

Periodic Scheduling in On-Demand Broadcast System

Abstract: Recent advances in mobile computing have enabled the
deployment of broadcast based information systems such as, wireless internet,
traffic information systems, etc. These systems are mainly pull-based and their
performance very much depends on the broadcast schedule they use. In this
paper we focus on on-demand broadcast system. We propose a new on-
demand scheduling algorithm that takes scheduling decision at periodic
interval, unlike previous algorithms that take decision after broadcasting every
data item. This reduces the time client spends monitoring the broadcast
channel for data items. We study its behavior with a detailed simulation study
and show that our algorithm performs better than the pervious algorithms for
on-demand systems.

1 Introduction

Data broadcasting through wireless channels is becoming a common way to reach
information seekers to satisfy their demands. Unlike conventional unicast approach, it
offers high scalability and is capable of satisfying multiple requests for the same data
item at once which obviously leads to efficient bandwidth utilization. One of the main
components of broadcasting systems is broadcast scheduling algorithms, which
significantly affect data latency and data access time and is the topic of this paper. In
order to develop the motivation, we first categorize existing broadcast approaches and
identify their limitations.

Broadcast systems can be categorized into (a) push-based, (b) pull-based, and (c) hybrid.
In push-based system server periodically broadcasts a schedule, which is computed
offline using user access history. This approach is also referred to as static broadcast
which does not take into account the current data access pattern. Its performance is
significantly affected when user access pattern deviates from the one, which was used to
construct the broadcast schedule. In pull-based systems, which are commonly referred to
as on-demand broadcast system, clients explicitly request for data items from the server.
The server compiles the request in service queue and based on number of pending
requests for the data items, broadcasts the data. Unlike push-based system, the pull-
based systems perform better mainly because they make decision based on current user
access pattern. Hybrid systems apply a mixture of push and pull approaches where rarely
accessed data items are classified as pull and commonly accessed data items are
periodically pushed.

Indrakshi Ray
Computer Science

Colorado State University
Fort Collins CO 80523-1873

iray@cs.colostate.edu

Nitin Prabhu, Vijay Kumar
SCE, Computer Networking

University of Missouri-Kansas City
Kansas City, MO 64110

npp21c (kumarv)@umkc.edu

107

Server
Uplink

Broadcast

Laptop Laptop Laptop

Fig. 1 On-demand Broadcast System

In this paper we focus on on-demand broadcast system because (a) it makes efficient use
of available bandwidth, (b) it allows timely access to data, and (c) majority of users
frequently seek specific information. We propose a new on-demand scheduling
algorithm that takes scheduling decision at periodic interval, unlike previous algorithms
that take decision after broadcasting every data item. The important implication of this is
it gives periodic nature to the on-demand data broadcast and indexing can be used for
accessing broadcast data. This reduces the time client spends monitoring the broadcast
channel for data items. In the previous works on on-demand algorithm it was not
possible to use indexing and clients had to continuously monitor the channel till its
desired data item was broadcasted. To establish its usefulness, we study its behavior with
a detailed simulation study and show that compared to our algorithms performs better
than are pervious algorithms.

The remainder of this paper is structured as follows: Section 2 discusses the related
works and motivation for our work; section 3 discusses new issues in transactional
requests and motivates the need for new scheduling algorithm. In Section 4 we define
new performance metrics for transactional request and present our algorithm. Section 4
we discuss our simulation results.

2 On-demand System Architecture

In this section we explain the system model. Figure 1 shows the architecture of a typical
on-demand broadcast system [DirectPC]. There is a single server that supports a large
client population. When a client needs a data item that it cannot find locally, it sends a
request for the item to the server through uplink channel. These request are queued up at
the server on arrival. The server chooses an item based on the current status of the
request queue, and broadcasts it over the satellite link, and removes the all the request
for that data item from the request queue. The client monitors the broadcast to download
the requested data item. Similar to previous work on broadcast scheduling [AF98, FZ96]
we make following assumptions about the environment: We assume that there is a single
broadcast channel that is monitored by all the clients. We do not consider transmission
errors, so when a data item is broadcasted it is received by all the clients waiting for it.
All the data items are assumed to be locally available on the server. For simplicity we

108

assume that all data items have equal size and hence have equal service time. Each data
item is broadcasted entirely at once. The time it takes to broadcast a data item is referred
to as broadcast tick (time to compose a broadcast plus the communication time) [AF98].

3 A Review of earlier Scheduling Algorithms and Motivation

A number of scheduling algorithms have been reported in the literature, however,
majority of them are push-based. There are some algorithms [AF98, Xu97, WJ88, Dy86]
that are for pull-based broadcast system and we review them here.

In [FZ96, ST97, VH96] scheduling algorithms for push-based broadcast setting are
proposed. In these approaches the server delivers data using a periodic broadcast
program, which is based on the estimation of access probability of each data item. Its
usefulness is limited to static environment where access probabilities do not change
often. In [Ac95] broadcast scheduling algorithm for hybrid push-pull environment are
proposed where the server periodically broadcasts using a broadcast program. A part of
channel bandwidth is reserved for data items, which are to be pulled by the client. The
client issues a request to server only after it has waited for a predefined duration for data
to become available in periodic push based broadcast.

Pull based scheduling algorithms FCFS (First Come first Serve), MRF (Most Request
First), MRFL (Most Request First Lowest) and LWF (Longest Wait First) were studied
in [WJ88, Dy86]. In FCFS, pages are broadcasted in the order they are requested. In
MRF, page with the maximum pending request is broadcasted. MRFL is similar to MRF,
but breaks ties in the favor of page with lowest request access probability. In LWF
waiting time that is the sum of waiting time of all pending requests for the page is
calculated for all the pages. The page with the longest waiting time is broadcasted. It is
shown in [WJ88, Dy86] that FCFS performs poorly compared to other algorithms in
broadcast environment when the access pattern is non-uniform. In [Xu97] authors
studied on-demand systems where requests were associated with deadlines. They
reported that on-demand broadcast with EDF (Earliest deadline First) policy performs
better. In [AF98] authors proposed a scheduling algorithm, referred to as R×W (R stands
for number of pending requests and W stands for waiting time of the arrival of the first
request) that combines FCFS and MRF heuristics. The algorithm computes the product
of R and W and selects the data item with the maximum R×W value for the next
broadcasting. In these previous on-demand scheduling algorithms the scheduling
decisions were taken at every broadcast tick. It has two implications:

• First, decision overhead that is cost of making a scheduling decision became a very
important factor. In order to make full use of broadcast bandwidth the time required
to make broadcast decision must be less than the length of a broadcast tick. A
scheduler that makes decision slowly will stall the broadcast, resulting in unused
bandwidth, thereby wasting a critical resource. This could happen in a large-scale
dynamic system, with large database size and high request rate. In such a system
scheduler of the previous algorithms would have to scan a large number of request
queue entries before making a decision with in a broadcast tick. Also broadcast tick

109

could be small, in case of a smaller size of broadcast data item or if the channel is of
high bandwidth. We show this using a mathematical formulation below.

Let N be the size of the database. Let Si be the size of the data item Di. Let B be the
broadcast bandwidth. Let T be the time taken for scheduling decision for the
deciding the data item to be broadcasted. T is commonly refereed to as scheduling
overhead.

The time take to broadcast the data item is given by Tick= Si /B.

For efficient use of broadcast bandwidth T<Tick. In most scheduling algorithm
[AF98, WJ88, Dy86, VH96] T is of the order of O(N). Broadcast Bandwidth will be
wasted when T>Tick. This can happen in following scenarios:

• Si is small. (Size of the data item to be broadcasted is small). This would
make Tick smaller. Also not that size of the data item has no effect on the
scheduling decision time.

• B is large. (Broadcast bandwidth is large)(Hughes DirectPC provides
400Kbps of downlink bandwidth, Wireless LANs provide up to 10Mbps
bandwidth). This would also make Tick smaller.

• N is large. (Size of the database is large). This would make T scheduling
overhead larger.

• Second, since the scheduling decision is made at every broadcast tick, consequently,
scheduler cannot predict the data items to be broadcasted in immediate future
broadcast ticks and there is no notion of periodicity and broadcast cycle. Hence
clients have to continuously monitor the broadcast to download their requested data
items. Mobile clients because of power constraints may not afford to continually
monitor the broadcast. With the use of index the mobile client can check if its
required data is present in the current broadcast cycle and if it is not then the mobile
client can go to sleep and tune in the next broadcast cycle for index.

We propose an on-demand scheduling mechanism, which takes scheduling decisions at
periodic interval. This gives a periodic nature to the broadcast and also indexing can be
used and we avoid the problem of decision over head per broadcast tick. Also if client is
locally caching the data item for faster access, the server can do periodic updates and
inform about the updates to the client at the end of the broadcast cycle. The client can
check at the end of the broadcast cycle if its locally stored data item has been updated at
the server thus avoiding continuous monitoring of broadcast.

To the best of our knowledge this is the first time in literature that periodic scheduling
has been explored for on-demand system. We show using simulation that taking decision
at periodic interval does not degrade the access time of the data item and also show that

110

our algorithm performs better than the previously proposed FCFS, MRF and R×W
algorithms.

4 Our Algorithm

We now describe our broadcast scheduling algorithm, which has low overhead, low
complexity, scalable and provides excellent performance across a range of scenarios. In
previous works [AF98, AM98, Ka01] LWF has been discarded as high overhead,
impractical algorithm for large system. This is because it calculates total accumulated
wait time for every data item with pending requests in order to decide which data item to
broadcast. For large scale dynamic on-demand system there will be large number of
pending requests for many data items and also there may be at least one pending request
for every data item in the database. As a result a for a system of high bandwidth with
large database, the LWF scheduler may not take scheduling decisions within a broadcast
tick resulting in unused bandwidth. LWF has been shown to be a bottleneck in [AF98]
with broadcast bandwidth of 155 Mbps with database size of 5543 8K pages. We
propose a new measure that we define as Approximate Wait Time. It is based on LWF,
however has low computation overhead and has performance similar to LWF and
performs better than all the previously proposed algorithms (FCFS, MRF and R×W) for
all the cases.

4.1 Approximate Wait Time (AWT)

D i R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9

In terva l In te rva l

R 10

Fig. 2 Approximate Wait Time

Approximate Wait Time is an estimate of Total waiting time of pending requests for a
data item. For calculating approximate wait time we use parameter depth (d). Depth is
defined as the number of request entries to be scanned for the data item for calculating
AWT. Depth is directly proportional to the number of request for the data item di, Rdi(t)
at time instant t. Depth is calculated using following equation

d = α × Rdi (t) ; where (0<α<1)

We use the parameter α as the measure of overhead and accuracy for calculating AWT.
Higher the value of α the more closer will be AWT to the actual total wait time but the
scheduling overhead will increase considerably as number of request entries to be

(1)

Rdi (t)=10, α=0.2, Interval=5

111

scanned increases. When α=1, the approximate wait time will be the actual total wait
time of all the outstanding request of the data items. Interval (T) is defined as Rdi (t)/d.
Interval, T, denotes that every Tth waiting request for the data item is scanned. For the
example shown in figure 2 Rdi (t)=10, α=0.2, depth (d) is calculated using equation (2) as
(0.2×10) 2. Depth denotes that two entries will be scanned for calculating AWT. Now
Interval is 5(10/2). Hence R1 and R5 and R10, the last entry, are scanned. AWT is
evaluated using the following equation.

4.2 Periodic Approximate wait time algorithm

We have developed a new scheduling algorithm called PAW (Periodic Approximate
Wait) which gives better performance than FCFS, MRF and R×W algorithm and has
very low overhead compared to LWF and all the other algorithm.

PAW maintains a request queue with a single entry per data item that has outstanding
request. Each entry in the queue contains data item identifier (di), total number of
outstanding request (Rdi), timestamps of all the requests for that data item. The
timestamp are maintained in their order of arrival. AWT value for an entry is calculated
using equation 2. When a request arrives at the server, the server performs a look up to
find the entry in the Request queue for the requested data item. If the entry for that data
item is found in the request queue then Rdi is incremented and time stamp of its arrival is
saved. If that request were the first request for that data item there would be no entry in
the request queue. Hence a new entry is created for that data item in the Request queue,
Rdi is initialized to 1 and the timestamp of arrival of the request is stored in that entry.
Note that the request queue size is bounded by N, number of data items in the database.

In our algorithm we take scheduling decisions at periodic intervals, which we refer to as
broadcast cycle. We use the notion of broadcast cycle for introducing periodicity in
broadcast. Broadcast cycle concept has been used in scheduling algorithms of push-
based system [FZ96, Ac95, Li02, ST97] but has not been used in on-demand system. In
push-based system the content and organization of a broadcast cycle (referred to as
schedule) is same in every cycle and the same schedule is repeatedly broadcasted.
However, unlike push-based system, in our scheme content and organization of each
broadcast cycle may vary depending on the current workload at the server. We use
broadcast cycle notion for dual purpose: Firstly, for introducing periodicity in broadcast
so that indexing can be used. Secondly, it is used as interval after which updates at the
server can be communicated to the client. So client can tune in the broadcast channel at

 d-1

AWT (t)= Rdi (t) × ((Σ t-Ai×T + (t-ARdi(t))) / d)
 k=0

(2)

112

Fig. 3 AWT value of the last data item of the period

regular intervals and check if any of their cached items are invalidated due to the updates
at the server. Broadcast cycle is an interval of length K broadcast ticks.

At periodic intervals of K broadcast ticks, where K is the period of broadcast, the server
selects data items to be broadcasted in the next K broadcast ticks. The server calculates
AWT values for all the request queue entries. The request queue entries are sorted in
descending order based on their AWT values. The server selects first K entries from the
sorted request queue to be broadcasted in the next K broadcast tick. The K data items are
broadcasted in the order they were sorted. The entry for the data item is removed from
the request queue once the data item is broadcasted. The overhead for our algorithm is
O(NlogN). Note that the previous algorithms have O(N) overhead at every broadcast
tick. So in the case of large database, N would be large, when the system has high
bandwidth or size of the data item is small the server would take more time to take the
broadcast decision than the duration of broadcast tick. In our case we take scheduling
decision at every K broadcast tick hence there is no risk of wasted broadcast bandwidth
at every tick as is the case in all the previous on-demand broadcast algorithms.

While performing experiments we observed that the average AWT value of the Kth data
item in the sorted request queue typically converges to some value. Figure 2 shows the
AWT values of the last data item in the period for all the cycles for different request rate.

113

T ype
M ajor
Ind ex

P tr
D ata L ist p oin ters

Ind ex S truc tu re

M ajor
In d ex

M inor
In d ex

1

D ata
Item s

M in or
In dex

2

D ata
Item s

M inor
In d ex

m

D ata
Item s

M ajor
In d ex

B road cast C yc le

Fig. 4 Indexing Structure

We observe that after the initial warm up period the AWT values of the last data item in
the period stabilizes to a constant value. Figure 2 shows the AWT value of the 2500th
and 500th item in the sorted request queue for period of 2500 and 500 respectively. In
[AF98] they had observed that highest RxW value converges to a some value after steady
state. However in our experiments we observed that every element of the sorted request
queue converges to some constant value when AWT is used as a heuristic. This insight
can be used to avoid searching the entire list of pages with outstanding requests. We
maintain the running average of the AWT value of the Kth data item (that is the AWT
value last data item in the period). We refer to this running average as Lbound (read as
Lower bound). We use value θ× Lbound for comparison with the AWT value of the
queue entry. We refer to θ as the pruning factor and (0< θ <1). After every broadcast
period, when calculating AWT value for an request queue entry if the AWT value is
greater the θ × Lbound then entry is copied in a separate Sort list. Higher the value of θ
more closer will be the size of the sort list to K (size of the broadcast period). A Lower
value of θ would increase size of the sort list greater K and when θ =0 the size of the
sort list will be equal to that of the request queue. The sort list is sorted with respect to
AWT value in descending order. And the first K data items are selected for broadcast in
the next broadcast cycle. This reduces the overhead the overhead of our algorithm to O
(KlogK). The Lbound is initialized to 1 and calculated for cycle n+1 using the following
equation

 Lbound(n+1)=(Lbound(n)+Awt(P))/2

Where Lbound(n) is the Lbound value of the nth cycle and Awt(P) is the Awt value of
the last element to be broadcasted in a period whose value is P broadcast ticks.

4.3 Indexing

Index is a directory of the list of data items, which are to be broadcasted in the broadcast

cycle. We adapt (1, m) indexing [Im94] mechanism for our algorithm. In this method
entire index is broadcasted at the beginning of every broadcast cycle and then after every
(K/m) broadcast slots, where K is the length of the current broadcast cycle. We refer to

the index broadcasted at the beginning of every broadcast cycle as major index and index
broadcasted inside broadcast cycle after every (K/m) broadcast slots as minor index. The
indexing structure is shown in figure 4. All indexes identify themselves, whether it is a

114

Table 2. Simulation Parameters and settings.

Symbol Description Default
λ Mean request arrival rate (Exponential) 10 requests/tick [5-30]
DBSize Database Size 10000
Period No. of data items in a broadcast cycle 500 [100-2000]
offset Shift in hot pages 0[0-2000]
α Accuracy factor 0.1
θ Pruning factor 0.9

major index or a minor index and contain pointer to the location of the next major index.
The minor index contains the list of data items that are not yet broadcasted in the current
broadcast cycle. In push based system there is no concept of minor index. All indexes in
the push-based system are

of the same size and contain list of next K element to be broadcasted. In our algorithm
the ith minor index within the cycle, will contain the list of (K-i×(K/m)) data items yet to
be broadcasted in the cycle. The major index and all minor indexes that are broadcasted
are stored at the server until the end of the current broadcast cycle.

4.4 Client Side

Client sends request for data item to the server if it is not available locally. After sending
the request client tunes to the broadcast channel for downloading the next index to be
broadcasted. If the client gets the data item before the next index then it downloads the
data item and does not wait for the index. The client checks if required data is present in
the current index and if it is then it tunes in the current cycle to download its required
data item. If the data is not present in the index then the client sleeps for the current
broadcast cycle and tunes in for the next major index that would be broadcasted for the
next cycle.

5 Experimental Results

5.1 Performance metrics

We have used following performance metrics for our proposed algorithm:

Response Time of a request: Response time is a most common measure of any
scheduling algorithm. It is the difference in time when the request is sent to the server
and the time when the data item is broadcasted.

Tuning Time: It is the total time spent by the client listening to the broadcast channel.
Listening to the broadcast channel requires the client to be in active mode. Hence, the
tuning time for accessing data determines the amount of time spent by the mobile unit in
active mode. Tuning time is the measure of the power consumed by the client to retrieve

115

the required data. In case of the previous on-demand algorithms, there is no provision for
creating index and their tuning time is equal to the total wait time of the transaction. Our
scheduling algorithm has provision for broadcasting index and reduces client-tuning
time.

Worst case waiting time: It is defined as the maximum amount of time that any user
request waits before being satisfied. This performance metric if an algorithm is causing
starvation for any request. This is an important criterion for interactive applications.

Robustness: Robustness of an algorithm indicates that the algorithm performs well in
presence of dynamically changing environment. We test this by changing in the request
pattern of the user requests. We perform two experiments. First we change the request
arrival continuously and test the sensitivity of the algorithm to change. Second we
change the data access pattern, in this experiment we change the range of hot pages
during the experiments.

5.2 Simulation Environment

We used simulation model written in CSIM [Sc86] to compare its performance with
other algorithms. The model represents environment similar to that described in Section
3. The broadcast channel is modeled as a server with fixed broadcast rate. We do not
specify an absolute value for this rate but use broadcast tick to measure simulated times.
This approach emphasizes that the results are not limited to any particular bandwidth
and/or data item size but describe tradeoffs among algorithms. Scheduling overhead is
not included in the results here. In other words we assume that all the algorithms are able
to make scheduling decisions fast enough to keep the broadcast bandwidth fully utilized.
In the model, the client population is represented by a request stream. We use an open
system model since our work is aimed at supporting large dynamic client populations,
such client populations cannot be modeled with a closed simulation system. The cost of
using the back channel for sending the transaction request to the server is small and
hence not modeled.

The main parameters and settings for the workloads used in the experiment are shown in
Table 2. The client population model generates requests with exponential inter-arrival
times with mean λ. The access pattern is shaped with 80:20 [Gr94] distribution rule. That
is 80 percent of the request access 20 percent of the data items. The requests are
distributed over a database containing DBSize fixed-size pages.

116

5.3 Experiments

5.3.1 Average Waiting Time

(a) (b)

Fig. 5 Average waiting Time

In this experiment average waiting time is measured as the request arrival rate is varied
from 5 to 30 requests per tick. Figure 5b shows the average waiting time for each MRF,
R×W, PAW with period = 500, AWT. For each algorithm it observed that average
waiting time increases initially but levels of after the request arrival rate of 15. As
depicted in 5b with a period of 500 broadcasts tick our algorithm results in 36%
reduction in Average wait time compared to R×W and MRF algorithms. Also we
observe average wait time of our periodic algorithm is similar to the AWT algorithm
when the scheduling decision are taken at every broadcast tick.

Figure 5a shows the average waiting time of our PAW algorithm for periods [100, 500,
1000, 1500, 2000, 2500]. It was observed that average wait time increases with increase
in the broadcast period. We observed that at period = 2500, the average waiting time is
not more than 5% worse than that with period 100. Also up to period=1000 the
difference among the average waiting times is no more than 0.6% worse than the PAW
with lower period. Also waiting time with period=2000 and 2500 is not more than 1.8%
and 5% worse compared to AWT. Thus we reduce the scheduling overhead and risk of
wasting broadcast bandwidth without any considerable penalty of average waiting time.

5.3.2 Average Tuning Time

In this experiment average tuning time is measured as the request arrival rate is varied
from 5 to 30 requests per tick. Figure 6b shows the average tuning time for MRF, R×W,

117

PAW with period = 500, AWT. Compared to MRF and R×W our PAW algorithm with
period=500 achieves 96% reduction in client tuning time and compared to AWT
algorithm we achieve 93% reduction in client tuning time. Figure 6a shows that average
client tuning time per request increases with increase in the broadcast period. The tuning

 (a) (b)

Figure 6. Average Tuning Time

time increases from 100 ticks to 440 ticks as broadcast period is increased from 100 to
2500. As the size of the broadcast cycle (broadcast period) increases the interval among
the index increases. So the client has to tune for more number of ticks at to monitor
index. As a result there is increase in client tuning time.

5.3.3 Worst case waiting time

In this experiment worst case waiting time is measured as the request arrival rate is
varied from 5 to 30 requests per tick. Figure 7b shows the Worst case waiting time for
MRF, R×W, PAW with period = 500, AWT. The longest measured waiting time for any
request during the simulation run is plotted. At higher request rate =30, PAW with
period 500, has worst case waiting time 56% less than RW R×W and has 68% less than
MRF. At lower request rate =10, PAW with period 500 has worst-case time 70 % less
than that of R×W. Also our algorithm has worst-case time about 12% less than when
scheduling decision is taken at every broadcast tick.

Figure 7a shows the average waiting time of our PAW algorithm for periods [100, 500,
1000, 1500, 2000, 2500]. It was observed that worst-case wait time deceases with
increase in the broadcast period. There is a peak visible at in worst case waiting time
when request arrival rate = 15 after which the worst-case wait time decreases and levels
off. The difference among the worst-case time for the periods is not more than 15%.

118

5.3.4 Robustness

In this experiment we examine the impact of interest shift in varying frequency on the
average wait time. To model shift in interest in this experiment we shift the hot spot by

 (a) (b)

Fig. 7 Worst case waiting time

Fig. 8 Effect of shift in hot spot

1000 pages after every shift interval. The shift interval is varied from 500 to 3000.
Figure 8 shows the Average waiting time for different periods of our PAW algorithm
when the shift interval is varied.

119

6 Conclusion

In this paper we have studied the problem of scheduling multiple items and transactional
requests in an on-demand broadcast environment and proposed a scheduling algorithm
for managing such requests. Previous works in this context on single item request
assumed prior knowledge of static client access pattern, which may not always be the
case in reality. Hence our work is not only complimentary to the previous works in this
area but discovers new insight in information dissemination. We showed through
simulation that our algorithm performs better than the common single item scheduling
algorithms. At present we are working on the optimization problem for dynamically
determining the optimal size of broadcast cycle period.

References

[Ac95] Acharya Swarup, Rafael Alonso, Michael Franklin, and Stanley Zdonik. "Broadcast Disks:
Data Management for Asymmetric Communication Environments". In Proceedings of ACM
SIGMOD Conference, CA, 1995.

[AF98] Aksoy, D., and Franklin, M. Scheduling for Large-Scale On-Demand Data Broadcasting.
In Proceedings of IEEE Infocom, CA, 1998.

[AM98] Acharya Swarup and Muthukrishnan S. Scheduling on-demand data broadcasts: New
metrics and algorithms. In Proc. of Fourth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, 1998.

[DirectPC] Hughes Network Systems. DirecPC Home Page. http://www.direcpc.com, Jan, 2001

[Dy86] Dykeman, H. D., M. H. Ammar, and J. W. Wong, "Scheduling Algorithms for Videotex
Systems under Broadcast Delivery", Proc ICC'86, 1986, pp. 1847-1851.

[FZ96] Franklin M, Zdonik S, "Dissemination-Based Information Systems ", IEEE Data
Engineering Bulletin, 19(3), September, 1996.

[Gr94] Gray J, Sundaresan. P, Englert. S, Baclawski. K,Weinberger P. "Quickly Generating
Billion-Record Synthetic Databases" Proc. ACM SIGMOD Conf., Minneapolis, MN, May, 1994.

[Hr87] Herman G, Gopal G., Lee. K., and Weinrib. A. “The Datacycle architecture for very high
throughput database systems”. In Proceedings of ACM SIGMOD, CA, 1987.

[Im94] Imielinski, S. Viswanathan, and Badrinath B. R.. "Energy Efficient Indexing On Air". In
Proceedings of ACM SIGMOD Conference, 1994.

[Ka01] Murat Karakaya , "Evaluation of a Broadcast Scheduling Algorithm", Lecture Notes in
Computer Science, 2151, 2001.

[Li02] Liberatore Vincenzo, "Multicast Scheduling for List Requests", Proceedings of IEEE
Infocom, CA, 2002.

[Sc86] Schwetman, H. “CSIM: A C-Based, Process-Oriented Simulation Language”, Proceedings
of Winter Simulation Conference, 1986.

[SK97] Stathatos. K, Roussopoulos. N and Baras J. S., "Adaptive Data Broadcast in Hybrid
Networks ", Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997.

120

[ST97] Su. S, Tassiulas. L, "Broadcast scheduling for information distribution", INFOCOM, 1997.

[VH96] Vaidya N and Hameed. S. “Data broadcast in asymmetric wireless environments”. In First
International Workshop on Satellite-based Information Services (WOSBIS), 1996.

[WJ88] Wong. J “Broadcast Delivery”. In Proc. of the IEEE, 76(12), 1988.

[Xu97] Xuan, Sen, Gonzalez, Fernandez, Ramamritham. “Broadcast on-demand: Efficiently and
timely disseminating of data in mobile environment”. IEEE RTAS’97.

121

