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Abstract: Software development for Cyber-Physical Systems (CPS) is a sophisticated
activity as these systems are inherently complex. The engineering of CPS requires
composition and interaction of diverse distributed software modules. Describing both,
a system’s architecture and behavior in integrated models, yields many advantages to
cope with this complexity: the models are platform independent, can be decomposed
to be developed independently by experts of the respective fields, are highly reusable
and may be subjected to formal analysis.

In this paper, we introduce a code generation framework for the MontiArcAutoma-
ton modeling language. CPS are modeled as Component & Connector architectures
with embedded I/Oω automata. During development, these models can be analyzed
using formal methods, graphically edited, and deployed to various platforms. For this,
we present four code generators based on the MontiCore code generation framework,
that implement the transformation from MontiArcAutomaton models to Mona (formal
analysis), EMF Ecore (graphical editing), and Java and Python (deployment). Based
on these prototypes, we discuss their commonalities and differences as well as lan-
guage and application specific challenges focusing on code generator development.

1 Introduction

Cyber-Physical Systems (CPS) [Lee06] are distributed interactive systems which com-
bine computational and physical processes. Typical CPS are found in the manufacturing,
automotive, smart energy, avionics, and distributed robotics domains. Software develop-
ment for CPS is a sophisticated endeavor which yields many challenges. The systems are
logically and physically distributed, need to perform on diverse platforms, fulfill certain
run-time properties, and deal with communication issues.

Component-based software engineering has been applied to tackle these complexities by
breaking systems down to platform dependent components [BBC+07, NFBL10], thus re-
quiring domain experts to be expert software developers, too. The “accidental complexi-
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ties” [FR07] arising from this gap between problem domain and implementation domain
can be reduced using modeling techniques [SSL11, BR12].

We propose a model-driven approach to engineering of CPS where the systems are mod-
eled as Component & Connector (C&C) architectures using automata to describe the com-
ponents behavior. These models can be refined from specifications to implementations
(supported by formal analysis techniques) and translated into various platform specific im-
plementations. Our approach combines concepts from architecture description languages
(ADLs) for modeling the structure of software architectures [TMD09] and behavior de-
scription languages [Har87, GBWK09].

In this paper, we introduce a code generation framework for the modeling language Mon-
tiArcAutomaton [RRW12]. MontiArcAutomaton extends the ADL MontiArc [HRR12]
with behavior description by embedded I/Oω automata [Rum96, Mon12]. This language
allows distributed and target platform independent modeling of both the structural archi-
tecture of the system as well as its behavior. The languages MontiArc and MontiArcAu-
tomaton are developed using the MontiCore framework [KRV10]. We claim using the
MontiArcAutomaton modeling language for the development of CPS yields several ad-
vantages:

• The use of a C&C architecture description language makes communication and de-
pendencies explicit in the models.

• MontiArcAutomaton allows behavior underspecification in two forms: (1) incom-
pleteness of triggers to only regulate the reaction to inputs of interest and (2) non-
deterministically overlapping triggers to restrict possible behavior as desired. These
powerful specification mechanisms are supported by automatic verification and re-
finement checking as presented in [Kir11].

• The logical decomposition of MontiArcAutomaton components allows independent,
incremental and bottom-up modeling, and analysis by different domain experts.

In various robotics projects we have developed MontiArcAutomaton (code) generators for
EMF Ecore1 for graphical editing within Eclipse, Mona [EKM98] theories for verification
and refinement checking of models and requirements [RRW12] during the development
process, and Java and Python code generation to deploy the modeled systems to robots
running the educational LeJOS2 and the industrial ROS3 platforms. These generators im-
plement the template-based code generation approach of MontiCore [Sch12], which facil-
itates development of new target language code generators by allowing to reuse great parts
of existing code generators.

We illustrate the benefits of model-based development of CPS with MontiArcAutoma-
ton by describing a system of connected robots providing a collaborative mapping service
in Section 2. Afterwards, we introduce the MontiCore framework in Section 3 and we
describe the MontiArcAutomaton modeling language in Section 4. Subsequently, we in-
troduce and discuss the different code generators in Section 5. We review related work in
Section 6 and conclude this contribution in Section 7.

1The Eclipse Modeling Framework Project: http://www.eclipse.org/modeling/emf/
2Java for LEGO Mindstorms http://lejos.sourceforge.net/
3Robot Operating System http://www.ros.org/
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2 Example Software Architecture and Behavior Implementation

An engineer is developing a system of distributed mobile robots to map an a priori un-
known office floor. To lower production cost by avoiding expensive sensors, the robots
have to estimate their position based on their starting point and performed movement
commands. This naive odometric approach to simultaneous localization and mapping
(SLAM) [TL08] is prone to produce inaccurate maps, as the difference between estimated
position and real position increases over time. The engineer counters this problem by im-
plementing a simultaneous and cooperative discovery by multiple robots communicating
via Bluetooth.

The engineer developing the robots has defined a system architecture based on the sensors
and actuators available. Figure 1 illustrates the architecture of a single SLAM robot con-
sisting of a front mounted TouchSensor component to detect obstacles, a BumpCon-
trol component implementing the robot controller, a MapBuilder component con-
structing the map from commands passed to the motors and feedback from other SLAM
robots received via the Bluetooth component.
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Figure 1: The SLAM robot architecture SLAMRobotwith a TouchSensor, a Timer, two motors,
the controller BumpControl, the component MapBuilder, and the Bluetooth communication.

The robot will drive around straight forward until it discovers a new boundary of the map
to be explored — by bumping into it. It will then back off and continue the exploration
continuously monitoring its own position and communicating with the other robots. For
the rest of the example, we focus on the component BumpControl that handles the
bumping into map boundaries and the subsequent driving maneuvers.

After developing the system architecture, the engineer starts designing the implementation
by creating an initial version that defines basic behavior constraints for the BumpControl
component (e.g., do not drive forward when the bumper is pressed). She later refines it to
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the implementation shown in Figure 2. According to the implementation the BumpControl
component starts in state idle with both motors stopped. Once the bumper is pressed by
the user to activate the robot, it sends a FORWARD command to both motors. When the
SLAM robot runs into an object, it backs up, turns around and proceeds forward. The
backing and turning times are determined by an external timer that is set via a message on
port tc and responds with an alert via port ts.
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Figure 2: The MontiArcAutomaton component BumpControl.

Both the initial specification and the refined implementation are translated to Mona to
check refinement, i.e., to check that the implementation does not violate its specification.
An excerpt from the translation of the component BumpControl is shown in Listing 3.

Mona

1 pred bumperbot_BumpControl( var2 bump_true, var2 bump_false,
2 # ..., more port values here
3 var2 allTime )
4 # states of automaton
5 = ex2 idle, driving, backing, turning:
6 # ... constraints: one state at a time
7 # initial states and their outputs:
8 ( (0 in idle & 0 in rMotor_STOP & 0 in lMotor_STOP ) &
9 all1 t: t+1 in allTime => (

10 (t in idle & t in bump_true &
11 t+1 in driving & t+1 in rMotor_FORWARD &
12 t+1 in lMotor_FORWARD ) |
13 # ... more transitions here
14 ));

Listing 3: An excerpt from the Mona predicate generated from the automaton inside
BumpControl.

To analyze the model a MontiArcAutomaton code generator translates each component to
a predicate over streams of messages. The parameters of the predicate are the possible
values on input and output streams of the component over time (see Listing 3, l. 1 for
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the stream on input port bump) and a synchronized time variable allTime (l. 3). The
encoding of message streams into WS1S logic (Weak Second-order monadic logic of 1
Successor) is inspired by [Sch09]. It uses one second order variable for each possible
value on a stream, e.g., bump_true and bump_false (l. 1). The predicate holds iff the
output streams are valid responses to the input streams.

Values on streams and active states are represented by sets of natural numbers, e.g., sets
idle and driving (l. 5). A number t ∈ N is in a set iff the corresponding state (or
value) is chosen at time t. Thus the initial state idle is translated to 0 in idle (l. 8).
The transition system is defined analogously for the source state and input at time t and
the target state and output at time t+1 (ll. 10-12). For more information on our translation
to Mona see [Kir11].

After making sure that the implementation refines its specification the engineer is confident
about her work and generates Java code that she compiles and deploys to her robot. Parts
of the Java code generated from component BumpControl are shown in Listing 4. The
displayed excerpt of the Java class BumpControl shows how the automaton’s initial
state (l. 3) and the initial values of the motors (ll. 4, 5) are set based on the initial output as
shown in Figure 2. The excerpt of the compute() method shows how the first transition
from state idle to state going is translated to Java.

Java

1 public class BumpControl implements Component {
2 public void init() {
3 this.state = State.idle;
4 this.rMotor.setCurrentValue(MotorCmd.STOP);
5 this.lMotor.setCurrentValue(MotorCmd.STOP);
6 }
7 public void compute() {
8 if (this.state.equals(State.idle)
9 && (this.bump.getCurrentValue() != null

10 && this.bump.getCurrentValue() == true) ) {
11 this.rightMotor.setNextValue(MotorCmd.FORWARD);
12 this.leftMotor.setNextValue(MotorCmd.FORWARD);
13 this.state = State.driving;
14 }
15 // ... more transitions here
16 }

Listing 4: An excerpt from the Java code generated from the automaton of BumpControl.

3 MontiCore Language Framework

We have developed the ADL MontiArc [HRR12] and the corresponding framework us-
ing the language workbench MontiCore [KRV10]. MontiCore facilitates the development
of domain specific modeling languages by providing a grammar for language definition
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and tools for parser generation, symbol table management, code generation and a context
conditions framework. MontiCore languages like MontiArcAutomaton, are defined by
context-free grammars. To check properties not expressible in context-free grammars, e.g.,
whether a variable is defined twice, MontiCore provides a compositional Java-based con-
text condition framework [Vö11]. As these context conditions often require information
from other models (e.g., to determine whether an assignment violates a type constraint),
MontiCore also contains a compositional symbol table framework [Vö11], to facilitate
development of complex context conditions.
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Figure 5: MontiCore uses the grammar to generate a parser for MontiArcAutomaton models which
creates the AST (see [Sch12]). The DSLTool uses the parser to read models, which are validated by
the context condition framework using the symbol tables provided by the DSLTool. The DSLTool
further may use FreeMarker templates and template calculators to generate code from the models
based on the AST.

The component diagram in Figure 5 illustrates the components of the MontiCore DSL
framework: the compositional approach of MontiCore facilitated development of Mon-
tiArcAutomaton by generating a parser for the MontiArcAutomaton DSL and providing
frameworks for context conditions, symbol table generation and code generation. The
code generation framework of MontiCore [Sch12] utilizes the Java-based template engine
FreeMarker4 to construct new code generators. Using this framework, a new code genera-
tor usually only requires a few new calculators and templates. MontiCore further facilitates
language and generator development by means of language inheritance and composition
mechanisms (like the embedding of I/Oω automata into MontiArc). We discuss these, their
influence on the code generation, and the reuse of calculators and templates in Section 5.

MontiCore also provides a framework for the generation of text editor Eclipse plugins.
4Freemarker Template Engine: http://freemarker.org/
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This framework offers a DSL which allows to define editor models and a set of workflows
which editor developers have to implement for their languages. Using this and the Ecore
generation of MontiArcAutomaton, we have developed a both textual and graphical editor
for MontiArcAutomaton models as displayed in Figure 6.
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Figure 6: The combined textual and graphical editor for MontiArcAutomaton models featuring par-
allel textual and graphical editing of the same model.

For graphical editing, we have defined a generic automaton language using the EMF Ecore
meta model. MontiArcAutomaton models are generated into models of a generic automa-
ton language and displayed using the Eclipse Graphical Editing Framework5. We chose
not to define a distinct I/Oω automaton EMF language, as we want to embed other kinds
of automata into MontiArc components in the future and thus would have to define new
EMF Ecore languages for each kind.

5Eclipse Graphical Editing Framework: http://www.eclipse.org/gef/
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4 MontiArcAutomaton: a Software Architecture Structure and Be-
havior Modeling Language

We use the ADL MontiArc [HRR12] to model CPS. MontiArc describes architectures us-
ing components and connectors. Components encapsulate subsets of the systems function-
ality and regulate control via explicitly defined interfaces, which in MontiArc are sets of di-
rected typed ports. The type of a port determines the possible messages a component may
receive or send on that port, and can be defined using UML/P class diagrams [Rum11].
Connectors effect and regulate the interaction of components.

MontiArc realizes the semantics of FOCUS [BS01] to describe component behavior. Com-
ponents are treated as black-boxes that read input streams and produce output streams
(message streams). These streams are the observable history of component interactions.
A MontiArc component is either atomic and its behavior is defined explicitly or composed
and its behavior is defined solely by the structural composition of the behaviors of its sub-
components. Models of composed components define the relations between subcompo-
nents and connectors. MontiArc distinguishes between the definition of a component and
its instantiation, supports powerful typing, instantiation, and parametrization mechanisms
as described in [HRR12], but does itself not provide a language to model the behavior of its
components explicitly. We thus have extended MontiArc by embedding I/Oω [Rum96] as
component definitions. The semantics of I/Oω automata are stream processing functions.
Our MontiCore implementation of this language is called MontiArcAutomaton.

4.1 The MontiArcAutomaton Language

We added local variables, states and transitions to MontiArc components to model com-
ponent behavior. Variables can be used by automata to store and look up intermediate
values. A transition connects a source state with a target state and has an optional guard,
input block, and output block. Variables, states and transitions are only visible inside a
component and all communication between components is made explicit via ports and
connectors. I/Oω automata do not feature hierarchical states because decomposition takes
place on component level and thus reduces the complexity of component behavior descrip-
tion significantly. The input block of a transition defines patterns of messages and events
received on incoming ports or stored in the local variables of the component that together
with the guard activate the transition. A guard is a predicate over the messages on input
ports and values stored in local variables. Guards in MontiArcAutomaton can be specified
using OCL/P [Rum11, Sch12] a MontiCore implementation of OCL. The reaction of a
component to an input is specified by the output block, which is a set of pairs of output
ports and the (streams of) messages that are sent as a reaction to the input. It also may
contain assignments to the local variables of a component.

Listing 7 displays an excerpt from the concrete syntax of the automaton of component
BumpControl (see Figure 2). The state idle is an initial state and defines initial outputs
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MontiArcAutomaton

1 component BumpControl {
2 // Port declarations
3 automaton {
4 state
5 idle [initial {rMotor:STOP,
6 lMotor:STOP}],
7 driving, backing, turning;
8

9 idle -> driving {bump:true} / {rMotor:FORWARD,
10 lMotor:FORWARD};
11 // ... more transitions here
12 }}

Listing 7: An excerpt from the concrete syntax of the automaton of component BumpControl.

in ll. 5-6. The transition from state idle to state driving is shown in ll. 9-10. It only
reads from one port but defines the output on multiple ports. In general, transitions may
read from all incoming ports and send messages on all outgoing ports.

The semantics of MontiArcAutomaton is described as sets of stream processing functions
(SPF) [Rum96, RR11]. In the case of a total and deterministic automaton the set is a
singleton, otherwise each stream processing function (SPF) describes a different possible
implementation of the desired system. The SPF corresponding to a MontiArc compo-
nent maps one input stream bundle to one output stream bundle. The input stream bundle
contains streams for each input port of the component and the output stream bundle con-
tains streams for each output port of the component. For a formal definition of MontiAr-
cAutomaton semantics see [Rum96] and the language report on the MontiArcAutomaton
website [Mon12].

5 Code Generation from MontiArcAutomaton

The code generation framework of MontiCore uses FreeMarker templates and adds tem-
plate operators and template calculators to transform the ASTs of models of MontiCore
languages into implementations. Template operators provide the infrastructure for code
generation, access the AST, call template calculators and include sub templates, e.g., for
connectors or transitions. Templates consist of target language fragments and FreeMarker
control structures. Template calculators perform complex operations and provide symbol
table access that would complicate the templates or be impossible inside templates due to
FreeMarker restrictions. The template operator also persists the results of calculations.

Listing 8 illustrates these concepts on the template for a single transition in Python. The
template executes the method getFrom() on the current AST node (l. 1). Line 2 uses
the FreeMarker directive <#if>..</#if> to determine and evaluate the transition’s
guard calling the template calculator guardCalculator. The result of this evaluation
is stored in the field guardExpression of the guardCalculator and thus available
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in the template via the template operator. Afterwards, the template iterates over all input
ports/channels (l. 5) and includes a template called concatStream for each input (l. 8).

FreeMarker

1 if (self._state == ${op.getValue("enumName")}.${ast.getFrom()}
2 <#if op.callCalculator(guardCalculator)>
3 and (${op.getValue("guardExpression")})
4 </#if>
5 <#foreach chin in ast.getChannel_in()>
6 and (self._${chin.getInName()}.getCurrentValue() != None
7 and self._${chin.getInName()}.getCurrentValue() ==
8 ${op.includeTemplates(concatStream, chin.getInput())})
9 </#foreach>

10 ):
11 <#foreach chout in ast.getChannel_out()>
12 self._${chout.getOutName()}.setNextValue(
13 ${op.includeTemplates(concatStream, chout.getOutput())})
14 </#foreach>
15 self._state = ${op.getValue("stateEnumName")}.${ast.getTo()}

Listing 8: The template for the Python implementation of a single transition in FreeMarker.

Parts of the Python code generated from the automaton of component BumperControl
(from Figure 2) are shown in Listing 9. The initial state and output of the component are
set in ll. 4-6. The code of the transition from state idle to driving (shown in ll. 8-14)
is generated based on the template from Listing 8.

Python

1 class BumpControl(runtime.Component):
2

3 def init(self):
4 self._state = BumpControlState.idle
5 self._rMotor.setCurrentValue(MotorCmd.STOP)
6 self._lMotor.setCurrentValue(MotorCmd.STOP)
7

8 def compute(self):
9 if (self._state == BumpControlState.idle and

10 (self._bump.getCurrentValue() != None and
11 self._bump.getCurrentValue() == True) ):
12 self._rMotor.setNextValue(MotorCmd.FORWARD)
13 self._lMotor.setNextValue(MotorCmd.FORWARD)
14 self._state = BumpControlState.driving
15 # ... more transitions here

Listing 9: An excerpt from the Python class generated from the automaton inside component
BumpControl (cf. Lst. 3 and 4)

Using this framework, we have developed four code generators by implementing new
templates and reusing most of the MontiArcAutomaton dependent template calculators.
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The next section explains how MontiCore supports reuse in code generator development.

5.1 Multiple Target Language Code Generation

MontiCore facilitates toolchain reusability as grammar, symbol table, and context condi-
tions are part of the language front-end. They can easily be reused for every new code
generator and editor. Figure 10 illustrates this reuse. Common workflows and code shared
among the different back-ends (code generators) for MontiArcAutomaton, are packaged
in the project MontiArcAutomatonBECommons. This way, code generation reuses
calculators common to all back-ends (e.g., collection of states and transition) as well as
symbol tables entries and context conditions generated and implemented for the different
inherited and embedded modeling languages respectively.
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Figure 10: Dependencies between language front-ends (containing languages and context condi-
tions) and back-ends (containing generators).

We have developed (code) generators from MontiArcAutomaton models to EMF Ecore
(MontiArcAutomatonEmfBE), Java code (MontiArcAutomatonJavaBE), Mona
(MontiArcAutomatonMonaBE) and Python (MontiArcAutomatonPythonBE).
These generators reuse the parsers, symbol table generation, and context conditions of
MontiArc, OCL/P, and MontiArcAutomaton. Overall, for these four code generators,
we developed between one (EMF) and 3 (Mona) target language specific templates as
well as between two (EMF) and five (Python) target language specific template calcu-
lators: as Python, for example, lacks explicit types, a new calculator for the parameter
lists of method signatures had to be developed. The average template lengths – includ-
ing comments – range from eleven lines (Mona) to 48 lines (EMF). Table 11 quantifies
this reuse. As all generators use similar structures (e.g., iteration over the automaton’s
transitions), we could identify and reuse seven common template calculators (provided by
MontiArcAutomatonBECommons).
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Generator
Number of
(additional)
Calculators

Number of
Templates

Average
Template
Length

MontiArcAutomatonBECommons 7 - -
MontiArcAutomatonEMFBE 1 2 48
MontiArcAutomatonTSBE 2 12 33
MontiArcAutomatonMonaBE 3 11 11
MontiArcAutomatonPythonBE 2 13 29

Figure 11: Key figures on calculator reuse in code generator development. The generator project
MontiArcAutomatonBECommons contains generic MontiArcAutomaton calculators. The other
projects add additional target platform specific calculators.

Also, the target languages pose some restrictions on valid models of the input language.
For example, the code generation to Java supports generic port types not supported by the
Mona code generation. As another example, the analysis using Mona heavily depends on
underspecification mechanisms, e.g., undefined inputs and outputs and non-deterministic
transitions. The Java and Python code generators do not translate these models properly.
Thus, we have developed sets of context conditions that define language profiles of Mon-
tiArcAutomaton for different generators.

Besides toolchain reusability, MontiCore also facilitates language reusability as these may
inherit from others (MontiArcAutomaton inherits from MontiArc) and embed other lan-
guages (MontiArcAutomaton embeds OCL/P). The new language can reuse context condi-
tions, template calculators, and symbol tables from the inheriting or embedding language.

We want MontiArcAutomaton models to be platform independent: this no longer works,
when dealing with hardware or API access. We therefore postulate the existence of (and
have developed) a runtime library per target platform. This library contains component
models that deal with target system interaction (e.g., hardware access, usage of other
frameworks, etc.). For the robotics project, we implemented such a library consisting of
components wrapping access to sensors and motors, such that the system engineers were
able to model the systems without taking the underlying API into account.

5.2 Challenges: Equal Operational Semantics and Libraries

Equal Operational Semantics We have developed multiple code generators for the same
language. During system development a single model is used with the EMF Ecore code
generator for editing, the Mona code generator for validation and verification and the Java
LeJOS as well as the Python ROS code generators for execution on different platforms.
For the latter three translations it is of great importance that all models behave according to
a single operational semantics (to the extend necessary to preserve properties established
in prior verification and validation steps).

Enforcing a common operational semantics mutually affected the code generators. On
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one hand, the common operational semantics requires synchronization of communication
and computation on distributed CPUs in our Java and Python implementations, since our
implementation in Mona only supports synchronized components (the current translation
can not model unbounded buffers). On the other hand, it also requires the modeling of null
values on message streams in the Mona implementation. Furthermore, we had to choose a
compatible encoding of messages and of communication protocols (partially implemented
using hardware wrappers) between robots running LeJOS or ROS.

In the code generators presented here we have addressed the challenge of ensuring equal
operational semantics by careful inspection of the code generators (facilitated by the com-
mon structure) and validation based on test cases.

Libraries Model and code libraries are important in every language to provide reuse
based on common interfaces. The MontiCore symbol table framework [Vö11] implements
a conform look-up and handling of components independently of their source (library or
model) and implementation (generated or manual). All tools operating on the model level,
e.g., the content assistants of our editors and context condition checks, thus fully support
library components.

For our code generators pure model libraries are no problem since the complete implemen-
tation can be generated for any target language. As discussed in the previous section, we
also employ library components that need target platform specific implementations we can
not describe with the MontiArcAutomaton language. We never the less model these library
components as MontiArcAutomaton models to provide consistent interfaces on the model
level. In addition, we have implemented mechanisms to combine the generated code with
manual implementations without modifying the generated code (e.g., the factory pattern
and delegation). Since platform specific implementations, e.g., hardware access, are not
contained in the models, this code has to be manually created for every target platform.
The realization of components corresponding to hardware wrappers is still a challenging
manual task in our Mona implementation.

6 Related Work

The AutoFOCUS [HST10, HF07] tool chain for model-based development of reactive,
distributed systems supports modeling of logical architectures (similar to MontiArc), tech-
nical/platform architectures and deployment mappings. MontiArcAutomaton and Aut-
oFOCUS share the same semantic domain FOCUS [BS01]. Behavior of AutoFOCUS
components can be modeled using input/output automata similar to MontiArcAutoma-
ton [HF07]. The AutoFOCUS tool chain contains code generators to multiple target plat-
forms [HST10], e.g., to C code and to the theorem prover Isabelle/HOL. To the best of our
knowledge the AutoFOCUS verification mechanisms do not support fully automated re-
finement checking as shown in [Kir11] and code generation to different robotics platforms
as presented in this paper.

Modeling Languages The UML [OMG12] is a general purpose modeling language fam-
ily consisting of 14 diagrams for structure, behavior and interaction modeling. Among
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these are state machine diagrams, to model the behavior of systems in terms of states and
transitions, and component diagrams, to model the interaction of components via the ports
of their interfaces. While these could be used to model architecture and behavior of CPS,
the semantics of the embedding of state machines into components is not explicitly defined
in UML.

SysML [FMS11] is a general-purpose modeling language based on UML. The language
features several diagram types known from UML and introduces additional ones. Among
these diagrams are UML state machine diagrams and internal block diagrams based on
UML composite structure diagrams. While the latter, provided to model the internal struc-
ture of classes using blocks and ports, might be used to model a system architecture, the
UML state machine diagrams still suffer the problems mentioned above.

Language Workbenches The MontiCore approach to language design is similar to the
Eclipse Xtext [EB10] approach, which also uses EBNF-like grammars to generate parser,
text editor eclipse plugin, and further tooling. The AST generated from Xtext parsers is
EMF-based and code generation uses the Eclipse Xtend programming language6 to define
the templates used for code generation. Xtend augments Java with several concepts while
compiling into interoperable Java source code. As Xtext requires Eclipse, the integration
into tool chains is hampered. MontiCore offers Eclipse integration and in addition API
and command line tools that are independent of the Eclipse framework.

The Meta Programming System (MPS)7 follows a different approach, as it follows a pro-
jectional approach, i.e., lets the user directly edit a model’s underlying AST. MPS uses a
proprietary meta model and does neither provide Eclipse integration, nor means of auto-
mated toolchain integration. The code generation with MPS is implemented as a model-
to-model transformation, which requires grammars of all target languages. Our approach
does not require grammars of the target languages.

7 Conclusion

We have presented the MontiArcAutomaton modeling language to model architecture and
behavior of CPS and illustrated how the development of CPS can be improved using mod-
eling and verification techniques. The MontiArcAutomaton framework contains four code
generators from platform independent MontiArcAutomaton models to Mona (formal anal-
ysis), EMF Ecore (graphical editing), and Java and Python (deployment).

Based on these code generators we have illustrated how the MontiCore DSL framework
supports development and reuse of code generators, including (partial) reuse of symbol
tables, context conditions, and template calculators.

Currently, we are working on a modeling language to specify the deployment of MontiAr-
cAutomaton components to hardware. Furthermore, we are conducting an evaluation of
the MontiArcAutomaton framework with master students.

6Xtend programming language: http://www.eclipse.org/xtend/
7Meta Programming System: http://www.jetbrains.com/mps/
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