
ELVIZ: A Query-Based Approach to Model Visualization

Marie-Christin Ostendorp, Jan Jelschen, Andreas Winter

University of Oldenburg

Germany

{ostendorp, jelschen, winter}@se.uni-oldenburg.de

Abstract: Visualization is an important technique for understanding and exploring
complex models. To be useful, visualizations have to be specifically tailored towards
the visualization task and the analyzed model. Many standard charts or graph-based
visualizations exist, but need to be mapped to the concepts of the model under study.
Existing model visualization tools often have predetermined visualization kinds and
content, impeding reuse of standard visualizations for various purposes, or lacking the
ability to flexibly map source model concepts to different visualization elements.

This paper presents ELVIZ (
”
Every Language Visualization”), an approach to vi-

sualization, generic regarding both the source model, and the kind and content of the
visualization. ELVIZ applies model-driven engineering techniques both to transform
arbitrary source models into the desired visualization models, and to generate said
model transformations from a query-based mapping of source model concepts to vi-
sualization concepts. This cleanly decouples source and visualization meta-models,
allowing to reuse and combine standard visualizations for various source models.

The ELVIZ approach is applied to scenarios from software visualization in softwa-
re evolution and measuring energy consumption of mobile applications, using different
kinds of visualizations.

1 Motivation

Models are everywhere in computer science and software engineering, e.g. process mo-

dels, test models, or design models [Béz13]. To ease the understanding of these models, or

serve as a basis for communication, visualizations are very helpful. For example, to inves-

tigate code smells like too large classes in an existing software system a bar chart might

be very helpful: Instead of investigating the underlying code manually by regarding every

single class, a bar chart - in which each bar represents one class of the system and where

its height is set by the count of methods - is able to present the required information at one

glance. This bar-chart example will be used in Section 3.1 again to clarify the approach

presented in this paper using the model of a small software system as depicted in Figure 2

to generate the bar chart as presented in Figure 5c.

Many tools exist to generate such visualizations. However, the approaches often support

only a single kind of visualization, e.g. from using standard graphics like simple bar charts,

to elaborate visualizations like using a three-dimensional “city” to represent sets of cha-

racteristics of a model as properties of its buildings [WL07]. Which visualization is ap-

105

propriate depends on both the model under study, and the goals of the analysis task the

visualization is set to support. For instance, instead of visualizing the count of methods

per class to identify code smells, the aim of the visualization can be to show the percentual

distribution of the methods onto the different classes. In this case a pie diagram might be

more appropriate than a bar chart: Another visualization is needed but the visualization

content stays the same - the pieces should represent the classes and its size is set by the

count of methods of the particular class. Instead of generating a totally new visualization

or even taking another visualization tool into account, it would be more pleasant and time-

saving to reuse the specification of the visualization content for another visualization kind.

A reverse scenario might be that the content of the desired visualization changes e.g. vi-

sualizing the percentual distribution of the attributes onto the classes, but the visualization

kind - a pie diagram - stays the same. In this case the reusability of the visualization kind

is required.

So what is needed is an approach where visualization content and kind can be specified

separately, enabling independent reuse for different source models. This should be provi-

ded by ELVIZ (
”
Every Language Visualization”): ELVIZ is a generic, query-based model

visualization approach, using model-driven techniques to decouple source models, visuali-

zation models, and the tools used for rendering. In this context, rendering means layouting

the models content according to predefined visualization needs. Within ELVIZ, a model

can be of arbitrary structure, as long as this structure is rigidly defined by an appropria-

te meta-model. Queries over the source meta-model (expressed in an appropriate query

language) are used to define the concepts to be visualized - the visualization content. Vi-

sualization kinds i. e. the paradigms followed by concrete visualizations, are represented

by their meta-model. Queries can be associated with concepts of the visualization meta-

model, to form a mapping, which is automatically turned into a model transformation.

Once a visualization kind is specified by a meta-model and the appropriate renderer is

provided content, this specification can be reused for different source models in various

combinations with different specifications of the content via queries. So ELVIZ can be

seen as a framework to generate an appropriate visualization tool rather than a visualizati-

on tool itself.

In the following, ELVIZ is described in detail, starting with the presentation of related

work in Section 2. Section 3 clarifies ELVIZ with an illustrative example. In Section 4,

ELVIZ is applied to two different areas of application – to the field of software metrics

visualization, and to the field of power consumption of applications on mobile devices.

Section 5 summarizes the presented ELVIZ-approach and refers to possibilities to further

optimize and build upon it in the future.

2 Related Work

ELVIZ’s main use case is data visualization for software analysis in software evolution:

In the past various tools and approaches were published in this context: These include

graph-based visualization as for example
”
Tulip”[Aub01],

”
da Vinci” [FW94],

”
ASK-

Graphview” [AvHK06], and
”
GraphViz” as an Open source graph (network) visualization

106

project [EGK+01]. Apart from the approach to visualize models using graphs, there exist

visualization approaches especially developed for the field of software visualization: the

Unified Modeling Language is a well-known OMG-Standard to define models graphical-

ly [OMG06]. Lanza et. al presented visualizing software systems as
”
CodeCities” [WL07].

In these approaches, the kind and content of the visualization is predetermined. To get a

different visualization, the person creating the graphical representation has to get familiar

with these tools and approaches. In contrast to this, ELVIZ aims at leaving the choice for

a suitable graphical representation - including kind and content - to the person creating the

visualization. Thereby, ELVIZ is a framework to generate an appropriate visualization tool

rather than a visualization tool itself.

The BIRT framework presented by the Eclipse Foundation [Ecl14] is an eclipse plugin

able to visualize different contents with different kinds of visualization. BIRT is not ea-

sily expendable by new totally individual kinds of visualization as it has a limited range

of available report items. Furthermore BIRT can not easily be integrated into a larger

toolchain - e.g. extending for instance a metric calculation tool to visualize its results di-

rectly. In contrast ELVIZ aims at being easily extendable and should provide the possibility

to be integrated into a larger toolchain.

Therefore, ELVIZ is based on model-driven techniques [Ken02], to allow flexible and

automatic specification and generation of desired model visualizations.

Similar works on this kind of visualization generation by applying model-driven enginee-

ring to the field of model visualization were introduced [WW05] [BSFL06]. Wolff and

Winter [WW05] presented the transformation of Bauhaus Graphs into UML diagrams.

Both approaches applied MDE to automatically generate the visualizations. In contrast to

this, the ELVIZ approach aims at extending this procedure in that way that not only the

visualization is generated automatically but also the required transformation itself.

The ELVIZ-approach combines ideas from the field of graph technologies – especially the

idea of querying graphs [ERW08] with applying model driven engineering to the field of

information visualization [BSFL06]. to allow independent reuse of visualization content

and kind.

3 The ELVIZ-Approach

An overview of ELVIZ is depicted in Figure 1. Two major processes can be distinguished:

1) Generating a Visualization Tool to create a customized visualization tool, and 2) Exe-

cuting a Visualization Tool using this generated tool to produce visualizations of provided

models. The objective of the tool generation process lies in the construction of a reusa-

ble visualization tool for a new kind of visualization. This tool can be used to produce a

concrete graphical output for different source models. Both processes are briefly outlined

below, followed by more detailed explanations using an example in Section 3.1.

For the tool generation process, it is necessary to specify the input and output of the tool

to be generated: Therefore, the following steps have to be performed: First, the input has

107

source

meta-model

visualization

meta-modelmeta-m

co
n
fo
rm
s
to

co
n
fo
rm
s
to

query-basedmapping

generate

transformation

1. extract 2. transform 3. rendersource model
visualization

model
information

MDE

o
rm
s
toMDE

2. Executing the Visualization Tool

1. Generating a Visualization Tool

Figure 1: Overview of the ELVIZ-approach.

to be specified via the source meta-model. The graphical output has two parts to be speci-

fied: the kind of visualization, and its content. These two aspects are specified separately

from each other to allow separate reusability of these specifications for other tool gene-

rations, thereby reducing workload for generating a new tool. The kind of visualization

can be specified via the visualization meta-model, while the content is specified as query-

based mapping between the elements of the source meta-model and the elements of the

visualization meta-model. By associating a query over the source meta-model with each

concept of the visualization meta-model, a mapping is defined: This mapping describes

which elements of source models should be represented by which elements in graphical

representations.Defining queries is not necessarily easier than writing transformations. Ho-

wever, ELVIZ allows to manage queries and specfication of vizualization kinds separately,

enabling independent reuse, which is the real benefit. Furthermore queries do not limit the

possibilities for the contents of graphical representations [HE11].

ELVIZ assumes that input data is either readily available as models conforming to well-

defined meta-models, or that an appropriate fact extractor (e.g. a parser in case of source

code analysis) is provided to create such a representation from “plain” input data. Also,

besides the specification of the visualization via a visualization meta-model, a renderer

has to be available which creates the real graphical output conforming to the kind of vi-

sualization. Such a renderer has to be implemented only once for a given visualization

meta-model, though alternative realizations are possible. As last step, the source meta-

model, the mapping, and the visualization meta-model are used to automatically generate

the transformation making up the customized visualization tool.

Visualization tools generated in this way are used in the execution process. Here, the fol-

lowing steps have to be performed: extracting, transforming, and rendering the data. As

a first step, a source model is extracted from the input data to be visualized. This is a

pre-processing step; for example, if the input data consisted of a Java application to be vi-

sualized in a software evolution scenario, this step would correspond to parsing the source

code to create a representation on abstract syntax tree level. It yields a model represen-

tation conforming to the source meta-model, which is a prerequisite for the upcoming

108

transformation step. The next step takes a prior generated transformation, executes it, and

generates a visualization model fulfilling the mapping and conforming to the visualization

meta-model. In the last step, this model is finally transferred to an appropriate renderer to

create the actual graphical representation, e.g. as an image file.

An implementation of the ELVIZ approach has been created using the technological space

of TGraphs [ERW08] to represent models and meta-models. TGraph-based models can be

queried and transformed using the Graph Repository Query Language (GReQL) [ERW08]

and the Graph Repository Transformation Language (GReTL) [HE11], respectively. EL-

VIZ is not tied to these techniques, though. An alternative realization could, for example,

be implemented using ATL in OMG’s Model-Driven Architecture (MDA) [JK06, Sol03].

In this case ATL is used instead of GReTL and OCL replaces GReQL.

3.1 Example – Visualizing Software Metrics with Bar Charts

This example shows how a visualization tool, able to visualize properties and metrics of

java systems, is generated using ELVIZ (Section 3.1.1), and how to execute the generated

visualization tool to produce the graphical representation(Section 3.1.2).

package com.vizsave;

public class Picture {

private Database database;

public Picture() {…}

public void edit() {…}

public void save() {…}

}

package com.vizsave;

public class Database {

public void initialize() {…}

public void store(Picture p) {…}

public void delete(Picture p) {…}

public void get(Object Picturep) {…}

}

Figure 2: Source Code of the example system.

In this example scenario, a simple metric: the number of methods per class is to be visua-

lized. This can be represented appropriately by a bar chart, where bars represent classes,

and the height of each bar is determined by the number of methods. A small, fictitious

Java application to save images in a database is used in this example. It consists of two

classes the class
”
Database” to realize a database connection and the class

”
Picture”. Each

contains a few methods, as indicated by the code snippets in Figure 2.

3.1.1 Generating a Visualization Tool

To generate the visualization tool, the input of the tool and the kind and content of the

desired visualization need to be specified.

Specifying the input. Since the input are Java software systems, an appropriate Java

meta-model is needed. For this simple example, a minimal meta-model is used, represen-

ting only those concepts carrying the information needed for the intended visualization

(Figure 3 left), and consists of three classes to represent packages, classes, and methods.

Their containment relationships are modeled with aggregation associations. Each class

also has a name attribute.

109

source meta-model visualization meta-model

constant value

constant value

constant value

1

2

3

4

5

6

7

8

Figure 3: Source meta-model, visualization meta-model and mapping between them.

Specifying the kind of visualization. In the example considered here, the number of

methods per class should be visualized as bar chart. The corresponding visualization meta-

model is shown on the right-hand side of Figure 3: A bar chart is represented by a Coor-

dinateSystem, with a name and labels for x-axis and y-axis. It consists of arbitrarily many

bars, each having a name and value determining the height of the bar. In the TGraph-based

ELVIZ implementation, visualization meta-models are created using GReTL, which is de-

signed to create target meta-models and models simultanously. It is also possible to use

pre-existing target meta-models, and the implementation could easily be extended to also

allow visualization meta-models to be specified using UML class diagrams, which can be

imported in standard XMI exchange file format.

Specifying the content of the visualization. The desired mapping is indicated by the

numbered arrows depicted in Figure 3. Each element of the visualization meta-model must

have its counterpart in the source meta-model. For instance, a separate bar chart should be

created for each package, which is ensured by mapping these two classes onto each other.

Each bar in a coordinate system stands for a Java class in the corresponding package, and

the value of the bar is set by the number of methods defined in that class. Therefore, the

calculation of the number of HasMethod incidences per class has to be specified as part

of the mapping to value-attributes of bars. To set a specific string as value for labels in the

desired graphical output, constant values can be used: For instance, to set the label on the

x-axis to “Classes”, the value of the x-axis attribute in class CoordinateSystem can be set

to the constant string
”
Classes”.

To realize this mapping, ELVIZ uses queries: queries are based on the source meta-model,

and are used to get specific elements out of the source model, or perform calculations over

110

it. By specifying a query for each concept of the visualization meta-model – as classes,

attributes and associations–, each query’s results can be used in a model transformation

to create instances or set attribute values in the target visualization model. In the TGraph-

based ELVIZ implementation, queries are expressed using GReQL. The GReQL queries

for the mapping of this example are shown in Figure 4, with numbers corresponding to

those depicted in Figure 3.

No. concept in visualization

meta-model

GReQL-Query

CoordinateSystem from p: V{Package}

with p.name="com.vizsave"

report p end

systemname from m: keySet(img_CoordinateSystem)

reportMap m -> "Count of methods per Class" end

xaxis from m: keySet(img_CoordinateSystem)

reportMap m -> "Classes" end

yaxis from m: keySet(img_CoordinateSystem)

reportMap m -> "Count of methods" end

Contains from e: E{Contains}

reportSet e, startVertex(e), endVertex(e) end

Bar from c: V{Class}, p: V{Package}

with p-->{Contains}c and p.name="com.vizsave"

report c end

name from m: keySet(img_Bar)

reportMap m -> m.name end

value from m: keySet(img_Bar)

reportMap m->count(from e: E{HasMethod}

with startVertex(e).name=m.name

report e end)

end

1

2

3

4

5

6

7

8

Figure 4: GReQL-Queries for the mapping shown in Figure 3.

GReQL queries usually start with a from-clause, specifying the domain of discourse: For

example, the GReQL query for the coordinate system (1) defines a variable p to range over

all nodes (vertices) of type Package. Constraints are specified in the with-clause. Here,

the with-clause specifies that only nodes with their name set to “com.vizsave” should be

considered. In the return-clause of the GReQL-query, the structure of the result returned for

each considered element of the domain is defined. In this case, this is just the node itself,

yielding a list of Package-nodes, which have the specified name. Note that this constraint

is for the example’s sake, and neither necessary, nor advisable, as binding to a specific

package name would needlessly impede reusability.

Another important construct in the GReQL-queries in Figure 4 are the keySet-function

and img -maps, used for instance in the GReQL query for the systemname attribute of

the coordinate system (2). The img -maps are provided by the transformation language

GReTL to refer to already established mappings. Here, the query’s domain of discourse

111

ranges over all elements already mapped to the coordinate system by the previous query,

i.e. packages named “com.vizsave”.

Generating the tool. The source meta-model, the visualization meta-model, and the

mapping are used to generate a model transformation embodying the desired visualiza-

tion. The target transformation language of the TGraph-based ELVIZ implementation is

GReTL [HE11]. GReTL expressions rely on GReQL queries, allowing to directly use the

queries specified in Figure 4 to transform models conforming to the source meta-model

into models conforming to the visualization meta-model. The following example shows a

GReTL rule to create a bar in the bar chart for each class contained in a specific package.

CreateVertexClass Bar <== from c: V{Class}, p: V{Package}

with p-->{Contains}c and

p.name="com.vizsave"

report c end;

This directly corresponds to Query (6) in Figure 4, associating it with a concept of the vi-

sualization meta-model. On the left-hand side, the CreateVertexClass command of GReTL

is used, to both create a new class in the visualization meta-model called Bar, and to crea-

te instances of this class for each element returned by the query on the right-hand side.

This query ranges over Classes and Packages, selecting those pairs, where the class is

contained in the package, and the package’s name is “com.vizsave”, and reporting the

classes. Each of these classes thereby becomes an archetype for an instance of class Bar.

Thus, the whole transformation can be generated automatically using information from

the mapping, source meta-model, and visualization meta-model: Internally, the transfor-

mation uses the GReTL API, to dynamically construct the required transformation code

as Java classes. GReTL can use existing target meta-models, but is also able to generate

target meta-models (schemas) and conforming target models (graphs) at the same time.

This means a visualization meta-model can be specified directly using GReTL. This will

then also provide the framework for the generator which will be able to create visualizati-

on tools, parameterized by a set of queries providing the mapping to a source meta-model.

To generate actual TGraphs for a specific source model, each visualization meta-model

concept needs such a GReQL-query, which will be included dynamically.

3.1.2 Executing a Visualization Tool

Transformations generated in the process described above essentially represent a visualiza-

tion tool tailored to specific needs dictated by the source data and the task to be supported.

This assumes that these transformations can integrate into an environment where data ex-

traction and visualization renderer tools are already present. The advantage of using ELVIZ

is that these tools have to be integrated only once, and then can be reused and recombined

for further visualizations. The three steps described in the following (and depicted in Fi-

gure 1) can therefore be performed automatically by the generated visualization toolchain.

Extract. As a preprocessing step, a source model suitable for further processing by mo-

del transformations has to be extracted from the input data. In the example, the input is Java

112

V2 Method

name = “initialize“

E1: HasMethod E2: HasMethod E3: HasMethod

E4:Contains
E5:Contains

V3 Method

name = “get“

V5 Class

name = “Picture“

V1 Class

name = “Database“ V6 Package

name = “com.vizsave“

V4 Method

name = “store“

V7 Method

name = “delete“

V9 Method

name = “edit“

V10 Method

name = “save“

E6: HasMethod

E7: HasMethod
E8: HasMethod

(a) The source model as TGraph.

V2 Bar

name = “Database“

value=4.0

E1:Contains E2:Contains

V3 Bar

name = “Picture “

value=2.0

V1 CoordinateSystem

systemname = “Count of methods per Class“

xaxis=“classes“

yaxis=“count of methods“

(b) The visualization model as TGraph. (c) Generated bar chart.

Figure 5: Source model, visualization model, and graphical representation.

code (Figure 2). A parser is used to extract the required information and creates a model

conforming to the source meta-model. ELVIZ assumes that such extractors are provided,

or that source data is already available as models, together with appropriate meta-models

they conform to. The model representation of the example is presented as TGraph in Figu-

re 5a. In this figure, certain characteristics of TGraphs become obvious. TGraphs consist of

nodes and directed edges. For example, the node V6 represents the package “com.vizsave”

of the example application. It has a type (Package) and an attribute (name). The edges

represent links between different nodes. For instance, V6 is connected with V1 by an ed-

ge of type Contains. This expresses that the class Database is contained in the package

“com.vizsave”.

Transform. The generated transformation is executed automatically. Based on the pro-

vided queries, mapped to visualization meta-model concepts, it produces the model shown

in Figure 5b. There is a single instance of CoordinateSystem, corresponding to the only

Java package of the source model. It contains two bars, one for each class. The values of

the bars (their height) is set to the number of methods defined in the corresponding classes,

four and two, respectively.

Render. As last step, the visualization model is rendered. ELVIZ requires a renderer for

each kind of visualization, i.e. for each visualization meta-model. A simple renderer for

bar charts to create the actual graphical representation has been implemented using the

JFreeChart library [Lim19]. Its output for the example program can be seen in Figure 5c.

113

4 Application of the ELVIZ-Approach

The example used in the previous section has been kept intentionally simple, to focus on

the principal concepts of ELVIZ. ELVIZ has been employed to different fields of appli-

cation, using more complex models. In this paper, three visualization scenarios from two

different domains are presented. The first domain is the visualization of software metrics

on a Java system, as in the previous example, however, an industry-scale Java meta-model

was used. A small Android application called GPSPrint serves as input data, and me-

trics are visualized in two different ways: using bar charts (Section 4.1), and using Code

Cities [WL07] (Section 4.2). The second application domain is that of energy-efficient ap-

plications. Here, the energy consumption of mobile applications, and its distribution across

different components of a mobile device is visualized using pie charts (Section 4.3).

4.1 Visualizing Software Metrics using Bar Charts

The amount of methods per class has been visualized for the GPSPrint App using the same

bar chart visualization meta-model as as presented previously, depicted on the right-hand

side of Figure 6. As source meta-model, a Java meta-model, developed in the context of

the SOAMIG project [FWE+12] is used. It consists of 86 node types and 67 edge types.

Figure 6 shows a small section of this meta-model on the left-hand side, containing those

concepts relevant for the metrics to be evaluated and visualized here.

part of source meta-model (SOAMIG) visualization meta-model

constant value

constant value

constant value

Figure 6: Source meta-model and mapping for the GPS Print Application.

The content of the desired bar chart should show the number of methods per class. The-

refore, the mapping has to be specified as shown in Figure 6 – each bar represents one

class of the GPSPrint Application, and the height of the bar is set by the number of me-

thods of each class. The result of this visualization is shown in Figure 7: three classes are

easily identifiable as containing considerably more methods than the average, GPSItem,

GPSPrint, and ViewItemList.

114

Figure 7: Bar chart of the number of methods per class for the GPSPrint Application.

4.2 Visualizing Software Metrics using Code Cities

A very different kind of visualization, also realizable using ELVIZ, are Code Cities. To

do this, an appropriate meta-model for this kind of visualization has been created, and

is shown in Figure 8a. A City consists of District with a districtname. Districts contain

Buildings, where each building is characterized by a name (buildingname), color (colorIn-

tensity), height and the length of its square base area (basesize).

The mapping is based on the Code City semantics presented by Lanza et. al [WL07]: a city

represents the whole code of an application (here GPSPrint). The districts represent the

packages, and the buildings stand for classes in these packages. The name of the building

is the name of the represented class. The color hue is set by the number of statements of

this class. Here, a linear color gradient is aimed at, represented by a real number between

zero and one. Alternatively, a set of possible colors could have been modeled using an

enumeration. The height is set by the number of methods, and the base size by the number

of attributes. The mapping contains corresponding queries, the most complex of which is

the one to set the color hue. It is shown below as GReQL expression:

let maxStatements :=

max(from m: keySet (img_Building)

report numStatements(m)

end) in

from m: keySet (img_Building)

reportMap m -> (numStatements(m) / maxStatements)

end

115

(a) Meta-model for code

cities.

GPSPrint

Eula

Changelog

DegreeFormatter

ViewItemListOpenHelper

GPSItem
GPSItem-

Adapter

GPSItem-

List

(b) Code city of the GPSPrint Application with a simplistic renderer

based on Java 3D (labels added in manual post-processing).

Figure 8: Code city meta-model and an actual code city rendering.

First, the let part of the query sets a variable maxStatements to the highest number of

statements encountered in a class. Classes are mapped to buildings in this visualization,

therefore the set of all classes can be obtained from the archetype of the mapping for

buildings. This is done by applying the keySet-function to img Building, which is a refe-

rence provided by GReTL to the already established buildings mapping. For each class,

the number of statements is calculated; GReQL’s max-function returns only the highest

of those values. Then, the actual mapping to color values is specified, associating each

building with a value between zero and one, by dividing the number of statements of the

corresponding class by the maximum number of statements. A renderer maps this value to

a continuous color gradient, e.g. from green, to yellow, to red, for low, medium, and high

values.

To ease understanding, and re-use functionality, this query uses the helper function num-

Statements to actually calculate the number of statements. Such functions can be specified

as part of the regular mappings, in a similar fashion, by associating a function name with

a query. Internally, it will be passed to the GReTL transformation producing the visualiza-

tion tool, making it available for use in all mapping queries. The query defining the helper

function is shown below:

using class:

count(class <--{frontend.java.HasTopLevelClassType}

-->{ˆfrontend.java.CallsMethod}*
&{frontend.java.JavaStatement})

The using keyword is used to declare a parameter called class. The query assumes this to be

a node of type ClassType. A regular path expression yields all statements contained in this

class: first, an edge of type HasTopLevelClassType is traversed, leading to a JavaFile node.

From here, all paths of arbitrary length (denoted by an asterisk), ending at a JavaStatement

116

node, are considered, excluding those containing edges of type CallsMethod, which would

lead out of the class.

This application demonstrates that ELVIZ is also able to generate visualizations which are

very different from standard charts. The rendered code city image is shown in Figure 8b. A

simple renderer using Java3D places boxes in a grid to represent the buildings with given

base size and height, and uses the color attribute to paint them. A linear gradient starting at

bright green (zero), moving to yellow, and ending at deep red (corresponding to a value of

one). From the colors, it is immediately evident that most classes are small in their number

of statements, as most buildings are colored in slightly different shades of green. There is

one medium-sized class, ViewItemList, and the largest class, GPSPrint, which will always

be assigned a deep red color, as the mappings define the highest statement count occuring

to be the maximum number. Also, GPSPrint has a disproportionate number of attributes,

visible by its large base size, whereas ViewItemList has almost no attributes, but above-

average number of methods (height of the buildings). Due to the semantics chosen, some

classes are not depicted at all, because their base size (attributes) or height (methods) is set

to zero.

Using ELVIZ, this visualization model can be used with completely different input data,

given appropriate mappings, or only the mappings can be adjusted to change the seman-

tics of generated graphics. Also, other, more sophisticated renderers can be used, without

having to change the visualization meta-model or any mappings.

source meta-model visualization meta-model

constant value

Set by name of

real component

class

Figure 9: Source meta-model and mapping for GPSPrint concerning energy consumption.

117

4.3 Visualizing energy consumption using Pie Charts

To show that ELVIZ can not only be applied to the field of software visualization, ELVIZ

is applied to another field in this section – to visualize the energy consumption of smart-

phone applications: A problem of today’s smartphones is the limited battery time. This is

not only a problem caused by the limited hardware possibilities, but also by the code of the

applications [GJJW12]. It is possible to measure the energy consumption of mobile devi-

ces, and of applications running on them, using power profiles. A power profile provides

mean values of energy consumption for each component of a smartphone. By monitoring

the runtime of an application, and the state of the device’s components during this time,

the consumed energy for each component can be determined. This measurement method

has been applied to the GPSPrint Application to get detailed information about its energy

consumption. The results can be visualized using the ELVIZ approach, as well.

The source meta-model is shown in Figure 9 (left). A MobileDevice consists of different

components, like GPS, Bluetooth, and WiFi. Each of these components have a power con-

sumption. The desired kind of visualization is specified by a visualization meta-model: In

case of visualizing the energy consumption on a mobile device per component, a pie chart

is applicable. Pie charts show the relative distribution of the energy consumption per com-

ponent. Thus, as visualization meta-model, a meta-model for pie charts is specified, shown

on the right-hand side of Figure 9. A pie chart is modeled as a Pie with a piename, consis-

ting of arbitrarily many Pieces, which also have a name, and carry a value representing its

size in relation to the whole pie.

Figure 10: Bar chart for energy consumption of mobile components for GPSPrint.

As content of the visualization, it is desirable to have a pie chart where each piece repres-

ents one device component, and the size of the pie’s pieces is set by the measured energy

consumption of the corresponding component. The arrows between source and visualiza-

tion meta-model in Figure 9 indicate a mapping according to these requirements.

The rendered result for this visualization, based on measurement data from the GPSPrint

application running on an Android mobile phone, is shown in Figure 10. The renderer used

to create this image has been implemented using JFreeChart.

118

5 Conclusion and Future Work

In this paper, the ELVIZ approach has been presented: It is a new approach for generating

customized graphical representations of arbitrary source models by applying model-driven

engineering and graph querying techniques to the field of model visualization. The ELVIZ

approach is source-model-generic, and offers the possibility to create customized kinds

of visualizations. A major benefit of the ELVIZ approach lies in managing mappings and

visualization meta-models separately, enabling independent reuse: For example the same

content e.g. count of methods per class of a Java system can be reused for different visua-

lization kinds e.g. as pie or bar chart without any further effort.

An ELVIZ-based visualization tool is created in four steps: 1) Specifying the input format

using meta-models, or re-using an existing meta-model. Input data is assumed to be exis-

tent as models conforming to such a meta-model. Otherwise, an appropriate fact extractor

needs to be provided. 2) Specifying the kind of visualization, again, using a meta-model

defining the abstract syntax, e.g. bars in a bar chart. 3) Specifying the content of the visua-

lization using mappings based on queries. Queries depend only on the source meta-model

and can be re-used with different kinds of visualizations. 4) Generating the tool, using

as input a source meta-model, visualization meta-model, and a mapping. This is automa-

ted by ELVIZ, integrating those parts into a model transformation embodying the desired

visualization. For each visualization meta-model, an appropriate renderer is required to

provide actual graphical representations of visualization models.

The content can be defined separately from the kind of visualization by creating query-

based mappings between elements of source meta-models and elements of visualization

meta-models: Each element of a visualization meta-model has its counterpart in the sour-

ce meta-model. The exact elements to represent are extracted out of the source model by

specifying queries over the source model. Thereby, the specification of the kind of visua-

lization, and the mapping – embodying the content of the visualization – are reusable for

different source models and can be combined in different ways for different usage scenari-

os. Thus, the overall workload for creating a new graphical representation can be reduced.

Another advantage of the ELVIZ approach is, that it is not only generic concerning source

model, visualization kind, and visualization content, but also concerning to the implemen-

tation details of the approach. In this paper, one possible implementation, realizing the

ELVIZ approach in the technological space of TGraphs has been presented. The conceptu-

al architecture of ELVIZ can also be implemented using other technologies, such as using

ATL and related MDA techniques. Thereby, the ELVIZ approach is able to remain use-

ful for future projects, and to profit from future technologies in the field of model-driven

engineering and querying.

The capability of ELVIZ to specify new kinds and contents for model visualizations,

and to reuse and combine them, fits well with ongoing work on software evolution ser-

vices [JOMW13], aimed at enhancing interoperability of software evolution tools, and

easing their integration. In this area, ELVIZ fills the role of a universal visualization ser-

vice, required by many software analysis and reverse engineering activities, where it can

be integrated with other services to create customized toolchains. ELVIZ will be used as

visualization of a service-based metrics tool currently being developed.

119

Literature

[Aub01] D. Auber. Tulip. In Graph Drawing. Springer, 2001.

[AvHK06] J. Abello, F. van Ham and N. Krishnan. ASK-GraphView: A Large Scale Graph Visua-
lization System. IEEE Transactions on Visualization and Computer Graphics. 12(5),
2006.

[BSFL06] R. I. Bull, M. Storey, J.-M. Favre and M. Litoiu. An Architecture to Support Model
Driven Software Visualization. In 14th IEEE International Conference on Program
Comprehension, ICPC, Washington, 2006. IEEE.

[Béz13] J. Bézivin. Models Everywhere, http://modelseverywhere.wordpress.
com (19-09-2013).

[Ecl14] Eclipse. BIRT Project Description and Scope, http://www.eclipse.org/
birt/phoenix/project/description.php (09-01-2014).

[EGK+01] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North and G. Woodhull. Graphviz - Open
Source Graph Drawing Tools. In 9th International Symposium on Graph Drawing,
LNCS 2265. Springer, 2001.

[ERW08] J. Ebert, V. Riediger and A. Winter. Graph Technology in Reverse Engineering. The
TGraph Approach. In 10th Workshop Software Reengineering., LNI 126, 2008.

[FWE+12] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger and W. Teppe.
Model-Driven Software Migration - Process Model, Tool Support and Application. In
A. Ionita, M. Litoiu and G. Lewis, eds., Migrating Legacy Applications: Challenges
in Service Oriented Architecture and Cloud Computing Environments, Hershey, PA,
2012. IGI Global.

[FW94] M. Fröhlich and M. Werner. Demonstration of the Interactive Graph-Visualization
System da Vinci. In R. Tamassia und I. Tollis, eds., Graph Drawing, LNCS 894.
Springer, 1994.

[GJJW12] M. Gottschalk, M. Josefiok, J. Jelschen and A. Winter. Removing Energy Code Smells
with Reengineering Services. In U. Goltz et al., eds., 42. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), LNI 208. Köllen, Bonn 2012.

[HE11] T. Horn and J. Ebert. The GReTL Transformation Language. In J. Cabot and E. Visser,
eds., ICMT LNCS 6707. Springer, 2011.

[JOMW13] J. Jelschen, M.-C. Ostendorp, J. Meier and A. Winter. A Description Model for Soft-
ware Evolution Services. 1er Congreso Nacional de Ingenierı́a Informática / Sistemas
de Información, RIISIC, Cordoba, Argentina, 2013.

[JK06] F. Jouault and I. Kurtev. Transforming models with ATL. MoDELS’05, Berlin, Hei-
delberg, 2006. Springer.

[Ken02] S. Kent. Model Driven Engineering. In Third International Conference on Integrated
Formal Methods, IFM, London, 2002. Springer.

[Lim19] Object Refinery Limited. JFreeChart, http://www.jfree.org/index.html
(2013-09-19).

[OMG06] Object Management Group OMG. UML - Unified Modeling Language, www.uml.
org (2013-09-06).

[Sol03] R. Soley. Richard Mark Soley. Model Driven Architecture: The Evolution of Object-
Oriented Systems? In D. Konstantas et. al, eds., OOIS 2817 of LNCS. Springer, 2003.

[WL07] R. Wettel and M. Lanza. Visualizing Software Systems as Cities In Visualizing Soft-
ware for Understanding and Analysis., IEEE, 2007.

[WW05] J. Wolff and A. Winter. Blickwinkelgesteuerte Transformation von Bauhaus-Graphen
nach UML. Softwaretechnik-Trends, 25(2), 2005.

120

