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Abstract: Flux estimation by using isotopomer information of metabolites is currently
the only method that can give quantitative estimates of the activity of metabolic path-
ways. However, the measurement of isotopomer distributions of intermediate metabo-
lites is costly and tedious with current technologies. In this paper we study the ques-
tion of finding the smallest subset of metabolites to measure that ensure an adequate
level of the isotopomer information. We study the computational complexity of this
optimization problem in the case of the so-called positional enrichment data, give ex-
act and fast heuristic solutions and evaluate empirically the efficacy of the proposed
methods.

1 Introduction

The goal of metabolic flux analysis is to discover the steady state conversion velocities
of metabolites to each other through chemical reactions catalyzed by the enzymes of an
organism. Information about reaction rates, or fluxes, constitutes an important aspect of the
physiological state of the cell that can be harnessed in many different applications ranging
from pathway optimization in metabolic engineering [SAN98] and from characterization
of the physiology of an organism [Kel01] to more efficient drug design for human diseases
such as cancer [BSCL04].

The most accurate information about the fluxes can be obtained by conducting isotopomer
tracer experiments where the cell is fed with a mixture of natural and 13C-labeled nutrients.
The fate of the 13C atoms can be observed by measuring the resulting NMR [SGH+99] or
mass spectrum [CN99, WH99] of metabolic products and intermediates. From the mea-
surements one obtains information about the fluxes of the alternative pathways producing
a metabolite. This methodology has been successfully applied in numerous cases to ex-
plicitly solve key fluxes in specific metabolic networks and experimental conditions of
interest [MdGW+96, SAN98, Szy95].

A popular general method for estimating the flux distribution of an arbitrary metabolic
network is based on iteration where a candidate flux distributions are generated iteratively
until the fluxes fit well-enough with the measured data [SCNV97, WMI+99, WMPdG01].
Recently Rousu et al. [RRM+03] proposed a general direct flux estimation method that
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first propagates the measurement information in the metabolic network and then augments
the stoichiometric constraints to the fluxes with generalized isotopomer balances. Ranta-
nen et al. [RRP+05] improved the propagation of isotopomer information by introducing
a partition of metabolite fragments to sets having equal isotopomer distributions in all
steady states.

Developing measurement techniques for intermediate metabolites and conducting the mea-
surements using a developed technique are nontrivial, laborious and costly processes. This
experimental burden could be eased by concentrating the measurements to non-redundant
subsets of metabolites that alone give the most information about the fluxes. In this pa-
per we formalize this problem and derive algorithms for finding such optimal subsets of
metabolites to measure. The methods are facilitated by the recent flow analysis method of
Rantanen et al. [RRP+05], that enable us to discover redundancies within sets of mea-
surements of metabolites.

The structure of the paper is the following. Section 2 gives a short introduction to flux
estimation using isotopomer information. Section 3 introduces the concept of fragment
equivalence. In Section 4 we motivate the problem of selecting optimal set of metabolites
to measure, define a measurement optimization problem at hand, study its computational
complexity and give heuristic and exact algorithms for solving it. Section 5 presents the
results of experiments conducted with metabolic model of central carbon metabolism of
Saccharomyces cerevisiae. A summary of the related work is given in Section 6, together
with discussion on possible future directions.

2 Metabolic flux estimation using 13C isotopic tracers

A metabolic network is composed of a set M = {M1, . . . , Mm} of metabolites and a set
R = {ρ1, . . . , ρn} of reactions that perform their interconversions.

For the purposes of 13C isotopic tracing, only carbon atoms are of interest. Thus, we
represent a k-carbon metabolite as a set of carbon locations M = {c1, . . . , ck}. Fragments
of metabolites are simply subsets F = {f1, . . . , fh} ⊆ M of the metabolite. A fragment
F of M is denoted as M |F . In a slight abuse of notation, we also denote by F and M the
corresponding physical pools of molecules that have the required molecular structure.

Isotopomers—different isotopic versions of the molecule M = {c1, . . . , ck}—are repre-
sented by binary sequences b = (b1, . . . , bk) ∈ {0, 1}k where bi = 0 denotes a 12C and
bi = 1 denotes a 13C in location ci. Molecules that belong to the b–isotopomer of M are
denoted by M(b). Isotopomers of metabolite fragments M |F are defined in an analogous
manner: a molecule belongs to the F (b)–isotopomer of M , denoted M |F (b1, . . . , bh), if
it has 13C in all locations fj that have bj = 1, and 12C in other locations of F .

The isotopomer distribution D(M) of metabolite M gives the relative abundances 0 ≤
PM (b) ≤ 1 of each isotopomer M(b) in the pool of M such that�

b∈{0,1}|M|

PM (b) = 1.
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Isotopomer distribution D(M |F ) of fragment M |F is defined analogously.

Reactions are pairs ρj = (αj , λj) where αj = (α1j , . . . , αmj) ∈ Zm is a vector of sto-
ichiometric coefficients—denoting how many molecules of each kind are consumed and
produced in a single reaction event—and λj is a carbon mapping describing the transition
of carbon atoms in ρj . Bidirectional reactions are modeled as a pair of reactions. (For
simplicity of presentation, we assume in this paper that the reactions have simple stoi-
chiometries αij ∈ {−1, 0, 1} and that the carbon mappings λj are bijections. Both of
these restrictions, however, can be lifted without great conceptual difficulty.) Metabolites
Mi with αij < 0 are called reactants and with αij > 0 are called products of ρj . We make
the modeling assumption that whenever two carbons originate from the same reactant and
are transferred to the same product, the atoms remain together physically in that reaction.
(This assumption can be removed by modeling each reaction not satisfying the assump-
tion by a sequence of reactions satisfying the assumption.) A pathway from fragments
{F1, . . . , Fp} to F � is a sequence of reactions that define a bijective (composite) mapping
from all carbons of {F1, . . . , Fp} to all carbons of F �.

It will be useful to distinguish between the subpools of a metabolite produced by different
reactions and pathways. Therefore, we denote by Mij , j > 0, the subpool of Mi produced
(αij > 0) or consumed (αij < 0) by reaction ρj . By Mi0 we denote the subpool of Mi

that is related to the external inflow (βi < 0) or external outflow (βi > 0) of Mi. We call
the sources of external inflows external nutrients. We denote by Ii = {Mij |αij < 0} the
inflow and by Oi = {Mij |αij > 0} the outflow subpools of Mi. Subpools of fragments
are defined analogously.

In flux estimation, the quantities of interest are the velocities vj ≥ 0 of the reactions ρj ,
giving the number of reaction events of ρj per time unit. If the velocities vj of reactions
ρj ∈ R and the sizes of metabolite pools stay constant over time, we say that the metabolic
network is in a steady state. In such a state the metabolite balance

n�
j=1

αijvj = βi (1)

holds for each metabolite Mi, which tells that the rate of production and consumption of
the intermediate metabolite is the same. Here βi is the measured external inflow (βi < 0)
or external outflow (βi > 0) of metabolite Mi. If in addition the isotopomer distributions
of metabolites remain constant, the system is in a isotopomeric steady state. In such a state,
the rate of production and consumption of each metabolite Mi satisfies the isotopomer
balance

n�
j=1

αijvjPMij (b) = βiPMi0(b) (2)

for any b ∈ {0, 1}|Mi|.

The isotopomer distributions of the outflow subpools Mij are always identical to the distri-
bution of the whole metabolite pool Mi as we assume that reactions sample uniformly their
reactant pools. If, however, the pathways leading to a junction metabolite—a metabolite
with more than one producer—manipulate the carbons of the metabolite differently, then
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the isotopomer distributions of the inflows (αij < 0) often have differences. Also, (2)
together with (1) gives linearly independent equations that constrain the fluxes, ideally so
that a single (correct) flux distribution can be pinpointed. The stoichiometric linear system
(1) alone can be underdetermined, hence the additional equations (2) are used.

Applying (2) suffers from two difficulties [RRM+03]:

1. The (mass spectrometric and NMR) measurements do not in general come in the
form of fully determined isotopomer distributions, but as a set of linear isotopomer
constraints

di,h =
�

b

sb,i,hPMi(b), (3)

for the metabolites Mi, where the coefficients sb,i,h ∈ R depend on the measure-
ment technique and the metabolite. For example, the constraints for a metabolite
given by a mass spectrometric measurement depend on the fragmentation pattern of
a metabolite in the tandem mass spectrometer and how many of the produced frag-
ments have sufficiently high frequency to exceed the detection limit. NMR technol-
ogy gives more direct access to relative frequencies of some isotopomers. However,
in general some isotopomers cannot be uncovered and the sensitivity is lower than
that of a mass spectrometer.

Because of these practical hindrances, instead of (2), we will have to resort to weaker
form of balances

n�
j=1

αijvjdi,h = βidi0,h, (4)

(for all metabolites Mi) that at worst only contain the metabolite balance equations
(1) and in the best case, meet (2).

2. With current technologies, not all metabolites can be measured, so all isotopomer
frequencies are not available. This calls for methods that can be used to derive
isotopomer frequencies or their combinations from measurements made for other
metabolites in the network. In [RRM+03], a general methodology was proposed,
where measurements of the form of (3) can be propagated in between two junction
metabolites to obtain the constraints of the form of (4) for the junction metabo-
lite with as many linearly independent equations as possible. The method relies
on the fact that in individual reactions—and in general pathways with no junction
metabolites—from isotopomer constraints (3) of reactants one can compute iso-
topomer constraints to products, and vice versa, by using vector space operations
and the carbon maps.

3 Fragment equivalence

In [RRP+05], a flow analysis method was developed that extends the scope of propagation
to make it possible to propagate information through the junction metabolites. The idea
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is to find fragments M |F and Mi|F � that are equivalent (denoted by M |F ≡ Mi|F �)
in the sense that in all isotopomeric steady states their isotopomer distributions are the
same, no matter what kind of labellings are used for the external nutrients. Intuitively,
source fragment M |F and target fragment Mi|F � are equivalent if all pathways producing
F � from the fragments of external nutrients go through F , in all pathways from F to F �

carbons of F stay intact and all pathways have the same carbon maps between F and F �.
Now, because F is always a precursor of F �, carbons of F travel always intact to F � and
the fragments F are similarily oriented when reaching F � via every pathway (carbon maps
are the same), the isotopomer distribution of F � is equal to the one of F — regardless of
fluxes and the labellings of nutrients.

The basic example of such equivalence is that of reactant and product fragments of a
single reaction, which easily follows from the assumed intactness of fragments in a single
reaction:

Lemma 1. Let ρj = (αj , λj) be a reaction with a reactant M and a product Mi. If
fragment M |F satisfies λj(F ) ⊂ Mij , then M |F ≡ Mij |λj(F ).

If Mi is not a junction metabolite, that is, it has only one inflow, then Mij = Mi in
Lemma 1, and we have M |F ≡ Mi|λj(F ). By the transitivity of the equivalence relation
≡, the result can be applied to an unbranched pathway i.e., to a pathway that contains
no junction metabolites. Here, intactness of the fragment is ensured by requiring that the
image of the fragment belongs to a single metabolite in each prefix of the pathway:

Lemma 2. Let M, Mih
, 1 ≤ h ≤ r, be the metabolites and ρjh

, 1 ≤ h ≤ r, the re-
actions of a pathway. Let M be a reactant of ρj1 and let ρjh

be the sole producer of
Mih

, and denote by Λh = λjh
◦ · · · ◦ λj1 the composite carbon mapping of the pathway

(ρj1 , . . . , ρjh
). If for some fragment F of M , Λh(F ) ⊆ Mih

for each 1 ≤ h ≤ r, then
M |F ≡ Mir |Λr(F ).

For source fragment M |F and target fragment Mi|F � having several pathways in between
them, it is further required that F must be always be a precursor of F � and that the com-
posite carbon mappings of the pathways are the same.

Lemma 3. Let R1, . . . , Rp be the set of unbranched pathways connecting M and Mi

with associated composite carbon mappings Λ1, . . . , Λp and let Mik denote the subpool
of Mi produced by Rk. For fragment F = (f1, . . . , fh) of M , if M |F ≡ Mik|Λk(F ) for
1 ≤ k ≤ p, Λ1(ft) = · · · = Λp(ft) for each 1 ≤ t ≤ h and every pathway producing F �

from some fragments of external nutrients contains F then M |F ≡ Mi|F �.

The equivalence relation defined with above lemmas is symmetric and transitive. If we
further require that every fragment is equivalent to itself, the equivalence partitions a
metabolic network to equivalence classes of fragments with equivalent isotopomer dis-
tributions. The equivalence classes of fragments can be efficiently (in polynomial time)
found by constructing the fragment flow graph of a metabolic network and applying domi-
nator tree analysis [LT79] to it [RRP+05]. Briefly, in a dominator tree constructed from the
fragment flow graph fragment F � is a descendant of F if and only if all pathways from the
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Figure 1: Example of the equivalence classes of fragments in a metabolic network consisting of six
reactions a − f . The carbon maps are shown by dotted lines (one dotted line between a substrate
carbon c and a product carbon c� for each reaction producing c� from c). The equivalence classes
are {1, 3, 5, 7, 8}, {2, 4, 6}, {9} and {10}. Fragments 3 and 5 are equivalent to fragment 1 as there
exists only single reactions, a and b, producing 3 and 5 from 1 (Lemma 1). Fragments 7 and 8 are
equivalent to fragment 1 as in every pathway producing 7 and 8 fragment 1 is transferred to 7 and 8
intact and every pathway has the same carbon maps from 1 to 7 from 1 to 8 (Lemma 3).

fragments of external nutrients to F � contain F and carbons of F travel always intact and
similarily oriented to F �. An example of the equivalence classes is given in the Figure 1.
For flux estimation, these equivalences serve in several roles: First, fragment isotopomer
distributions of subpools of the junction can differ only if the fragment is not equivalent
with any fragment in its reactants. It is only those fragment isotopomers that can poten-
tially induce linearly independent constraints to the fluxes. This gives us possibilities to
remove redundant equations from the flux system to be solved.

Second, we can use interchangeably any isotopomer measurement of two equivalent frag-
ments, thus enabling us to form balance equations in junctions where adjacent metabolites
are poorly or not at all measured. As by Lemma 3 the equivalence classes may extend be-
yond junctions, the technique improves the propagation methods described in [RRM+03].

In this paper, these equivalences are utilized in yet another way. Namely, they turn out to
be powerful tools for selecting a small subset of metabolites to be measured so that the
fluxes of a metabolic network can still be discoved from the measurements.

4 Measurement optimization in the positional enrichment case

Using the linear system consisting of equations (1) and (4) for solving the fluxes ρj is not
straightforward. There are several problems. First of all, the system should be of full rank
to give point solution instead of just some linear constraints for the fluxes. Full rank means
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that there should be sufficiently many linearly independent equations. In extreme case it
is possible that full rank is not achievable at all (for example, if one-carbon metabolite has
large number of producers.)

The independence of equations depends on the actual values of the isotopomer abundances
which in turn depend in an intricate fashion on the isotopomer abundances of the external
nutrients and on the actual fluxes in the steady state under consideration. Hence the quality
of the equation system obtained depends on the measurements performed as well as on the
13C labeling patterns used for external nutrients.

On the other hand, the measurements are expensive and tedious. In (tandem) mass spec-
trometer it is necessary to separate metabolites in the cell extract and develop for each
metabolite or metabolite group a specific experimental protocol. In NMR it might be
necessary to develop specific experiments for different metabolite groups or to separate
metabolites prior to the NMR experiments to obtain sufficient signal resolution as struc-
turally similar compounds often overlap in NMR spectra. Therefore there is a need to
design optimized measurement strategy that minimizes the experimental effort. Here the
equivalence concept of Section 3 can be utilized: measuring more than one representative
of an equivalence class does not add new information; the distribution observed for one
member of the class can be used also in association with the others to write equations (4).

In the rest of the paper we will consider the measurement optimization problem in a spe-
cial case (positional enrichment) satisfying rather strong but experimentally justified con-
ditions. Even in this case the optimization problem turns out to be computationally hard
but still tractable in practice. Solutions to the problem given below can be used to guide
iterative experiment planning process towards small set of metabolites to measure in its
early stages. Our computational techniques can also be generalized for less constrained
situations. Hence the present exercise is of wider interest.

4.1 Optimization problems

In the so-called positional enrichment measurements of 13C, one observes the 13C iso-
topomer distribution of an individual carbon ch of a metabolite M which simply is the
relative abundance of 13C in ch. NMR is often [FS98, MdGW+96, SNP+99, SPB+99,
WSdGM97] able to deliver such data for (some) individual carbon locations of some
metabolites. Thus the availability of positional enrichment data for the carbons of some
metabolites in our network is a reasonable first approximation of what can be measured.

Formally, we assume that one 13C positional enrichment measurement gives for a metabo-
lite M = {c1, . . . , ck} the 13C labeling frequencies PM |ch

(1) and PM |ch
(0) for each

carbon ch of M . Here

PM |ch
(1) =

�
b∈{0,1}|M|:bh=1

PM (b),

i.e., the full isotopomer distribution of M marginalized to bh = 1.

With the positional enrichment data available for all metabolites M , we can infer by
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Lemma 1 the positional enrichment frequencies PMij |ch
(1) for all subpools Mij of all

junction metabolites Mi. Then the generalized isotopomer balances (4) get the form

n�
j=1

αijvjPMij |ch
(1) = βiPMi0|ch

(1). (5)

Note here, that the corresponding equation for bh = 0 is linearly dependent of equations
(1) and (5) as PM |ch

(0) = 1− PM |ch
(1).

Based on the positional enrichment data, we can thus write |Mi| new equations, in addition
to the mass balance (1), for each junction metabolite Mi. This is the strongest system of
equations we can hope for to get based on positional enrichment measurements. (Note,
however, that there is no guarantee that this system would allow solving all the fluxes: the
system may be underdetermined in some junctions and overdetermined in some others.)

Now it should be clear that because of the equivalence of carbons of different metabolites,
measuring all metabolites may sometimes be redundant. Already some subset would allow
us to write the full set of |Mi| equations (5) for each junction Mi. This leads to the
following optimization problem:

Problem 1 (Positional enrichment measurement (PEM) minimization problem). Given
a metabolic network G = (M,R), find a smallest set of metabolites to measure for posi-
tional enrichment data such that, noting the equivalences of the carbons, it is possible to
write a full set of |Mi| equations (5) for each junction metabolite Mi of the network G.

4.2 Solution by set covering techniques

By its combinatorial nature, the PEM minimization is a variant of the well-known set
cover problem. To see this, observe that an equation (5) can be written as soon as we
know PM |ch

(1) for all subpools Mij of Mi. This is the case when we have measured for
each Mij some carbon ct of some metabolite Mr such that Mr|ct ≡ Mij |ch. We now say
that measuring Mr covers a subpool carbon Mij |ch of a junction Mi if Mij |ch ≡ Mr|ct

for some carbon ct of Mr. Then we get the following technical formulation of PEM
minimization:

Lemma 4. A set K of metabolites is a solution of the PEM minimization if K is a smallest
set such that it covers all subpool carbons Mij |ch of all junction metabolites Mi.

Then the NP -hardness and the inapproximability of our problem does not come as a
surprise:

Theorem 1. PEM minimization problem is not polynomial time approximable within a
factor c log |M| for some constant c > 0, unless P = NP .

Proof sketch (details omitted). A polynomial-time approximation-preserving reduction from
the set cover problem shows the NP -hardness [GJ79] and the inapproximability [ACV+99].
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The greedy approximation algorithm of the set cover problem canimmediately be applied
to PEM minimization. The algorithm constructs a small set of metabolites to be mea-
sured by adding a new metabolite Mk to the set if Mk covers the largest amount of not
yet covered junction carbons Mij |ch. This is repeated until all junction carbons Mij |ch

have a covering metabolite selected. When selecting the next metabolite to measure the
number of new covered junction carbons can be weighted by the measurement cost of the
metabolite.

The minimization algorithm has a well known performance guarantee, by factor 1 + ln δ
where δ is the size of the set to be covered [ACV+99]. In our case δ ≤ Σm∈M |M |
because the number of equivalence classes to be covered can not be larger than the number
of different carbon locations of the metabolites in the network. Thus, we get the following
theorem:

Theorem 2. The greedy set cover algorithm finds for the PEM minimization problem a
solution which is within a factor of 1 + ln(ΣM∈M |M |) from the optimum.

4.3 Solution by integer linear programming

Most metabolic network models used in flux estimation contain only a few dozens of
metabolites and reactions. Thus, methods for obtaining the optimal metabolite sets might
be of interest, even if they have exponential worst-case time complexity. One versatile
approach is to model the problem as a mixed integer linear program (MILP), i.e., as a
minimization of some linear objective function in a polytope, possibly requiring that some
variables in the optimal solutions are integral (see [Mar01] for further details).

The objective function to minimize is the sum of costs of the metabolites that provide
the maximum positional enrichment information (see Problem 1). Let m1, . . . , m|M| be
indicator variables whether or not the metabolite Mi ∈M is measured. Let wi be the cost
of measuring the metabolite Mi. Thus, the objective function to be minimized is

min
m1,...,m|M|

|M|�
i=1

wimi

with the constraints mM ∈ {0, 1} for each metabolite M ∈ M. The other constraints are
as follows.

The requirement of Problem 1 that we have to write a balance equation for every carbon
c ∈ Mi can sometimes lead to sets of measured metabolites that are too laborious to
measure in practice. In that case we can try to find less expensive solutions by requiring
for each junction Mi only ki ≤ |Mi| balance equations. The cost of this relaxation is that
we might lose some independent balances constraining the fluxes in (5).

Let xi,c be the indicator variable that the balance equation can be written for a carbon
c ∈ Mi. Then the constraints can be stated as�

c∈Mi

xi,c − ki ≥ 0.
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The balance equation can be written for a carbon c ∈ Mi if for all corresponding carbons
cij in the inflow subpools Mij and for carbon c there is a measured metabolite M � with
equivalent carbon c�. Let Ri,c be the set of reactions with the carbon c as a product. Let
Ei,c,j be the set of indices p of metabolites that have a carbon equivalent with the inflow
subpool carbon cij produced by the reaction ρj and let Ei,c be the set of indices p of
metabolites that have a carbon equivalent with c. Now�

p∈Ei,c,j

mp − xi,c ≥ 0

and �
p∈Ei,c

mp − xi,c ≥ 0

must hold.

Combining these constraints we obtain the following mixed integer linear program (we
assume ki = 0 for each non-junction metabolite Mi):

min
m1,...,m|M|

|M|�
i=1

wimi

s.t.
�

c∈Mi

xi,c − ki ≥ 0 ∀Mi ∈M�
j∈Ei,c,j

mp − xi,c ≥ 0 ∀ρ ∈ Ri,c, c ∈ Mi ∈M�
j∈Ei,c

mp − xi,c ≥ 0 ∀c ∈ Mi ∈M

mi ∈ {0, 1} ∀Mi ∈M
xi,c ∈ {0, 1} ∀c ∈ Mi ∈M

The number of variables in the program is

|M|+
�

Mi∈M
|Mi|

and the number of inequalities is

|M|+
�

Mi∈M

�
c∈Mi

(|Ri,c|+ 1).

If the number of integer variables is too high, the integer linear program can be relaxed
to linear program, i.e., the requirement of the variables being binary can be relaxed to
the requirement that the variables have their values in the unit interval [0, 1]. In fact, the
constraints xi,c ∈ {0, 1} can be relaxed to xi,c ∈ [0, 1] without affecting the solution since
the cost of the solution is minimized when all variables xi,c are either 0 or 1; the values
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of xi,c can be replaced by �xi,c� without violating the constraints or increasing the cost of
the solution. If the constraints mi ∈ {0, 1} are relaxed, then the obtained solutions are not
necessarily integral, but the solution can be transformed to (possibly suboptimal) integral
solution by randomized rounding techniques. For example, the following procedure can
be applied:

1. Find the optimal solution for the linear program. If the values of all variables mi are
integral, output the solution and halt.

2. Choose one variable mi with non-integral value randomly with probability propor-
tional to its value and replace the occurrences of the variables mi in the linear pro-
gram by the constant 1 and go to the step 1.

4.4 Isotopomer data of full metabolites

It is possible to modify the above techniques of PEM minimization for other types of
measurement data. In the other end of the spectrum is the full isotopomer data, i.e., the
distributions PM (b) for full metabolites M . Similar set cover and MILP algorithms can
be used in this case as well.

Note that, in the PEM case, the equivalence classes are the largest possible (because they
correspond to the smallest possible, one-carbon, fragments) and hence their number is the
smallest possible which leads to a small number of measurements. For the full metabolite
isotopomer data the sets are smaller and hence a larger number of measurements may be
necessary. However, full metabolite measurements give more more data per measurement
and therefore allow writing more equations (4).

Finally we note that the relevant cases in which positional enrichment data is available
only for some carbons of some metabolites in the network or more than one measurement
per equivalence class is required can be handled with straight forward modifications to
the techniques given above. For example, by setting high costs to metabolites overlapping
in NMR spectrum one can test whether the separation of these metabolites is necessary
or is it possible to derive the same isotopomer information from some other metabolites
easier to measure. Techniques can also be used to find out how many equations (4) per
each junction can be written given a set of metabolites whose positional enrichments are
measurable.

5 Computational experiments

We tested the method for selecting the minimum set of metabolites to measure with the
model of central carbon metabolism of Saccharomyces cerevisiae containing glycolysis,
penthose phosphate pathway and citric acid cycle. Carbon mappings were provided by
the ARM project (http://www.metabolome.jp/). The network consisted of 35
metabolites and 37 reactions of which five were bidirectional. Cofactor metabolites were
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excluded from the analysis. The only carbon source of the network was glucose. There
were five external products in the model. Eleven of the metabolites were produced by
more than one reaction and thus formed junctions. Visualizations of the metabolic network
used in the experiments and the fragment equivalence classes discovered are available at
http://www.cs.helsinki.fi/group/sysfys/.

We assumed that either positional enrichment or full isotopomer information was available
for every metabolite in the network. We also assumed that the effort needed to measure the
isotopomer information is equal for every metabolite. We either required that a balance
equation should be written for each carbon of a junction metabolite or settled (number of
producing reactions - 1) of equations for each junction. To inspect the effect of improved
partition of fragments to the equivalence classes introduced in [RRP+05] to the metabolite
selection we also tested our methods using equivalence classes of [RRM+03] that will not
go through junctions. The minimum sets of metabolites to measure were discovered by
using greedy set cover heuristics and MILP programs with guaranteed optimal solution.
MILP programs were solved by using publicly available lp solve 5.1.1.3 package (http:
//groups.yahoo.com/group/lp_solve/).

The results of the tests are summarized in the Table 1. Solutions to the MILP programs
were computed instantaneously with a PC with 2,4 GHz Pentium 4 processor, except for
the fifth problem of the Table 1 that took 50 seconds to finish. From the results we see
that the number of metabolites whose isotopomer distributions are needed to construct
the balance equations is surprisingly low. According to our tests it is enough to measure
only one fourth of all metabolites in the model. (The results are somewhat optimistic as
the symmetries of the metabolites were not taken into account.) This can be taken as
encouraging news to experimentalist who wants to estimate the fluxes of the metabolic
network using method of [RRM+03]. In our experiments the differences between the
optimal solutions given by ILP solver and greedy heuristics were nominal. The sets of
metabolites suggested by different experiments contained mostly the same metabolites,
but there were also some variations.

6 Discussion

In this article we have introduced a new experimental planning problem in which one
wants to maximize the amount of isotopomer information useful for metabolic flux esti-
mation while minimizing the experimental effort needed to measure this information. The
problem has great practical value as the measurement of isotopomer distributions of inter-
mediate metabolites is time consuming, not to mention the time and money needed in the
development of the measurement techniques. Thus the computational methods that can
help experimentalist to concentrate on the minimal set of useful metabolites are well ap-
preciated. We have studied the computational complexity of the introduced problem and
given heuristic and exact algorithms for solving different variations of it. Our experiments
suggests that this approach can find compact sets of metabolites whose isotopomer infor-
mation will produce as many generalized balance equations tying the flux distribution as
isotopomer information about every metabolite in the model would do.
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measurement type # of balances algorithm equivalences # of measured metabolites
full max greedy flow 9
full max MILP flow 8
pos max greedy flow 9
pos max MILP flow 8
pos min MILP flow 8
pos max greedy no flow 11
pos max MILP no flow 10

Table 1: Sizes of the minimum sets of metabolites whose isotopomer information is required to
measure in different settings. First column (measurement type) indicates whether full isotopomer
distribution (full) or positional enrichment information (pos) was assumed to be available, second
column tells whether maximum amount (max) or at least (# of producing reactions - 1) isotopomer
balance equations were required for each junction. Third column indicates whether greedy algorithm
or MILP program was used to obtain the solution and fourth column whether a new flow analysis
technique introduced of [RRP+05] and sketched in Section 3 or a previous method [RRM+03] was
used in the construction equivalence classes. Finally, the last column gives the sizes of minimum
sets of metabolites out of 35 whose isotopomer information is required.

To the authors’ best knowledge the problem of selecting an optimal set of metabolites
to measure for flux estimation has not been systematically studied before. In other ar-
eas of bioinformatics set cover techniques have been used in experimental design to se-
lect primers for polymerase chain reaction (PCR) experiments [DI99, PRWZ96], pertur-
bation experiments to discriminate among the set of hypothetical gene interaction net-
works [ITK00] and microarray probes that allow one to recognize the targets in the sam-
ple [KRS+04].

The selection of the optimal set of metabolites to measure covers only one half of the
experimental design of isotopomer tracing experiments. The other half is the selection
of the labeling mixture of external nutrients. Together with the actual flux distribution the
labeling of nutrients induce the isotopomer distributions of every metabolite in the network
thus having strong effect to the linear independence of isotopomer balance equations. The
selection of optimal labeling in the context of iterative flux estimation methods [SCNV97]
is studied by Möllney et al. [MWKdG99] and by Araúzo-Bravo and Shimizu [ABS03].

An interesting future work is to look for methods that combine the contribution of this
article with techniques that propose optimal labellings of nutrients in the direct flux esti-
mation context of [RRM+03]. From experimental point of view it would also be useful to
develop an experimental design method that tries to falsify the given model of metabolic
network by proposing a cost effective set of measurements of metabolite fragments whose
isotopomer distributions should be equal if the model were correct.
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