
Structural Composition Attacks on Anonymized Data

Tobias Nilges, Jörn Müller-Quade

Forschungsgruppe Kryptographie und Sicherheit

Institut für Theoretische Informatik

Karlsruher Institut für Technologie

Am Fasanengarten 5

76131 Karlsruhe

surname@kit.edu

Matthias Huber

Sichere Software und Kryptographie

FZI Forschungszentrum Informatik

Haid-und-Neu-Strae 10-14

76131 Karlsruhe

mhuber@fzi.de

Abstract: Anonymized releases of databases are increasingly available in public. The
composition of two releases does not necessarily fulfil any anonymity notion, even if
the individual releases do fulfil that anonymity notion on their own.

In this paper, we study composition scenarios and provide formalizations. We
introduce a formal framework to study the composition of databases on a structural
level and show the equivalence of the composition scenarios used in the literature. We
show that known attacks on anonymity notions can be reduced to two simple properties
and only need limited side information.
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1 Introduction

Anonymity has been in focus of research on privacy-preserving database disclosure [Swe02,

Dwo06, FWCY10] over the past years. The goal is to publish an anonymized database in

order to allow others to analyze it while preserving the privacy of the individuals repre-

sented in the database. For this scenario anonymity notions were introduced. Their purpose

is to formally express the limitation of information disclosure from the database or guar-

antees provided by the anonymization. The property k-anonymity [SS98], for example,

states that for any individual there have to be at least k (or zero) rows in the released

database that can be associated with the individual.

A huge challenge is that the composition of two releases, i. e. the combination of two (in-

dependently) anonymized datasets, does not necessarily fulfil any anonymity notion [GKS08,

Swe02]. Nevertheless, multiple releases from different sources as well as different releases

from the same source are common in practice. This highlights the need to formally define



database composition in such a way that this problem can be considered in the design of

anonymity notions. No formal investigation of database composition, however, has been

carried out. Additionally, there are no results based on the structure instead of concrete

attribute values.

Another challenge in privacy-preserving database disclosure is modeling background knowl-

edge. Background knowledge (or side information) is knowledge an adversary obtains

independently from other data sources. Background knowledge can be modeled as a

database release. Therefore, many side-information attacks on the anonymity of database

releases can be considered composition attacks. In our work, we show an interesting con-

nection between modeling background knowledge and the composition of anonymized

database releases. Because modeling background knowledge has proven to be difficult, it

was only conducted for a small class of anonymization procedures [MKM+07, CRL07,

WFWP07]. Our framework gives way to new approaches for considering background

knowledge.

Our Contribution. In this paper, we provide the first formal definition of database com-

position by extracting two scenarios from attacks presented in literature [Swe02, GKS08,

NS08, MGKV06, LLV07]. We prove that these scenarios cover all possible forms of

database composition and that they can be transformed into each other, thereby allowing

for considering just one scenario during the design of anonymity notions.

We then move on to show that, to the best of our knowledge, most composition attacks (in

fact all of the above mentioned attacks) can be reduced to two properties of anonymity pro-

cedures, namely Locatability and Exact Sensitive Value Disclosure (ESVD), first proposed

by Ganta et al. [GKS08]. Locatability allows an attacker to determine a set of possible

pre-images of an anonymized value including the correct value, while ESVD means that

the anonymization procedure does not alter the sensitive values, i.e. keeps them as is in the

anonymized database.

In order to control background knowledge in composition scenarios, we introduce the no-

tion of symbolic databases. Although these databases are devoid of semantic information

leaving merely the structure of the database, Locatability and ESVD still exist for sym-

bolic databases. For some notions, no side information is necessary to carry out a com-

position attack. We show that ESVD suffices to break k-anonymity on a structural level.

This provides evidence that notions implying Locatability and ESVD cannot provide an

unconditional security guarantee if several anonymized databases are combined.

Related Work. In the context of database anonymization two lines of research have been

established. On the one hand partition based anonymity notions such as k-anonymity [SS98],

l-diversity [MGKV06] and t-closeness [LLV07], have been thoroughly analyzed, includ-

ing analysis of the complexity of the methods [MW04, JA05, LDR05, ZYW05] and pro-

posed attacks [XT06, LLV07, GKS08].

The other line of research examines adding noise to databases [PS86, Kim86, DP91,

WdW96]. The main result is differential privacy [Dwo06]. There are several relaxations

of this notion [MT07, DKM+06, NRS07, MPRV09] as well as some variations [BBG+11,

MPRV09, KM12]. Recently, Gehrke et al. [GLP11] presented an attack against differential

privacy.
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Composition of anonymized databases has been investigated mainly in the context of dif-

ferential privacy [DMNS06, DKM+06, GKS08, KM12], while partition based anonymity

schemes are only explicitly considered by Ganta et al. [GKS08]. Nevertheless, attacks as

presented by [MGKV06, LLV07, NS08] are also composition attacks.

Since differential privacy is secure under arbitrary background knowledge [Dwo06, GKS08],

modeling background knowledge has been mainly examined in the area of partition-based

anonymity schemes [MKM+07, CRL07, WFWP07].

Outline of the paper. This paper is structured as follows: In the next section, we define

the basic concepts used throughout this paper. In Section 3, we introduce the concept of

symbolic databases and present a framework around this notion. In Section 4, we present

our main results: the equivalence of different composition scenarios and the interpretation

of known attacks as specific exploits of two properties on a structural level. Section 5

concludes.

2 Preliminaries

In this section, we present definitions of the concepts used throughout this paper. After

a formal definition of databases and quasi-identifiers we present three database composi-

tion scenarios. Then, we define generalizations of Locatability and Exact Sensitive Value

Disclosure (cf. Ganta et al. [GKS08]).

2.1 Notation

Let a database d = {t1, t2, . . . , tn} be a set of tuples with attributes A = {A1, A2, . . . , Am}.

We denote the value of attribute Ai in tuple tj by tj [Ai]. Throughout this paper, we use

the terms tuple and row interchangeably. We call the set of all i-th elements of each tuple

in d the i-th column of d and |d| = n ∗m the size of d.

Throughout this work, we use the operators projection π and selection σ as follows: Let

b = {b1, . . . , bl} ⊆ A, l ≤ m, be a set of attribute values of d. Then, π projects a database

d to a database d′ that only contains a subset of the attributes of d:

πb(d) = ∪j=1..n(tj [b1], . . . , tj [bl])

Likewise, σ selects a number of rows of d fulfilling some condition of the form:

σa=v = {t 2 d | t[a] = v},

where a 2 A is an attribute and v is a value of the domain of A.

A set of non-sensitive attributes Q = {Q1, . . . , Qw} ⊆ A is called a quasi-identifier

if these attributes serve to uniquely identify at least one individual in the database. Let

S ⊂ A \ Q be the set of sensitive attributes, w.l.o.g. we only consider the case of |S| = 1.
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We abbreviate a probabilistic polynomial-time turing machine by PPT without explicitly

describing the random input. In order to capture deterministic anonymization functions

as well as probabilistic anonymization mechanisms, througout this paper, we talk about

anonymization mechanisms.

2.2 Anonymity Notions

In order to describe the level of anonymity provided by an anonymization, anonymity no-

tions have been defined. Many notions such as k-anonymity and notions based thereon

describe the result of the anonymization mechanism. Notions like differential privacy

describe the anonymization mechanism itself with respect to bounded [MPRV09] and un-

bounded [Dwo06] adversaries.

We stress that despite all anonymity notions seem to have a standard method in order to

achieve them (e. g. adding noise for differential privacy, or to coarsen attribute values

for k-anonymity), we have to distinguish between methods and guarantees. For example,

another approach to achieve differential privacy is presented in [BBG+11], without the

addition of noise, but by assuming that the database already has some additional entropy

for the adversary. On the other hand, the addition of Laplace noise does not yield differen-

tially private methods in general, but only under certain assumptions about the distribution

of attribute values.

In the following we assume an anonymity notion to state a form of guarantee P , which

can be achieved by a (probabilistic) anonymization mechanism f . We say f realizes Pk,

or f 2 Pk, where k is a privacy parameter or a set of privacy parameters.

2.3 Differential Privacy

We will briefly review the definition of differential privacy, since we will later use it to

motivate our composition notions.

Definition 1 ([Dwo06]) A randomized function f gives ε-differential privacy if for all

data sets d1 and d2 differing on at most one element, and all S ⊆ Range(f),

Pr[f(d1) 2 S] ≤ exp(ε) · Pr[f(d2) 2 S]

The intuition behind this is that an adversary cannot discern two databases (except for a

small factor) that differs in a single entry, i.e. by the result of the mechanism it is nearly

impossible to say if a certain entry is in the database or not. Differential privacy can be

achieved by adding noise to the output, thereby hiding the true value. The noise distribu-

tion has to be Laplacian with variance 1

ε
.
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2.4 Locatability and Exact Sensitive Value Disclosure

Locatability and Exact Sensitive Value Disclosure were first presented by Ganta et al.

[GKS08]. While they use these notions only in the context of their intersection attack

(cf. Section 2.5), we will present a generalized definition of their notions. Later, we will

show how these properties translate to properties for symbolic databases and lead to an

interesting type of attacks.

Definition 2 Let f be an anonymization mechanism. Then we say f has Locatability iff

there exists an adversary A, a database d, a quasi-identifier Q and a tuple t 2 d, such that

A(πQ(t)) returns a strict subset p of d′ = f(d) with f(t) 2 p.

This definition of Locatability is weak in the sense that it can be very easy to achieve.

Locatability only improves an attack if the distribution of sensitive values in the resulting

partition differs from the distribution of sensitive values in the database. Consider for

instance a database that has t-closeness [LLV07] with t = 0 for every sensitive attribute,

i.e. the distribution of every partition is the same as in the complete database. Then

Locatability is of no use to an adversary, however, achieving t = 0 in real databases is

virtually impossible. In contrast, in the case of k-anonymity, an adversary can definitely

identify the bucket of any individual [Swe02, GKS08].

The advantage of our generalization of Locatability from k-anonymity to general anonymity

notions is that it enables us to highlight the similarity of many known composition attacks

[GKS08, GLP11, NS08]. Additionally, we provide a precise formulation for identifying a

set in the anonymized database that corresponds to an individual.

We now define Exact Sensitive Value Disclosure (ESVD).

Definition 3 Let f be an anonymization mechanism. Then we say f has Exact Sensitive

Value Disclosure iff at least one sensitive value of d is contained in f(d). That is,

∃S 2 S, ∃v : v 2 πS(d) ∧ v 2 πS(f(d))

Recall that S describes the set of sensitive values. By removing the assumption that the

anonymization mechanism is partition-based and possibly contains Locatability, we can

prove that ESVD generally poses a threat during composition, even without background

knowledge (cf. Section 4.4).

2.5 Intersection Attack

Algorithm 1 describes the intersection attack of Ganta et al. [GKS08]. As already men-

tioned, this attack heavily relies on ESVD and Locatability. First, the Locatability property

is used to obtain a set of database entries associated with an individual of the overlapping

population of the releases. Then, the sensitive values are extracted for each anonymized

release. By intersecting these sets, one gets either the sensitive value associated with an
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individual or a relatively small set of values. According to the measurements of Ganta et

al., they can achieve a success rate of up to 60% based on real census data.

Algorithm 1 intersection attack (from [GKS08]).

1: R1, . . . , Rn ← n independent anonymized releases

2: P ← set of overlapping population

3: for each individual i in P do

4: for j = 1 to n do

5: eij ← Get equivalence class(Rj , i)

6: sij ← Sensitive value set(eij)

7: end for

8: Si ← si1 ∩ si2 ∩ . . . ∩ sin
9: end for

10: return S1, . . . , S|P |

In the algorithm, the function Get equivalence class() returns the partition of the database

which contains the individual. By applying the function Sensitive value set() to the result

of Get equivalence class() the sensitive values are extracted from the partitions.

In Section 4.3 we will show how this attack can be carried out with symbolic databases.

3 The Symbolic Framework

It has proven to be difficult to model or control arbitrary side information of an adversary

in the context of database privacy [MKM+07, CRL07, WFWP07]. Our approach to this

problem first eliminates all side information and later adds the information that cannot be

hidden in the real world.

Our model is meaningful in the following sense: Successfully performing an attack in our

model yields a successful attack in the real world. Thus, our ability to model ESVD and

Locatability and to reduce attacks to these two properties in our framework also implies

that the problems that arise from these properies are retained in the real world.

In this section, we first define the building blocks of our framework. To illustrate the

relevance of this framework, in the following sections we show that (a) the composition

notions presented in Section 4.1 can be proven as equivalent, (b) many composition attacks

can be simulated in the symbolic framework (cf. [GKS08, GLP11, Swe02, NS08]) and,

therefore, (c) do only need limited side information quantifiable in our model.

3.1 Representation of Databases

As a first step we define the class of structurally identical databases. In order to study

database composition on a structural level, we replace all attribute values with meaning-
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less symbols. This renders side information useless. Informally, structurally identical

databases are a set of databases that can all be projected onto the same symbolic database.

Definition 4 S(d) = {d′|∃wr : wr(d
′) = d} with wr being a wrapper function that ap-

plies a bijective function wi to each column i of d. We call S(d) the databases structurally

identical to d.

S implies an equivalence relation on databases. Instead of d′ 2 S(d) we write d
S
= d′

and call them structurally identical. Note that this notion also includes all permutations of

a database, which is due to the definition of a database as a set.

Now, we can replace the values of any representative of S(d) to create a symbolic database.

The notion of symbolic databases is defined w. r. t. an adversary. In the following experi-

ment, the adversary tries to relate a given symbolization of a database to one of two struc-

turally identical databases she chose. The game is related to known security definitions

for encryption schemes such as IND-CPA or IND-CCA2. In this experiment, we write ←
insted of = in order to indicate that the allocation can involve a probabilistic mechanism:

Definition 5 Let A be an adversary, d 2 DB, i 2 {0, 1}, Σ : DB → DB an injective

function. The experiment Symb
i,Σ
A (d) is defined as follows:

d0, d1 ← A(S(d))

d0
S

v= d1 : return ⊥
b ← A(Σ(di))

return b
?
= i

Here Σ is a function that replaces the values of one of the two adversarially chosen

databases with random symbols. This function is not known by the adversary. Then the

adversary has to guess the pre-image of the symbolized database. With this experiment,

we can define symbolic databases as follows:

Definition 6 Let Σ: DB → DB be a bijective function. We call Σ a database symboliza-

tion function iff for all adversaries A and for all d 2 DB the following holds:

∣

∣

∣
Pr[Symb

0,Σ
A (d) = 1]− Pr[Symb

1,Σ
A (d) = 1]

∣

∣

∣
≤ ε

for ε negligible in |d|. We call Σ(d) a symbolic database of d.

Note that we use the definition above in order to define functions that change the attribute

values of a given database rather than its structure.

In order to allow for composition scenarios, we use the same function that replaces the at-

tribute values for corresponding columns in different databases. The definition of symbolic

databases implies that attribute names get symbolized as well.

As an example for the symbolization, consider the databases depicted in Figure 1.
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130** < 30 * AIDS

130** < 30 * Heart Disease

130** < 30 * Viral Infection

130** < 30 * Viral Infection

130** ≥ 30 * Cancer

130** ≥ 30 * Heart Disease

130** ≥ 30 * Viral Infection

130** ≥ 30 * Viral Infection
(a)

a b e f

a b e g

a b e h

a b e h

a c e i

a c e g

a c e h

a c e h
(b)

Figure 1: An example database (a) with attribute names omitted and a representative of its symbolic
databases (b): attribute values are replaced with symbols. The two databases have identical structure,
but the symbolic database is stripped of meaning. Therefore, no background knowledge can be used
to extract information from it.

In this simplified example, values are mapped to letters of the alphabet. The replacement is

done in no particular order because, according to our definition, the database in Figure 1(a)

is actually a set. Another injective function that can serve as a symbolization function is a

hash function.

Remark. It is still possible to code information into a symbolic database, e. g. how often

a certain symbol occurs in the original database. We will use this property later in order to

show the equivalence of the composition notions.

Remark. By requiring a polynomially bounded adversary in the above definitions, sym-

bolization functions such as hash functions or encryption functions can be used.

3.2 Anonymization Scenarios of Symbolic Databases

There are different possibilities for applying symbolization during anonymization. Con-

sider Figure 2, where a database d gets anonymized to d′ with the anonymization mecha-

nism f . The database symbolization Σ can be applied prior to the anonymization, after it,

or both.

d d′ %

# #
′ $

f Σ

Σ

f Σ

Figure 2: Anonymization scenarios for symbolic databases. d denotes the original database, f a
database anonymization mechanism, Σ the database symbolization, and the different squares denote
symbolic databases.

450 Structural Composition Attacks on Anonymized Data



In general, even if the input of an anonymization mechanism is a symbolic database, this

does not necessarily hold for the output. Consider for example an anonymization function

that counts occurrences of attribute values. The output database then contains natural

numbers that can be combined with background knowledge, e. g. that 3 > 2. Thus we

have to apply symbolization after anonymization.

We also want to apply the symbolization prior to anonymization for the following reasons:

For one, this is the most general case for the examination of composition scenarios. If an

anonymization does not compose in the most general case it also does not compose with

additional knowledge. Another reason is that we do not want adversaries to exploit the

Locatability oracle (i.e. use the oracle to win the game in Definition 5) which we define in

the next section.

Therefore, we choose the following scenario: d
Σ
−→ #

f
−→ #

′ Σ
−→ $. We apply the

symbolization Σ prior to anonymization and after it.

3.3 Locatability and ESVD for Symbolic Databases

We introduced Locatability and ESVD in Section 2.4. Since these properties can be ex-

ploited for composition attacks, in order to study composition attacks on a structural level,

we need to be able to apply these properties to symbolic databases. In this section, we

show how they translate into our framework.

Locatability. An adversary can always execute the anonymization mechanism f on a

number of quasi-identifiers and compare the results to the anonymized database (although

with new random coins, if the mechanism is probabilistic). This might enable an adversary

to locate subsets in the anonymized database that relate to specific quasi-identifiers.

If we want an adversary to be able to do this with symbolic databases, we have to give her

oracle access to Σ◦ f , where Σ is the symbolization and f the anonymization mechanism,

since we do not want the adversary to know Σ. If f is probabilistic, the oracle has to

use new random coins. Note that without the oracle, there is no Locatability for symbolic

databases. Otherwise, the adversary would be able to invert Σ and thus win the game

specified in Definition 5.

The notion of Locatability introduces a certain degree of side information into the sym-

bolic framework, namely exactly the information that is necessary to obtain Locatability.

However, the adversary still can not utilize her own background knowledge.

The construction of a Locatability oracle for an anonymity notion in the symbolic frame-

work yields the background information necessary to perform Locatability for this notion

in general, i. e. in the standard model. Thus the designer of an anonymity notion can check

if the Locatability information is available in her setting.

ESVD. If an anonymization mechanism has the ESVD property, this property is kept in the

symbolic framework, since we use one distinct symbolization for each column, and require

that the same values in two corresponding columns are mapped to the same symbolic value.

With these definitions one can show that (a) the deanonymization of the Netflix dataset [NS08]
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as well as (b) the attack of Gherke et al. [GLP11] is possible due to Locatability, (c) general

attacks on k-anonymity presented in [Swe02] and in [GKS08] are possible due to ESVD

and Locatability. These attacks can be simulated with symbolic databases where no other

background knowledge than knowledge introduced by Locatability is available.

Locatability in the Netflix dataset stems from the sparsity of the columns representing

movies, such that a set of movies identifies a set of individuals (cf. [NS08]). In the case of

differentially private data [Dwo06], correlation between the entries can lead to Locatabil-

ity. Gehrke et al. [GLP11] can locate an individual due to known associations with other

individuals in the dataset and then derive the sensitive value. Although they do not use the

term Locatability, their example is perfectly captured by our generalized definition.

In the next section, we will show a detailed example for an intersection attack with Lo-

catability as well as one without Locatability.

4 Results in the Symbolic Framework

In this section we present our main results. We prove the equivalence of the composition

scenarios (cf. Section 4.1) for symbolic databases, which translate straightforwardly to the

plain model. Therefore, a proof of (non-)composability of an anonymity notion for a single

composability scenario suffices for a general proof. Interestingly, due to the constructive

nature of our proof, this also provides an adversary with a new attack. If her attack works

out in one composition scenario, which was not considered for the anonymity notion, this

attack can be converted by our technique to the other composition scenario.

We also show that known attacks such as the intersection attack of Ganta et al. (cf. Sec-

tion 2.5) can be conducted with symbolic databases. We use a generalization of this attack

and provide evidence that anonymization notions with ESVD cannot compose in general,

even on a structural level with limited side information.

4.1 Composition Scenarios for Anonymized Databases

By analyzing the attacks presented in literature, e. g. [Swe02, GKS08, Dwo06, BBG+11],

we derive two composition schemes, both of which can be generalized to a third scheme.

In the first composition scheme an adversary is given two excerpts of different databases,

which are anonymized by the same anonymization mechanism (cf. Figure 3(a)). The sec-

ond scheme represents the case where an adversary has access to two different anonymiza-

tions of the same database, which are anonymized with different anonymization mecha-

nisms (cf. Figure 3(b)). The third approach is the direct generalization of both composition

scenarios, where two (possibly) different tables are anonymized by two (possibly) differ-

ent anonymization mechanisms. This is depicted in Figure 3(c). Obviously, this captures

every possible form of composition.

We motivate our definitions for secure composition as follows. An adversary A tries to
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d1

d2

τ1

τ2

f

f

(a) SC-ID

d

τ1

τ2

f1

f2

(b) SC-IA

d1

d2

τ1

τ2

f1

f2

(c) SC-IAD

Figure 3: The database composition notion Secure Composition under Independent Anonymiza-
tions and Databases (SC-IAD) and its two specializations Secure Composition under Independent
Databases (SC-ID) and Secure Composition under Independent Anonymizations (SC-IA). In Sec-
tion 4 we show that all three definitions are equivalent.

learn a predicate p of the database d. For two anonymizations f1(d1) and f2(d2) all the

adversary can learn without combining both anonymizations is bounded by

max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]}

Thus we have to define the security of a composition of anonymized databases with re-

spect to what an adversary can learn without composition. It is common knowledge that

the release of anonymized data yields some information to an adversary, because perfect

anonymization leads to no utility (cf. e. g. [Dwo06]). To capture this problem we intro-

duce a degradation function κ which bounds the degradation of anonymity relative to the

privacy parameter.

Example 1 We illustrate our approach by applying it to differential privacy. The com-

position of differential privacy was shown among others in [DKM+06] and falls into the

scenario SC-IAD. Here f1 and f2 represent anonymization mechanisms for Pε1 and Pε2 ,

respectively. This example is highly simplified, but it illustrates the intuition behind our

definitions. The following has to hold for secure composition (cf. Definition 9):

Pr[A(f1(d1), f2(d2)) = p(d1 ∪ d2)] ≤ κ(ε1, ε2) · max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]} (1)

The composition of differential privacy yields the privacy parameter ε1 + ε2 for the left

hand side of 1, while we can bound the other side by a privacy parameter max{ε1, ε2}.

The highest probability of an adversaries’ guess can be substituted on both sides of the

equation.

eε1+ε2 · 2 max
i∈{0,1}

{Pr[fi(di) 2 S]} ≤ κ(ε1, ε2) · e
max{ε1,ε2} · max

i∈{0,1}
{Pr[fi(di) 2 S]}

⇔ 2eε1+ε2 ≤ κ(ε1, ε2) · e
max{ε1,ε2}

This leads to a degradation function κ(ε1, ε2) = 2emax{ε1,ε2} and shows that the compo-

sition of differential privacy can be intuitively expressed by our definition.
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We now state the definitions for the secure composition of the above mentioned scenarios.

Definition 7 An anonymity notion P composes securely under independent databases (SC-

ID) iff for all anonymization mechanisms f 2 Pk there exists a degradation function κ

such that for all adversaries A, for all databases d1 and d2 and for all predicates p :
{0, 1}∗ → {0, 1} the following holds:

Pr[A(f(d1), f(d2)) = p(d1 ∪ d2)] ≤ κ(k) · max
i∈{0,1}

{Pr[A(f(di)) = p(di)]}

Of course, composition is only a privacy threat if the databases d1 and d2 have some sort

of correlation, e. g. an overlap of individuals. By independent databases we mean that the

two databases do not explicitly cover the same population. If a database anonymity notion

P is a property of the anonymization mechanism (e. g. differential privacy), we have to

extend the definition of P and quantify over pairs of anonymized databases instead of

single databases.

Definition 8 An anonymity notion P composes securely under independent anonymiza-

tions (SC-IA) iff for all anonymization mechanisms f1 2 Pk1
and f2 2 Pk2

there exists

a degradation function κ such that for all adversaries A, for all databases d and for all

predicates p : {0, 1}∗ → {0, 1} the following holds:

Pr[A(f1(d), f2(d)) = p(d)] ≤ κ(k1, k2) · max
i∈{0,1}

{Pr[A(fi(d)) = p(d)]}

Definition 9 An anonymity notion P composes securely under independent anonymiza-

tions and databases (SC-IAD) iff for all anonymization mechanisms f1 2 Pk1
and f2 2

Pk2
there exists a degradation function κ such that for all adversaries A, for all databases

d1 and d2 and for all predicates p : {0, 1}∗ → {0, 1} the following holds:

Pr[A(f1(d1), f2(d2)) = p(d1 ∪ d2)] ≤ κ(k1, k2) · max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]}

Obviously, if an anonymity notion composes securely under independent anonymizations

and databases (SC-IAD), it also composes securely under independent databases (SC-ID)

and under independent anonymizations (SC-IA). In Section 4.2, we will show that this also

holds the other way round.

4.2 Equivalence of Composition Notions

We provide a formal proof that the composition scenarios defined in Section 4.1 can be

transformed into each other. While this result seems to be rather intuitive if one considers

normal databases, it appears to be difficult to prove the equivalence. Thus we show that

these scenarios can be transformed if one considers symbolic databases, which implies a

general transformation for standard databases.
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Theorem 1 For symbolic databases, the composition scenarios SC-IAD, SC-ID, and SC-

IA are equivalent in terms of polynomial-time transformation, i. e. each instance of a com-

position scenario can efficiently be simulated with an instance of a composition scenario

of another class.

Proof 1 In the following we use SC-ID, SC-IA, and SC-IAD as sets that contain all cor-

responding instances of database composition. Since the transformations from SC-ID and

SC-IA to SC-IAD are trivial, we only need to show transformations from SC-IAD to SC-

ID and SC-IA, respectively. Because a database can be extended, e. g. by adding blank

columns and rows, in the following proof, w.l.o.g. we only consider databases of the same

size.

In our transformations, we encode additional information in the databases. For each bit of

information we want to encode, we add a new column to the database. Since for symbolic

databases, the actual attribute values have no meaning (otherwise an adversary would be

able to invert the symbolization) and databases have no specific order (we defined them as

sets), we encode information into the new columns by filling them with identical or differ-

ent symbols.

SC-IAD ⊆ SC-ID: Let d1, d2 be databases and f1, f2 database anonymization mechanism

of an SC-IAD instance. SC-ID instances require its two databases to be anonymized by

the same anonymization mechanism f . We need to specify an algorithm g : DB×DB →
DB×DB and an anonymization mechanism f with f(g(d1, d2)[1]) = f1(d1) and f(g(d1, d2)[2]) =
f2(d2) where [x] selects the x-th element of the preceding tuple.

We design g such that it adds one additional column to both of its input databases. The

column is filled according to the following scheme: For d1, g fills the additional column

of each tuple in d1 with identical values. This encodes a 1. In the additional column of

d2, g fills all tuples except one with identical values. One row gets a different value, which

encodes a 2. Consider for example the tables depicted in Figure 4. Here, g filled the

1 2

3 4
(a) d1

5 6

7 8
(b) d2

1 2 ©
3 4 ©

5 6 #

7 8 ©
(c) g(d1, d2)

Figure 4: An example for the two input databases d1, d2 of the algorithm g and its output g(d1, d2).
The Algorithm g adds an additional column to each database and encodes a 1 (equal symbols) into
the additional column of first database and a 2 (one differing symbol) into the additional column of
the second database.

additional column of d1 with ©, while the symbols used in the additional column of d2
are # and ©.

With the information encoded in the additional columns, we can define a wrapper that ap-

plies the corresponding anonymization: Let f(d′1, d
′
2) be a wrapper function for (d′1, d

′
2) =

g(d1, d2) that calls f1(di) for the database d′i with a 1 encoded and f2(di) for the database

d′i with an encoded 2, respectively. We anonymize di instead of d′i as this database does

not contain the column which was added by g. The mechanisms f and g provide a trans-

formation from SC-IAD to SC-ID.
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Since f merely calls f1 or f2 and g adds an additional column to each of its input

databases, the provided transformation from SC-IAD instances to SC-ID instances have

an linear overhead in the size of the databases d1 and d2.

SC-IAD ⊆ SC-IA: Let d1, d2 be databases and f1, f2 database anonymization mecha-

nisms of an SC-IAD instance. In order to transform a SC-IAD instance into an SC-IA

instance, we need to specify an algorithm h : DB × DB → DB and anonymization

mechanisms f ′
1, f

′
2 with f ′

1(h(d1, d2)) = f1(d1) and f ′
2(h(d1, d2)) = f2(d2)

Consider an algorithm h that concatenates d1 and d2 tuple-wise and adds an additional

column for every column in d1 concatenated d2. Into the first additional column, h encodes

a 1 (see above) if the first column originates from d1 and a 2 if the first column of the

database is originally from d2. In order to encode a 1, h chooses the same symbol for

every entry in the additional column. In order to encode a 2, h chooses the same symbol

for every entry in the additional column except for one entry where a different symbol is

chosen. Consider for example Figure 5. Here, the first two tuples of the resulting database

correspond to the first input database. Therefore, the first two additional columns only

contain identical symbols, each.

1 2

3 4
(a) d1

5 6

7 8
(b) d2

1 2 5 6 © © # #

3 4 7 8 © © © ©
(c) h(d1, d2)

Figure 5: An example for the two input databases d1, d2 of the algorithm h and its output h(d1, d2).
The algorithm h concatenates d1 and d2 tuple-wise and adds an additional column for each column.
In each additional column, h encodes a 1 (identical symbols), if the corresponding column is from
d1 and a 2 (all but one symbols identical) if the corresponding column is from d2.

With the information which column belongs to the first or the second database, we can de-

fine two algorithms, e. g. f ′
1 selects tuples belonging to the first database and anonymizes

them with f1. The mechanism f ′
i discards each tuple in its input database, where the num-

ber in the corresponding column is different to i. Then it discards the extra columns and

applies fi to the result. Thus, f ′
1, f

′
2 and h allow a transformation from SC-IAD to SC-IA.

The algorithms f ′
i execute a selection on the input database and then call f1 or f2. The

resulting database of algorithm h contains all entries of the input databases and an addi-

tional column for each column of the input databases, such that the provided transforma-

tion from SC-IAD instances to SC-IA instances have an linear overhead in the size of the

databases d1 and d2.

4.3 The Intersection Attack and Symbolic Databases

In Section 3.3, we have seen that ESVD and Locatability can be achieved in the sym-

bolic framework. Therefore, the intersection attack (cf. Section 2.5, [GKS08]) can be

performed. However, we stress that in general, Locatability is not even necessary for this

attack, since it only decreases the size of the set of possible sensitive values.
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In this section, we apply the intersection-algorithm to the example database we symbolized

in Section 3.1. We use symbolic databases (cf. Figure 6) and we provide the adversary with

some background knowledge in the form of a Locatability oracle. Instead of knowing

the quasi identifiers of an individual (Alice) that occurs in both databases (as in a real

scenario), we provide the adversary with the symbolized quasi identifiers of said individual.

a b e f

a b e g

a b e h

a b e h

a c e i

a c e g

a c e h

a c e h
(a) d1

a j e f

a j e l

a j e m

a j e l

a j e i

a j e i

a k e h

a k e h
(b) d2

Figure 6: Extended example of symbolic databases from Section 3.1. The first three columns denote
the quasi identifiers while the last column denotes the sensitive value attribute. With these two
databases, the Locatability oracle, and the symbolized quasi identifiers of an individual contained in
both databases, an adversary is able to carry out the intersection attack.

The intersection attack can be carried out as follows: As a first step, the adversary uses

the Locatability oracle in order to receive the buckets of the databases depicted in Fig-

ure 6 in which the sensitive value of Alice lies. The Locatability oracle for d1 returns

the set containing the sensitive values {f, g, h}, and the Locatability oracle for d2 re-

turns the set containing the sensitive values {f, l,m}, respectively. The adversary is able

to determine that Alice has condition f by calculating the intersection of the two sets

{f, g, h}∩{f, l,m, } = f . This example shows that no background knowledge other than

what is necessary to achieve Locatability is provided for a successful attack.

4.4 A General Attack on ESVD

In the previous section, we showed that the intersection attack can be carried out with

symbolic databases. We now show that a generalization of the intersection attack with no

side information at all can still lead to a disclosure of sensitive information.

Proposition 1 Exploiting Exact Sensitive Value Disclosure is possible even without back-

ground knowledge about the attribute values.

We now construct an example that serves as a witness for the symbolic non-composability

of an anonymity notion that implements ESVD:

Proof 2 Consider the database d depicted in Figure 7 and a mechanism f that partitions

the database into buckets of size 2, calculates the product of each bucket with itself and
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a 1

b 2

c 3

d 4

Figure 7: An example database. It contains four tuples. {a, b, c, d} are quasi-identifiers, {1, 2, 3, 4}
are sensitive attributes. Note that all entries are symbolic values. In particular, they cannot be
added or multiplied. In our example, this database gets anonymized into the databases in Fig-
ures 8(a) and 8(b).

a 1

a 2

b 1

b 2

c 3

c 4

d 3

d 4
(a)

Database

d1

a 1

a 3

c 1

c 3

b 2

b 4

d 3

d 4
(b)

Database

d2

Figure 8: Two anonymized databases d1 (a) and d2 (b) that individually adhere 2-anonymity. The
original database (cf. Figure 7) is anonymized by creating buckets of size 2 and joining each bucket
with itself by its quasi-identifier (first attribute). The Database d1 differs from d2 because of different
initial buckets in the original database. If d1 and d2 are intersected, the original database can be
reconstructed.

joins the results. The results of f adhere 2-anonymity: Let the values in the first column

be quasi-identifiers and the values in the second column be sensitive information. Then

every quasi-identifier occurs at least two times in every database, making the databases 2-

anonymous. Intersecting the databases in Figure 8, however, yields the original database

of Figure 7, and intersecting symbolized versions of the anonymized databases yields a

database structurally identical to the original database. This is possible due to the ESVD

property of the anonymization mechanism used.

As shown by this example, ESVD can enable composition attacks on a structural level

even if the adversary has no side information at all.

5 Summary and future work

In this paper, we presented a framework for studying the composition of anonymized

database releases with no or very limited background knowledge. We provided a formal

definition of composition notions and proved their equivalence. We provided strong evi-

dence that Locatability end ESVD are the only necessary properties to enable composition
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attacks by simulating them in our framework. We stress that all examples of composition

attacks we gave are based solely on the structure of the databases and the Locatability

Oracle we provided to the adversary, not on the meaning of its contents.

A possible extension of our framework is to model additional side information, e. g. re-

lations of symbols. This is a natural extension, since values related in the real world are

symbolized differently. We deem it significant to capture precisely the ratio of background

information needed versus knowledge extracted from a release.

We also want to use the notion of symbolic databases in order to define anonymity notions

more resilient to attacks involving background knowledge and composition. We propose

to improve anonymity notions by including coarsening or aggregation of sensitive val-

ues [TZ11], similar to the idea of differential privacy. An important challenge for future

work is to find tradeoffs between utility and privacy for methods that don’t have undesir-

able properties like Locatability or Exact Sensitive Value Disclosure.
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