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IoT Device Profiling: From MUD Files to SxC Contracts

Gudni Matthiasson ! Alberto Giaretta > Nicola Dragoni 3

Abstract: Security is a serious, and often neglected, issue in the Internet of Things (IoT). In order to
improve IoT security, researchers proposed to use Security-by-Contract (SXC), a paradigm originally
designed for mobile application platforms. However, SXC assumes that manufacturers equip their
devices with security contracts, which makes hard to integrate legacy devices with SXC. In this paper,
we explore a method to extract SXC contracts from legacy devices’ Manufacturer Usage Descriptions
(MUDs). We tested our solution on 28 different MUD files, and we show that it is possible to create
basic SXC contracts, paving the way to complete extraction tools.

Keywords: Internet of Things; SXC; Security-by-Contract; MUD; Manufacturer Usage Description;
Device profiling

1 Introduction

The Internet of Things (IoT) is becoming more and more pervasive in our society. With the
increasing number of connected devices come additional security risks. IoT devices are
usually simple and resource constrained, which also means that they tend to have a limited
capacity for security routines. Moreover, in order to gain market shares, manufacturers
tend to prioritise easily perceivable features over security [DGM18]. As a result, hackers
have been targeting IoT devices for various purposes: distributed denial-of-service (DDoS)
attacks [Go], cryptocurrency mining [An], espionage, and many others [Hi]. These types of
attacks are expected to become more common as the IoT expands.

Security-by-Contract (SXC) is a promising paradigm for mitigating some IoT security
issues. Originally proposed for mobile applications [Dr07], SXC envisions devices that carry
security contracts, easy to validate and verify against network security policies [GDM19b].
The SxC framework utilises the fog computing paradigm, which extends the concept of
cloud computing by adding a middle layer between the end devices and the cloud. Practically,
this middle layer consists of fog nodes, machines dedicated to data aggregation and data
processing. Fog nodes are distributed and localised, allowing lower latency for time-sensitive
tasks with respect to the cloud. They also provide a more local and controlled storage
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location for sensitive data. In the fog computing paradigm, the cloud can still be used for
less time-sensitive and security-sensitive operations. These features make fog computing
especially useful for IoT networks where latency and data security are important. They also
make fog nodes ideal for security-critical roles within a network.

When a new device first connects, it provides a fog node with a contract formally describing
its intended behaviour on the network, denoted as a list of security rules. An example of
such a rule for a Philips Hue White smart lighting system can be seen in Tab. 1. This rule
allows other Philips devices to access its On, Bri and Hue services, and requires access to
the HueMotion Presence service over the local area network (LAN).

Rule Rp;
D PuiLips. HUEWHITE
DOM LAN
SHARES PHILIPS.*
ProviIDES ON, Bri, Hue

REQUIRES PHiLiPs.HUEMOTION.PRESENCE

Tab. 1: A security rule for the Philips Hue White smart lighting system [GDM19a]

Similarly, a security policy is a set of rules which describes the behaviours allowed within
the network. In SXC, fog nodes act as security gateways on the local network. They are
responsible for verifying and validating contracts, as well as for maintaining and enforcing
the security policy. Upon receiving a device contract, the fog node validates it against the
existing security policy. The validation phase checks the contract for inconsistencies and
tests if the rules violate the existing security policy; if the contract is valid, the fog node adds
the rules to the policy. This helps to ensure an up-to-date, specific, and internally consistent
security policy, providing a good basis for identifying abnormal behaviour on the network.

Contribution of the Paper In an ideal world, manufacturers would produce contracts
and store them in their devices, and this is not a realistic short-term goal. We have to
face thousands of devices on the market which cannot naturally comply with SxC. But a
growing number of these devices are compliant with the Manufacturer Usage Description
(MUD) specification [LDR19], an Internet Engineering Task Force (IETF) standard which
allows devices to signal to the network their requirements in order to work properly. As
shown in Fig. 1, we propose a method for integrating MUD-compliant devices with an SxC
framework. Our approach is based on extracting SXC contracts from MUD definitions, by
means of access control list (ACL) analysis, Dynamic Host Configuration Protocol (DHCP)
fingerprints and queries to the Fingerbank application programming interface (API).

For SxC to achieve widespread use, we need a way for analysing a device behaviour, before
we can generate a suitable contract and grant network access. The SxC framework shows
great promise in terms of sustainable security on a local network, but in its current state it
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MUD Devices
Car

Camera .
Lightbulb
Coffee Pot
Door Lock . i(

Thermostat

1
E Contract
1
1

Windfarm

Fig. 1: MUD-compliant devices are growing in number. How can we integrate such devices with an
SxC framework? We need a method for extracting SXC contracts from MUD definitions.

requires drastic additions to the development and manufacturing processes of IoT devices.
Through an experiment performed on 28 different MUD files, we show that it is possible
to extract basic SXC contracts from MUD ACL specifications. Even though the resulting
contracts are partial, our work paves a promising way for profiling MUD devices and
extracting complete SXC contracts.

Paper Outline The paper is organised as follows. In Sect. 2 we give an overview of related
work. In Sect. 3 we present our proposal for extracting SxXC contracts from MUD files,
and in Sect. 4 we evaluate our results. Limitations and next steps to achieve complete SXC
contracts are discussed in Sect. 5. Last, in Sect. 6 we draw our conclusions.

2 Related Work

MUD is a standard meant to allow devices to describe their requirements in order to function
properly. A MUD file describes the types of communication a device establishes under
normal operating conditions. Namely, it provides access control lists for both inbound and
outbound communication, grouped by protocols. According to the standard, a MUD file is
hosted on servers run by the device manufacturer, and the device stores a link to its MUD
file as a DHCP option [LDR19].

MUD strives to achieve similar goals as SXC, but it does not go as far in describing
device-based communication patterns. It also differs from SXC in that the MUD file is not
provided directly by the device, but rather by an online server. Thus, an internet connection
is required for MUD to function. The research community anticipated issues similar to
those described in Sect. 1 and Hamza et al. [Hal8] came up with a way of generating MUD
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files for devices from behavioural analysis. In their work, they collected packets for 28 IoT
devices over 6 months and produced the related proof-of-concept MUD files [Hal].

DHCP is a protocol for dynamically assigning IP addresses to network devices. The protocol
specifies several parameters for the initial DHCP DISCOVER packet including option 55,
the Parameter Request List, which allows a device to request configuration information
from the DHCP server [Al].The specific information fields requested, and the order in
which they are listed, are usually manufacturer- and often device-specific. To the degree
that it is commonly referred to as a DHCP fingerprint. Fingerbank is an online database
that collects DHCP fingerprints and pairs them with device profiles which contain useful
information, such as the device name and manufacturer. It offers an API that allows a user
to query the database with DHCP DISCOVER packet data and replies with the relevant
device information [Fi].

Thomsen [Th19] proposed a method of determining the device type (lamp, speaker, etc.)
using a Random Forest Machine-Learning algorithm. His research included extracting
information from MUD files for the purpose of this classification. Thomsen’s approach to
MUD-based device type classification revolved around the MUD file systeminfo field. This
identifier was used as a query string for an online search. The results of the search were
scraped for text, which was then fed to the classification algorithm. The systeminfo field is
the only information from the MUD files utilised in the classification process. This paper
investigates what other relevant information can be extracted from the MUD files and to
what degree contracts can be generated based on that information.

Several papers have been published on the topic of profiling IoT device behaviour on
a network outside the context of SXC. Notable examples include IoT SENTINEL by
Miettinen et al. [Mil7], IoT'Sense by Bezawada et al. [Bel8] and AuDI (Autonomous
IoT Device-Type-Identification) by Marchal et al. [Sal9]. All of these solutions include
allowing a new device to connect and passively observing its behaviour after the fact. This
approach may be required to assemble a complete profile for an unknown device but it does
represent a compromise in the pursuit of preemptive profiling. The insights provided by
the aforementioned research are not discussed in individual detail in this paper, but instead
recommended as potentially useful methods for further progress along this line of research.

3 From MUD Files to SxC Contracts

As aforementioned, in this paper we decided to focus on MUD files. The choice was driven
by three main reasons:

1.  MUD is designed for different environments, from home networks to larger ones. It
is reasonable to assume that MUD will become widely adopted in the future.

2. Hamza et al.[Hal8] showed a reliable method for generating MUD profiles for
non-MUD devices.
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3. Even though MUD does not provide enough information to build a full security
contract, it gives helpful information about the devices’ expected communications.

For the purposes of this research, the main point of interest in MUD files are their ACL
specifications. ACLs provide information on communication patterns, including domain
names (in the case of Internet communication), as well as ports and protocols involved.
The first question is: are MUD ACLs enough to create an SXC contract? The information
required for building complete SXC contracts is:

1. Device name and manufacturer

2 Domain of communication (LAN/internet)

3 List of devices which the device can communicate with
4. List of services provided and required
5

ACL in terms of identified devices and services

Manufacturer and device names are not stored in the MUD file but they can be retrieved by
feeding DHCP fingerprints to the Fingerbank API. Also, MUD ACLs provide a list of source
and destination ports used for LAN and internet communications. However, with MUD
devices we miss the services required and provided, as well as a list of other devices which
the device can communicate with. MUD is not sufficient to construct complete security
contracts for SXC, but it provides useful information. The goal of our work is to see how
much useful data we can extract from the 28 MUD ACLs provided by Hamza et al. [Hal8].

3.1 Implementation

The first step was to create a fork of Thomsen’s codebase [Th19]. Additional code was then
written to break up and extract information from the MUD ACLs [Ma].We determined
that the following information could be reliably extracted: ports used for communication,
grouped by LAN/internet and local/remote, and domains communicating with the device
over the internet, grouped by inbound/outbound.

The profiling solution, depicted in Fig. 2, consists of the following steps:

1. Receive DHCP DISCOVER request containing MUD URL

2. Extract DHCP fingerprint, user-agent string, media access control (MAC)
address and MUD URL This info is included in the DHCP DISCOVER packet.

3. Query the Fingerbank API for manufacturer and device names using the
extracted client information The API accepts a DHCP fingerprint, user-agent string
and MAC address.
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1. Receive DHCP
DISCOVER request
containing MUD URL

DHCP fingerprint
Dls[)gg\leR user-agen? 3. Query Fingerbank Manufacturer name,
MAC addreSS ’ API dev‘ce name
2. Extract DHCP 5. Generate ACL
fingreprint > profile
4. Retrieve MUD file
ACL data y
MUD URL and extract ACL data (JSON) ACL profile
object
\

6. Generate contract

Fig. 2: This workflow shows our proposed approach for extracting SXC contracts from MUD ACLs.

4. Retrieve MUD file from extracted URL and extract the ACLs We made some base
assumptions about the ACL data: 1) each local port represents a provided service and
2) each remote port represents a required service.

5. Generate an ACL profile object using manufacturer name, device name, and
ACLs We defined a data model class, the ACL profile, to encapsulate relevant ACL
information, along with functionality to instantiate such objects from raw ACL data.
The protocols used are also available for extraction, but it is unclear how they would
help in constructing contracts for SXC, so they were not included in this model.

6. Generate a contract object using the ACL profile object We defined a second data
model class, the contract, to represent a security contract, complete with functionality
to instantiate contracts from ACL profile objects.

4 Evaluation

For the purpose of testing this functionality, we decided to use unique identifiers, acquired
by manually looking up each device, for Fingerbank API lookups. This was necessary due
to the lack of physical devices to test and scarcity of raw DHCP fingerprint examples readily
available online. Because of this, we were unable to determine the reliability of identifying
device and manufacturer names with DHCP fingerprint lookups. We wrote a script to run
the modified MUD profiling solution on each of the 28 MUD files provided.
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Device type:
Classification score:
Name:

Mud file ACLs:

Camera
0.17817759870529015
Belkin.NetCam

Security contract Belkin.NetCam:
Rule Belkin.NetCam.all:

Device: Belkin.NetCam
Domain:
Shares: *
Provides: {'5104"'}
Requires: {'5104'}
Rule Belkin.NetCam.lan:
Device: Belkin.NetCam
Domain: LAN
Shares:
Provides: {'67', '3478', '53'}
Requires: {'67', '3478', '1900', '53'}
Rule Belkin.NetCam.net:
Device: Belkin.NetCam
Domain: Internet
Shares: *
Provides: ['443', '8443', '8899', '123', '3475']
Requires: ['443', '8443', '8899', '123', '3475']

Contact domains:
nat.xbcs.net
api.xbcs.net

[..]

Fig. 3: Test output for a Belkin Camera device

Fig. 3 shows a test output example for a Belkin camera device. The generated partial contract
represents the following communication profile:

. The camera communicates on port 5104 over both LAN and the internet.
. The camera communicates on ports 53, 67 and 3478, and transmits to remote port
1900 over LAN.

. The camera communicates on ports 8899, 123, 3475, 8443 and 443 over the internet.

The raw test output can be found on the GitHub repository [Ma].As stated in Sect. 3, the
basic ACL data also contains information on the domains contacted over the internet, as
well as the protocols used. We excluded the protocols from the basic contract model for
simplicity. Sect. A presents the results in a condensed format where the domain names
identified are omitted. Instead, the number of domain names extracted from the MUD ACLs
is specified along with the list of identified ports used by each device for inbound and
outbound communication, on the local network and the internet.
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This data may be used to define enforceable security policies on a network, by putting
restrictions on which external domains can contact a device, using which ports and protocols,
and which ports can be used for local network communication. However, this is not enough
for describing devices’ behaviour to the degree required by SxC contracts.

5 Future Work

The contracts we produced with our method can be used to achieve a basic behavioural
whitelist. But they do not encompass the entire behavioural profile of a device. There is
a question left: how can we improve our output SXC contracts? Based on our results, we
suggest two potential approaches:

1. Define a general contract for each device type, select for every new device the
appropriate contract based on the type classification, and use MUD ACL data to
narrow it down.

2. Add an intermediate, fentative state to the SXC process. A new device is granted
access to the network, limited by the MUD ACL, while additional profiling takes
place and a valid contract is generated.

The first option would define which external domains the device could communicate under
standard conditions. This could provide the SXC fog node with a baseline for identifying
abnormal communications, but it would not be perfect. For example, this approach might
produce contracts too general, granting unnecessary permissions. The second option would
produce better contracts, as the data described in Sect. 4 would be enhanced with observed
network data, allowing device-specific and service-specific permissions. But it would also
require the SXC fog node to actively monitor new devices communications while they are
in this tentative access state, increasing the computational burden.

Both options could also be combined, whereby a temporary contract could be created
by augmenting an existing general type-specific contract for the analysis period. During
this period, a more specific contract could be generated based on a more thorough and
sophisticated behaviour analysis. Methods for such analysis are rapidly emerging, as
mentioned with some notable examples in Sect. 2.

6 Conclusion

The market demand for IoT devices has considerably outpaced the development of secure
IoT solutions. Security-by-Contract (SXC) attempts to improve the IoT shortcomings, with
respect to security configurability and lacking behavioural descriptions. At the time of
writing, one issue SXC has to face is its compatibility with existing technology. In this paper,
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we presented Manufacturer Usage Description (MUD), an IETF standard which describes
basic requirements for compliant IoT devices. Within MUD files, we identified information
for extracting SXC contracts, and integrating MUD-compliant devices in SXC frameworks.

Then, we proposed a method to extract such information and, in order to verify our hypothesis,
we applied this method to 28 different MUD files. Our experiment shows that it is possible,
indeed, to extract some useful information for basic SXC contracts. However, we show
that our method outputs only partial SXC contracts. We have also identified two potential
methods for extracting valid and useful SXC contracts for previously unknown devices.
Both include the approximation of a valid contract from ACLs, device type, and further
behaviour analysis.

With the increase in resource-constrained IoT devices on the market, we are facing an
increase in attack surface. This presents a huge challenge for cybersecurity, but the growing
research on IoT security is promising for the future of the Internet.

Appendix A Test results

MUD File SxC Device LAN Internet # Dom.
amazonEcho Amazon.Echo 5353 O 33434 1O 20
1900 O 443 /0
67 /0 123 /0
53 /0 89 /0
augustdoorbellcam August.DoorBellCamera 67 /O 443 /0 19
53 /0
547 /0
awairAirQuality Awair.R2 67 /O 8883 /0 3
53 /O 443 /0
belkincamera Belkin.NetCam 5104 /O 8899 /0 8

3478  1/0 8443  1/0
1900 O 5104 1O
67 /0 3475  1/0

53 /0 443 /0
123 /0
blipcareBPmeter BLIP.Systems 67 /o 8777 1/0 1
53 /0
canaryCamera Canary.All-in-One 67 /O 443 /0 8
53 /0 80 1/0
chromecastUltra Google.ChromecastUltra 5353 O 5228 /0 37
1900 O 443 /0
67 /0 123 /0
53 /0 80 /0
dropcam Nest.Camera 67 /O 443 /0 4
53 /0 123 /0
hellobarbie Nabi.BarbieTablet 67 /0 443 /0 3

53 /0
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MUD File SxC Device LAN Internet # Dom.
hpprinter HP.Printer 5355 O 5223 /0 3
5353 O 5222 1/O
547 /O 443 /0
137 O 80 /0
67 /0
53 /0
HueBulb Philips.PhilipsHueSmartlighting 5353 O 443 /0 12
1900 O 123 /0
67 /0 80 /0
53 /0
ihomepowerplug iHome.SmartPlug 5353 O 443 /o 2
67 /0 80 /0
53 /0
lifxbulb LIFX lighting 56700 O 56700 I/0 2
67 /0 123 1/0
53 /0
nestsmokesensor Nest.Smoke+COAlarm 67 /O 11095 TO 46
53 /0
NetatmoCamera Netatmo.Camera 67 /O 4500 1O 12
53 /0 500 /0
443 /0
123 /0
80 /0
NetatmoWeatherStation Netatmo.PersonalWeatherStations 67 /O 25050 1/O 1
53 /0
pixstarphotoframe Pix-Star. WiFiFrame 138 O 443 /o 2
137 O 80 /0
67 /0
53 /0
ringdoorbell Ring.Doorbell 67 /O 9998 /0 4
53 /O 443 /0
123 /0
80 /0
samsungsmartcam Samsung.IPCamera 5353 O 5222 10O 5
1900 O 443 /0
67 /0 123 /0
53 /0
SmartThings Samsung.SmartThings 1900 O 443 /o 3
67 /0 123 /0
53 /0
tplinkcamera TP-Link.IPCamera 5353 O 3478 /0 6
67 /O 443 /0
53 /0 123 /0
80 /0
tplinkplug TP-Link.HS100 67 /O 50443 1/0 11
53 /0 123 /0
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MUD File SxC Device LAN Internet # Dom.
tribyspeaker Invoxia.SmartPortableSpeaker 5353 O 10003 O 14
67 /O 10002 1/O
53 /0 8090 /0
5228 1/0
443 1/0
123 1/0
80 1/0
wemomotion Belkin.WeMo 1900 O 8899 /0 3
123 /O 8443 1/0
67 /O 3478 1/0
53 /0
wemoswitch Belkin.SmartHome 1900 O 8443 /0 2
3478 /0 3475 1/0
123 1/0
67 1/0
53 1/0
withingsbabymonitor Withings.SBM 5353 O 1935 1/0 7
67 /0 80 /0
53 1/0
withingscardio Nokia.-WithingsloT 67 /O 443 /0 1
53 /0
withingssleepsensor Withings. AURA 5353 O 443 /0 1
67 /0 80 1/0
53 1/0
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