago (and still today) no generalized and
comprehensive solution has been found, but that many approaches focus on information
spotting and partial interpretation [LO14].

However, in recent years, significant developments in machine learning and computer vision,
as well as the availability of large curated datasets for training deep learning models have
brought new potential into the field of information extraction from technical documents.
For example, state-of-the-art computer vision models, such as Mask R-CNN [He20], can
be successfully leveraged for document layout analysis, which also entails the detection

4 Reference designs are manufacturer recommendations for the correct and specification-compliant implementation
of electronic components in an overall system. They are usually available as PDF documents.

5 Consider, for example, the International Conference on Document Analysis and Recognition (ICDAR), the
International Journal on Document Analysis and Recognition (ĲDAR), the International Workshop on Document
Analyis Systems (DAS), the International Workshop on Graphics Recognition (GREC), some of which host
serial competitions, such as the Robust Reading Competition linking the document analysis and computer vision
communities [Ka13; Ya17], cf. https://rrc.cvc.uab.es/.

https://rrc.cvc.uab.es/


Classifying figures and illustrations in electronics datasheets 13

of figures and illustrations on document page images [Sh21]. Such improvements are
fueled by the availability of large public training data sets as PubLayNet [ZTY19] and
DocLayNet[Pf22]. In addition, recent systems for information extraction from documents
“born digital”6 successfully integrate data from multiple modalities into coherent knowledge
bases by incorporating textual, structural, tabular and visual cues [Wu18]. One common
aspect of most comprehensive systems and related approaches, as seen from 1998 [BBK98]
through 2018 [Wu18] and beyond [OSP21], has been the effective integration of user
feedback [Bi22] and the design for efficient human-machine-cooperation [Op22]. To achieve
that, the automatic information extraction steps have to be performed accurately and fast. For
that reason, closely related studies, such as recent work on figure extraction from electronics
datasheets by Chen et al. [Ch21], have relied and improved upon (earlier) state-of-the-art
object detection models from computer vision.

2.2 Object detection with EfficientDet and the YOLO model families

Object detection has seen an increasing interest over the past years, mainly due to the general
advance of technology in computer vision with the help of deep learning. While image
classification refers to categorizing the whole image into classes, object detection involves
classification and localization tasks where multiple objects may be present in one image.
More precisely, object recognition discerns instances of objects of a specific class in an
image and then highlights them, usually delimiting them with bounding boxes [SSD19].
Historically we can divide the progress of object detection into two periods: the “traditional
object detection period (before 2014)” and the “deep learning-based detection period (after
2014)” [Zo23].

Modern deep learning object detection models can be divided into two main types: one-stage
and two-stage detectors. Two-stage detectors have an extra step that is called region proposal.
One-stage object detection models skip the region proposal and run detection directly
over a dense sampling of locations. These models usually have faster inference (possibly
at the cost of accuracy). They are more suitable for real-time applications, and sample
models include YOLO [Re16], SSD [Li16], RetinaNet [Li17b], and EfficientDet [TPL20].
Two-stage methods prioritize detection accuracy, and sample models include FPN [Li17a],
Faster R-CNN [Re17], and Mask R-CNN [He20].

Two families of object detectors were used for the present study: EfficientDet and YOLO.
EfficientDet [TPL20] is a recent object detection family that is based on EfficientNet [TL19]

6 For a definition of “documents born digital” versus printed media and scanned documents, we refer to [HL14].
Documents born digital do not require the application of optical character recognition and can be processed with
specific software libraries, such as Pdfminer.six or pdfplumber. However, extracting content in a meaningful and
robustly automated way still poses challenges, as the PDF format by design is not intended to be machine-readable
but rather encodes a visual document representation for human consumption.



14 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

as a backbone7, and adds a new neck layer to extend the functionality of the Path Aggregation
Network (PAN). Similarly to EfficientNet, it applies compound scaling to optimize both
accuracy and efficiency.

YOLO (“You only look once”) is a series of prevalent one-stage object detection model
families that has seen several iterations with industry-leading performance when considering
speed and accuracy in object detection. The initial release was based on its creator’s
Darknet framework [Re13; Re16], followed by to iterative improvements, YOLOv2[RF17]
and YOLOv3 [RF18]. The YOLOv4 architecture was then proposed by the maintainer
of the Darknet framework at that time [BWL20]. Its backbone utilizes a variant of the
Cross Stage Partial (CSP) network [Wa20]. It also included techniques, such as mosaic
data augmentation and hyper-parameter optimization using genetic algorithms. This made
YOLOv4 the state-of-art detector based on its speed and accuracy compared to available
alternative detectors.

The YOLO versions used in this study are YOLOv5 [Jo22], YOLOv6 [Li22], and
YOLOv7 [WBL22]. An overview of the distinct EfficientDet and YOLO architectural
choices can be found in Table 1.

Models Backbone Neck Head Loss
Function Anchor Augm.

EfficientDet EfficentNet Bi-FPN Coupled Focal Yes No

YOLOv5 CSPDarknet53 PAN YOLOv3 BCE with
Logits Loss Yes Yes

YOLOv6 RepVGG or
CSPRepStack Rep-PAN Efficient

Decoupled
VFL +

IoU Loss No Yes

YOLOv7 E-ELAN PAN Lead +
Auxiliary

VFL +
DFL Yes Yes

Tab. 1: Overview of the architectures of EfficientDet and different YOLO versions. The models are
compared based on their backbone, neck, head, loss function, anchor method choices, and whether
they use augmentation in their implementation. This table was developed based on the following
sources: [Li22; TPL20; Ul21; WBL22].

YOLOv5 is a model developed and published by Ultralytics shortly after YOLOv4 was
introduced. The implementation of the network changed from Darknet to Pytorch. Similarly
to YOLOv4, the model’s improvements include data augmentation and hyper-parameter
optimization. Since its initial release, Ultralytics have continued to modify YOLOv5’s
architecture to further improve exportability and speed [Ul21]. Chronologically, YOLOv7
was published next [WBL22], which was developed in cooperation with the creator of
YOLOv4. YOLOv7 achieved state-of-the-art for real-time object detectors. Compared to

7 The basic architectural pattern of one-stage object detectors comprises a backbone network for feature extraction
from input images, a neck for multi-resolution feature aggregation, and a head for predicting the objects with
their bounding boxes and classes.



Classifying figures and illustrations in electronics datasheets 15

YOLOv5 on a model with a similar mean Average Precision (mAP), YOLOv7 is 120%
faster on inference time in a batch size of 1. Shortly after, YOLOv6 was released [Li22].
The authors propose two scaled re-parameterizable backbones and necks to serve efficient
and hardware-friendly models of different sizes.

3 Methods

3.1 Data collection, preprocessing, and pre-labeling

Supervised learning techniques require labeled data to train the models. For our specific use
case we collected and developed a custom dataset. We manually downloaded over 4000
electronic component datasheets from the website of a large international electronic compo-
nents distributor. Only documents from the Interface ICs category and its subcategories
were considered, since that already yielded a fairly large collection of born-digital PDF
documents with a sufficient number and variability of figures and illustrations.

Since object detection models need a visual image as input, we converted the PDFs to
document page images in PNG format. We then used LayoutParser [Sh21] with an existing
object detection model to generate pre-labeled bounding boxes for figures on the document
pages, and to remove all page images without figures from the dataset.8

3.2 Data labeling and bounding box optimization

Given our use case, the following classes of figures in electronics datasheets were identified
as relevant by CELUS’ electronics engineering experts: Package General, Schematic, Block
Diagram, Timing, Pin Assignment, Memory, Plot, Package Drawing, Footprint, Other.
After manually labeling more than 1.000 figures on more than 600 pages, we outsourced
the remaining labeling workload to a data annotation and labeling service provider, for
which we composed and piloted a comprehensive labeling guide. The resulting bounding
box labels were optimized using a technique inspired by [Ch21] to improve the precision
and consistency of the ground truth annotations. We implemented their Bounding Box
Refinement method to shrink and fit the bounding boxes to their respective visual objects.
Figure 1 shows an example of the technique used on our dataset.

3.3 Model training with iterative pre-labeling of data piles

To prepare for model training and evaluation, we randomly split our labeled dataset into
training, validation, and test subsets of 80%, 10%, and 10% respectively. The test set

8 From LayoutParser’s model zoo we used an available Mask R-CNN model, which had been trained on the
PubLayNet dataset [ZTY19] and which could identify (but not yet classify) figures in our dataset.



16 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

(a) (b)

Fig. 1: Comparison of the bounding box before (a) and after (b) applying the Bounding Box Refinement
on a Pin Assignment label. The excess white space around the object is removed. Note that we include
figure captions inside our labels whenever possible.

underwent extended quality assurance, to ensure that the evaluation mirrors real-life results.
Finally, we exported and transformed the respective data to the different data formats
required by the various models.

We then trained our models using the following Python libraries: For EfficientDet, we used
Ross Wightman’s PyTorch implementation [Wi], whose performance on the COCO dataset
is on par with the official results published in [TPL20]. We trained 4 model variants for
EfficientDet.9 For YOLOv5, we used version 6.0 from the official repository [Ul21]. Here
we trained 6 models. As an ablation study, we trained the YOLOv5m model a second time
without augmentations to observe their effect on the model’s performance. For YOLOv6, we
trained 5 models using the official repository [Me]. For YOLOv7, we trained 4 models using
the official repository of the authors [Ki].

Table 2 lists the models and their characteristics from literature. For all model trainings,
we used the default parameters and hyperparameters. All models were trained for 100
epochs with maximum batch sizes ranging from 4 for larger models to 64 for smaller ones.
We utilized the default weights of the models, gained through pre-training on the COCO
dataset, as provided by the authors’ libraries. Note that the implementation of EfficientDet
does not include any augmentations, contrary to the YOLO families. We expect that the
augmentations will improve the YOLO models’ performance without sacrificing speed.
Performance of the models was evaluated on the COCO dataset.

In order to ensure a sufficient number of training items per class, we iterated over the steps
from pre-labeling to model training as follows: As noted above, we first used Mask-RCNN,
trained on PubLayNet, to filter out the pages without figures and to pre-annotate a first pile

9 The plan was to train the larger models as well, but our cluster could not provide the required amount of RAM.



Classifying figures and illustrations in electronics datasheets 17

of data. We then had the figures labeled for this first pile, and trained the EfficientDet model
with those labels. Thus, we then had a model that could both detect and classify figures in
our datasheets. This allowed us to estimate the distribution of figure classes, which we used
for the subsequent iteration to roughly balance the dataset. So, we used the predictions of
EfficientDet for pre-labeling and filtering pages when creating the second pile. We then had
the second pile labeled, and trained YOLOv5 with it, which we used for pre-labeling and
filtering of the third pile, and so on. After training the various models we evaluated their
performance on the held-out test set. Results are reported in section 4.2.

Model Image
Size

mAP
%

mAP50

%

Speed
V100

b1 (ms)

Speed
V100

b32 (ms)
Params

(M)
FLOPS

(G)

EfficientDet-D0 512 34.2 53.0 - - 3.88 2.5
EfficientDet-D1 640 39.4 59.1 - - 6.62 6.1
EfficientDet-D2 768 43.4 62.7 - - 8.1 11
EfficientDet-D3 896 47.1 65.9 - - 12.0 25

YOLOv5n 640 28.0 45.7 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 8.2 1.7 21.2 49.0
YOLOv5l 640 49.0 67.3 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 12.1 4.8 86.7 205.7
YOLOv5l6 1280 53.7 71.3 15.8 10.5 76.8 445.6

YOLOv7-tiny 640 30.8 47.3 - - 6.2 5.8
YOLOv7 640 51.4 69.7 6.2 2.8 36.9 104.7
YOLOv7-X 640 53.1 71.2 8.8 4.3 71.3 189.9
YOLOv7-D6 1280 56.6 74 22.7 15.0 154.7 806.8

YOLOv6-N 640 36.3 51.2 - - 4.3 11.1
YOLOv6-T 640 41.1 56.6 - - 15.0 36.7
YOLOv6-S 640 43.8 60.4 - - 17.2 44.2
YOLOv6-M 640 49.5 66.8 - - 34.3 82.2
YOLOv6-L 640 52.5 70.0 - - 58.5 144.0

Tab. 2: Characteristics of the models used in this study as reported in [Ki; Li22; Me; TPL20; Ul21;
WBL22; Wi] prior to conducting our own experiments (cf. Table 4). The primary challenge metric on
the COCO dataset is mAP calculated at IoU=.50:.05:.95. Speed metrics for YOLOv5 and YOLOv7 are
reported for batch sizes of 1 and 32 in ms on NVIDIA Tesla V100 GPUs. As other models were tested
on different setups, their speed metrics are omitted here, but findings from our own experiments are
listed in Table 4. The number of model parameters is given in millions. FLOPS are largely determined
by input resolution, i.e. 640x640 or 1280x1280.



18 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

4 Results and discussion

4.1 Data set

For our use case in supporting electronics design automation with information extraction
from datasheets and reference designs, we built a custom dataset of 17019 page images with
figures from over 4000 born-digital PDF documents of electronic component datasheets.
This page image dataset contains 28093 high-quality labels for a custom set of 10 categories
of figures. The diverse dataset contains labeled figures for electronic components from 26
subcategories of Interface ICs. We used datasheets from over 66 manufacturers with more
than 2300 components to achieve that. Around 3% of the pages in our dataset include no
figures. As reported in Table 3, the dataset is fairly balanced.10

Number of Figures Number of Pages
Figure Type All Train Val Test All

Block Diagram 2941 2347 296 298 2581
Footprint 1306 1015 143 148 1220
Memory 2796 2243 282 271 1860
Other 2843 2357 273 213 2190
Package Drawing 3488 2818 340 330 3207
Package General 1749 1406 161 182 1458
Pin Assignment 2789 2286 252 251 2289
Plot 3436 2901 255 280 1038
Schematic 3017 2432 281 304 2093
Timing 3728 2945 394 389 2469

Total 28093 22750 2677 2666 -

Tab. 3: Overview of the number of figures in our self-created electronic components datasheet
collection. We display the number of samples in each figure category and the number of pages
containing figures from each category.

4.2 Model performance scores after fine-tuning

Using our custom dataset, we fine-tuned and comparatively evaluated object detection
models of various sizes from four recent model families: EfficientDet, YOLOv5, YOLOv7,
and YOLOv6. We ran all validation experiments on the same hardware setup using an
NVIDIA GTX 1080 Ti GPU, with 11GB RAM. Table 4 lists the inference performance
scores of the fine-tuned models regarding their mAP, precision, recall, and speed.

10 The categories Footprint and Package General occur only limited times in our datasheet collection. Fortunately,
they appear very homogeneous between datasheets, which will still allow to successfully train the models.



Classifying figures and illustrations in electronics datasheets 19

Model mAP
%

mAP50

%
P50

%
R50

%
Speed

b1 (ms)
Speed

b16 (ms)
Speed

b32 (ms)

EfficientDet-D0 82.0 88.4 - - 23.0 10.9 10.9
EfficientDet-D1 83.5 88.7 - - 35.0 21.6 21.3
EfficientDet-D2 84.5 89.6 - - 49.0 33.8 33.3
EfficientDet-D3 85.6 90.4 - - 84.0 64.18 -

YOLOv5n 83.37 91.12 85.69 86.46 6.6 2.3 2.2
YOLOv5s 85.62 90.73 85.5 88.64 7.7 4.0 4.2
YOLOv5m 87.22 91.51 85.58 88.65 13.0 8.3 8.0
YOLOv5m* 80.09 86.38 84.36 82.04 14.0 8.8 8.4
YOLOv5l 87.88 91.87 85.65 88.97 19.8 13.5 13.4
YOLOv5x 87.93 91.32 87.1 87.52 34.6 23.2 22.9
YOLOv5l6 88.37 91.75 86.46 88.26 62.9 52.8 -

YOLOv7-tiny 85.68 91.58 85.64 87.84 6.9 4.7 4.4
YOLOv7 87.75 91.98 87.32 88.38 19.8 14.9 15.7
YOLOv7-X 87.75 91.87 85.34 88.54 31.0 24.4 26.6
YOLOv7-D6 88.75 93.08 87.64 89.18 101.1 85.5 -

YOLOv6-N 85.6 90.4 - - 7.1 2.4 2.3
YOLOv6-T 86.7 90.7 - - 7.1 4.3 3.4
YOLOv6-S 86.3 90.3 - - 8.1 5.4 4.6
YOLOv6-M 87.3 90.8 - - 12.9 10.2 9.3
YOLOv6-L 87.3 90.6 - - 19.8 14.5 14.4

Tab. 4: Performance comparison after finetuning: Overall mean Average Precision (mAP); mAP,
precision and recall at an IoU=0.5; inference speed with batch sizes of 1, 16, and 32. EfficientDet and
YOLOv6 libraries did not provide recall and precision metrics. YOLOv5m* is the same model as the
YOLOv5m without any augmentation during training. Best scores in each family are shown in bold.

4.3 Comparison of model performances

As expected from the literature, the EfficientDet models fall behind in performance and speed
compared to the YOLO variants. Additionally, the library used for training EfficientDet
posed problematic RAM requirements,it was impossible to complete the training for models
larger than EfficientDet-D3. In general, we observe that the bigger the model the better its
performance on all metrics, except for inference speed, which was slower for larger models.

The YOLOv5 family’ larger models showed the best trade-off between mAP and speed,
as seen in Figure 2. Regarding the effect of augmentations, we find that the model fine-
tuned without any augmentation (YOLOv5m*) delivers the worst performance among all
experiments. Specifically, its mAP is 7% worse than the equivalent YOLOv5m model. This
underlines the importance of using augmentations during fine-tuning. Figure 2 also shows
that the mAP stagnates for those large models of YOLOv5 and YOLOv7 that still use an



20 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

image size of 640. YOLOv5l6 and YOLOv7-D6 use a larger input image size of 1280 and
show a steeper improvement compared to their smaller counterparts.

20 40 60 80 100
Inference time b1 [ms]

82

83

84

85

86

87

88

89

Pe
rfo

rm
an

ce
[m

A
P]

EfficientDet
YOLOv5
YOLOv7
YOLOv6

Fig. 2: Performance (mAP) of the trained models regarding their inference time in ms with a batch
size of 1.

YOLOv7-D6 of the YOLOv7 family has the best accuracy metrics of all models in our study,
but it is also the slowest. We will analyze it further in Section 4.4. The smaller models
of the newest YOLOv6 family have the best trade-off between mAP and inference time.
Specifically, the YOLOv6-T achieves a mAP of 0.87 with a speed of almost 300fps when
using a batch size of 32. Its bigger siblings, YOLOv6-M and YOLOv6-L, are not improving
much compared to equivalent ones from the other YOLO families. This may be because
the larger models have different architectural choices, as listed in table 1. Another essential
aspect is that the YOLOv6 models were faster to train and would converge sooner, thus
potentially saving computing cost.

4.4 Best model results and related SOTA

The best model in terms of accuracy in our study is YOLOv7-D6. In Table 5, we can see
its performance across the different classes. Notice that the recall is relatively high in all
classes except the Other. Hence, the model can identify most figures in the dataset. The
precision is also relatively high, showing that the model primarily identifies relevant objects.

The confusion matrix in figure 3 shows that some classes are interchanged more than others.
Specifically, as expected, the model confuses the categories Block Diagram and Schematics.
They have many similarities, and even electronic experts have difficulties categorizing some
examples in our dataset. Another occasion that the confusion matrix shows improvement
potential for our dataset is the Timing vs. Plot. Timing is a specific category of plots, and
probably not perfectly consistent across our dataset.



Classifying figures and illustrations in electronics datasheets 21

Figure Type mAP mAP50 P50 R50

all 0.888 0.931 0.876 0.892
Block Diagram 0.883 0.904 0.822 0.873
Footprint 0.878 0.913 0.831 0.918
Memory 0.826 0.891 0.8 0.886
Other 0.802 0.836 0.794 0.715
Package Drawing 0.88 0.977 0.951 0.939
Package General 0.938 0.977 0.94 0.951
Pin Assignment 0.929 0.98 0.937 0.96
Plot 0.952 0.971 0.964 0.909
Schematic 0.872 0.916 0.858 0.851
Timing 0.915 0.944 0.867 0.916

Tab. 5: Metrics over classes for our best model YOLOv7-D6. The table gives the values of mAP as
well as mAP, precision, and recall at an IoU=0.5 over each class.

Although comparing experimental results obtained on different datasets is debatable, we will
try to analyze the similarities and differences to the study by Chen et al. [Ch21]. They use the
following figure types: Schematic Diagram, Package Diagram, Timing Diagram, Footprint
Diagram and Characteristic Diagram and also include the categories Header, Footer, and
Table in their data set. When considering only the categories Block Diagram, Schematic, Plot,
Pin Assignment, Package Drawing, and Timing, which appear to be very similar between
our study and theirs, the performance scores of our model are: 𝑚𝐴𝑃 50 = 0.949, 𝑃 50 = 0.9,
and 𝑅50 = 0.908 (cf. table 5). Their model has the following scores: 𝑚𝐴𝑃 50 = 0.907,
𝑃 50 = 0.933, and 𝑅50 = 0.903. Hence, it appears that the model in our experiments
outperforms theirs regarding mAP and recall, but falls short in precision. We assume that,
since we have defined more specific and mutually similar categories, e.g., Block Diagram,
and Schematic, the precision of our model regresses as it confuses these categories, while
Chen et al. [Ch21] group them into one figure type, which avoids confusion.

4.5 Results discussion and potential improvements

To gain further improvements, our approach could be improved in several ways. Additional
rigorous data QA with domain experts and data scientists, possibly guided by confusion
matrices such as in figure 3, would most certainly identify some remaining labeling
inconsistencies, and could further improve data quality and model performance. During
preprocessing, we used a pretrained model to filter out document pages without any figures.
False negatives from that step are missing in our dataset. To determine the impact of this
method, we should evaluate our models in real-world scenarios where all the pages of the
datasheets are assessed [AF18]. Using layout analysis models trained on DocLayNet [Pf22]
(instead of the earlier PubLayNet [ZTY19]) during prelabeling could also have a positive
effect on the results. Furthermore, we could extend our dataset to contain more images from



22 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

B
lo

ck
D

ia
gr

am

Fo
ot

pr
in

t

M
em

or
y

O
th

er

Pa
ck

ag
e

D
ra

w
in

g

Pa
ck

ag
e

G
en

er
al

Pi
n

A
ss

ig
nm

en
t

Pl
ot

Sc
he

m
at

ic

Ti
m

in
g

ba
ck

gr
ou

nd
FP

True

Block Diagram

Footprint

Memory

Other

Package Drawing

Package General

Pin Assignment

Plot

Schematic

Timing

background FN

Pr
ed

ic
te

d

0.82 0.01 0.05 0.01 0.08 0.13

0.93 0.03 0.02 0.10

0.01 0.01 0.90 0.01 0.05 0.15

0.05 0.01 0.04 0.82 0.01 0.01 0.01 0.13

0.03 0.01 0.96 0.07

0.01 0.97 0.05

0.01 0.01 0.01 0.96 0.04

0.02 0.96 0.07 0.06

0.09 0.89 0.15

0.01 0.04 0.01 0.02 0.87 0.12

0.01 0.03 0.05 0.02 0.03 0.02 0.03 0.03

Fig. 3: Confusion matrix of the best model (YOLOv7-D6). The model’s predictions are on the vertical
axis, while the ground truth labels are aligned horizontally. For instance, 97% of the Package General
were correctly classified. The background FP are the false positives, and the background FN are
figures that the model failed to recognize.

an even broader range of datasheets. Lastly, we can define further relevant categories, such
as Decision tree, that our models would have to identify.

Albeit their impressive performance, there are areas where the models can be improved.
The hyperparameters, model architectures, and augmentation techniques we utilized are
mainly optimized for the COCO dataset. We could adapt those to our dataset that has very
different characteristics compared to COCO. To adjust those parameters automatically,
hyperparameter evolution could be used [Ul]. However, that would require many more
model training runs and considerably increase computing costs. We could also attempt to
optimize the feature extraction process to more closely adapt it to our dataset of document
page images (instead of the COCO data that was used for pretraining). Chen et al. [Ch21]
achieve significant performance improvements through such adaptations. Finally, as object
detection models continue to evolve, it would be interesting to update our research with the
recent YOLOv8 family that was published after we finished our experiments [Ul23].



Classifying figures and illustrations in electronics datasheets 23

5 Conclusion

With this study on extracting and classifying figures from electronics datasheets we show
that recent object detection models from the computer vision domain can be successfully
leveraged for specific tasks in document analysis and graphics recognition. We add to
prior studies by considering newer generations of the YOLO model families, and compare
against the also established EfficientDet. We highlight an iterative approach to outsourced
data labeling, as well as the importance of using augmentations during model training.
Our Experiments on our comprehensive custom dataset of page images from technical
documents show impressive performance levels that are on par with SOTA results from the
literature and related studies.

Acknowledgements

This research was funded by the German Federal Ministry of Education and Research
(BMBF) under grants no. 01IS20091A, 01IS20091B (Project KIRESys). Computations for
this work were done (in part) using resources of the Leipzig University Computing Center.

References

[AF18] Auer, F.; Felderer, M.: Shifting Quality Assurance of Machine Learning
Algorithms to Live Systems. In (Tichy, M.; Bodden, E.; Kuhrmann, M.;
Wagner, S.; Steghöfer, J.-P., eds.): Software Engineering und Software Man-
agement 2018. Gesellschaft für Informatik, Bonn, pp. 211–212, 2018, url:
https://dl.gi.de/handle/20.500.12116/21162.

[BBK98] Baum, L. S.; Boose, J. H.; Kelley, R. J.: Graphics recognition for a large-scale
airplane information system. In: Graphics Recognition Algorithms and Systems.
GREC 1997. Springer Berlin Heidelberg, pp. 291–301, 1998.

[Bi22] Binder, F.; Diels, J.; Balling, J.; Albrecht, O.; Sachunsky, R.; Philipp, J. N.;
Scheurer, Y.; Münsch, M.; Otto, M.; Niekler, A.; Heyer, G.; Thorun, C.: Putting
Users in the Loop: How User Research Can Guide AI Development for a
Consumer-Oriented Self-service Portal. In (Rauterberg, M., ed.): Culture and
Computing. HCII 2022. Vol. 13324. Lecture Notes in Computer Science,
Springer, pp. 3–19, 2022.

[BWL20] Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y. M.: Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934/, 2020.

[Ch21] Chen, K.; Lee, C.; Lin, M. P.; Wang, Y.; Chen, Y.: Massive Figure Extraction
and Classification in Electronic Component Datasheets for Accelerating PCB
Design Preparation. In: 3rd ACM/IEEE Workshop on Machine Learning for
CAD, MLCAD 2021. IEEE, pp. 1–6, 2021, url: https://doi.org/10.
1109/MLCAD52597.2021.9531275.

https://dl.gi.de/handle/20.500.12116/21162
https://doi.org/10.1109/MLCAD52597.2021.9531275
https://doi.org/10.1109/MLCAD52597.2021.9531275


24 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

[He20] He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.: Mask R-CNN. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42/2, pp. 2961–2969, Feb. 2020.

[HL14] Hu, J.; Liu, Y.: Analysis of Documents Born Digital. In: Handbook of Document
Image Processing and Recognition. Springer London, pp. 775–804, 2014.

[Jo22] Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.;
TaoXie; Michael, K.; Fang, J.; imyhxy; Lorna; Wong, C.; Yifu, Z.; V, A.;
Montes, D.; Wang, Z.; Fati, C.; Nadar, J.; Laughing; UnglvKitDe; tkianai;
yxNONG; Skalski, P.; Hogan, A.; Strobel, M.; Jain, M.; Mammana, L.; xylieong:
ultralytics/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Repro-
ducibility, ClearML and Deci.ai integrations, version v6.2, Aug. 2022, url:
https://doi.org/10.5281/zenodo.7002879, visited on: 11/05/2022.

[Ka13] Karatzas, D.; Shafait, F.; Uchida, S.; Iwamura, M.; i Bigorda, L. G.; Mestre, S. R.;
Mas, J.; Mota, D. F.; Almazan, J. A.; de las Heras, L. P.: ICDAR 2013 Robust
Reading Competition. In: 2013 12th International Conference on Document
Analysis and Recognition. IEEE, Aug. 2013.

[Ki] Kin-Yiu, W.: Official YOLOv7, url: https://github.com/WongKinYiu/
yolov7, visited on: 11/05/2022.

[Li16] Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A. C.:
SSD: Single Shot MultiBox Detector. In: Computer Vision – ECCV 2016.
Springer, pp. 21–37, 2016.

[Li17a] Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature
pyramid networks for object detection. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2017). IEEE, pp. 2117–2125, July
2017.

[Li17b] Lin, T.; Goyal, P.; Girshick, R. B.; He, K.; Dollár, P.: Focal Loss for Dense
Object Detection. In: IEEE International Conference on Computer Vision,
ICCV 2017. IEEE Computer Society, pp. 2999–3007, 2017, url: https:
//doi.org/10.1109/ICCV.2017.324.

[Li22] Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.;
Nie, W., et al.: YOLOv6: a single-stage object detection framework for industrial
applications. arXiv preprint arXiv:2209.02976/, 2022.

[LO14] Lamiroy, B.; Ogier, J.-M.: Analysis and Interpretation of Graphical Documents.
In: Handbook of Document Image Processing and Recognition. Springer
London, pp. 553–590, 2014.

[LR14] Lladós, J.; Rusiñol, M.: Graphics Recognition Techniques. In: Handbook of
Document Image Processing and Recognition. Springer London, pp. 489–521,
2014.

[Me] Meituan: YOLOv6, url: https://github.com/meituan/YOLOv6, visited
on: 11/05/2022.

https://doi.org/10.5281/zenodo.7002879
https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://github.com/meituan/YOLOv6


Classifying figures and illustrations in electronics datasheets 25

[Op22] Opasjumruskit, K.; Böning, S.; Schindler, S.; Peters, D.: OntoHuman: Ontology-
Based Information Extraction Tools with Human-in-the-Loop Interaction. In
(Luo, Y., ed.): Cooperative Design, Visualization, and Engineering - 19th
International Conference, CDVE 2022. Vol. 13492. Lecture Notes in Computer
Science, Springer, pp. 68–74, 2022.

[OSP21] Opasjumruskit, K.; Schindler, S.; Peters, D.: Automatic Data Sheet Information
Extraction for Supporting Model-Based Systems Engineering. In (Luo, Y.,
ed.): Cooperative Design, Visualization, and Engineering - 18th International
Conference, CDVE 2021. Vol. 12983. Lecture Notes in Computer Science,
Springer, pp. 97–102, 2021.

[Pf22] Pfitzmann, B.; Auer, C.; Dolfi, M.; Nassar, A. S.; Staar, P.: DocLayNet: A
Large Human-Annotated Dataset for Document-Layout Segmentation. In:
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. KDD ’22, Association for Computing Machinery, Washington
DC, USA, pp. 3743–3751, Aug. 2022, isbn: 9781450393850, url: https:
//doi.org/10.1145/3534678.3539043.

[Re13] Redmon, J.: Darknet: Open Source Neural Networks in C, 2013, url: http:
//pjreddie.com/darknet/.

[Re16] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.: You only look once: Unified,
real-time object detection. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016. IEEE Computer Society, pp. 779–788, 2016.

[Re17] Ren, S.; He, K.; Girshick, R.; Sun, J.: Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39/6, pp. 1137–1149, June 2017.

[RF17] Redmon, J.; Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. Pp. 7263–
7271, 2017.

[RF18] Redmon, J.; Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767/, 2018.

[Sh21] Shen, Z.; Zhang, R.; Dell, M.; Lee, B. C. G.; Carlson, J.; Li, W.: LayoutParser:
A Unified Toolkit for Deep Learning Based Document Image Analysis. In
(Lladós, J.; Lopresti, D.; Uchida, S., eds.): Document Analysis and Recognition
– ICDAR 2021. Springer International Publishing, Cham, pp. 131–146, 2021,
isbn: 978-3-030-86549-8.

[SSD19] Sultana, F.; Sufian, A.; Dutta, P.: A Review of Object Detection Models
based on Convolutional Neural Network. CoRR abs/1905.01614/, 2019, arXiv:
1905.01614.

https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1145/3534678.3539043
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1905.01614


26 Lymperis Perakis, Julian Balling, Frank Binder, Gerhard Heyer, Franz Kreupl

[TL19] Tan, M.; Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. In (Chaudhuri, K.; Salakhutdinov, R., eds.): Proceedings of
the 36th International Conference on Machine Learning. Vol. 97. Proceedings
of Machine Learning Research, PMLR, pp. 6105–6114, June 2019.

[TPL20] Tan, M.; Pang, R.; Le, Q. V.: EfficientDet: Scalable and efficient object detection.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2020. IEEE, pp. 10778–10787, 2020.

[Ul] Ultralytics: Hyperparameter Evolution, url: https://docs.ultralytics.
com/tutorials/hyperparameter-evolution/, visited on: 11/25/2022.

[Ul21] Ultralytics: Release V6.0 - yolov5n ’nano’ models, Roboflow integration,
tensorflow export, opencv DNN support · ultralytics/yolov5, Oct. 2021, url:
https://github.com/ultralytics/yolov5/releases/tag/v6.0,
visited on: 11/05/2022.

[Ul23] Ultralytics: ultralytics/ultralytics: NEW - YOLOv8 in PyTorch > ONNX >
CoreML > TFLite, 2023, url: https://github.com/ultralytics/
ultralytics, visited on: 01/12/2023.

[Wa20] Wang, C.-Y.; Liao, H.-Y. M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H.:
CSPNet: A new backbone that can enhance learning capability of CNN. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops. Pp. 390–391, 2020.

[WBL22] Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y. M.: YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696/, 2022.

[Wi] Wightman, R.: EfficientDet (PyTorch), url: https : / / github . com /
rwightman/efficientdet-pytorch, visited on: 11/05/2022.

[Wu18] Wu, S.; Hsiao, L.; Cheng, X.; Hancock, B.; Rekatsinas, T.; Levis, P.; Ré, C.:
Fonduer: Knowledge Base Construction from Richly Formatted Data. In:
Proceedings of the 2018 International Conference on Management of Data
(SIGMOD 2018). SIGMOD ’18, ACM, Houston, TX, USA, pp. 1301–1316,
May 2018.

[Ya17] Yang, C.; Yin, X.-C.; Yu, H.; Karatzas, D.; Cao, Y.: ICDAR2017 Robust Reading
Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT).
In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). IEEE, Nov. 2017.

[Zo23] Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J.: Object Detection in 20 Years: A
Survey. Proc. IEEE 111/3, pp. 257–276, Mar. 2023.

[ZTY19] Zhong, X.; Tang, J.; Yepes, A. J.: Publaynet: largest dataset ever for document
layout analysis. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR). IEEE, pp. 1015–1022, 2019.

https://docs.ultralytics.com/tutorials/hyperparameter-evolution/
https://docs.ultralytics.com/tutorials/hyperparameter-evolution/
https://github.com/ultralytics/yolov5/releases/tag/v6.0
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/rwightman/efficientdet-pytorch
https://github.com/rwightman/efficientdet-pytorch

