Using Condor glide-ins and Parrot to move
from Dedicated Resources to the Grid

Stefano Belforte — INFN Trieste, Italy
Matthew Norman — University of San Diego, California, USA
Subir Sarkar — INFN-CNAF, Bologna, Italy
Igor Sfiligoi — INFN Frascati, Italy & Fermilab, Chicago, USA
Douglas Thain — University of Notre Dame, Indiana, USA

Frank Wuerthwein- University of San Diego, California, USA

Abstract: In order to meet future needs of data analysis and MC production, the
CDF experiment is reorganizing its computing model from dedicated Condor pools
towards the Grid computing paradigm. The direction chosen has been to augment
the existing model with the Condor glide-in mechanism which can dynamically
extend an existing Condor pool into Grid resources.

The main problems we found in deployment were restrictive firewalls, so we had
to add another piece of infrastructure, a Condor proxy mechanism called Generic
Connection Brokering (GCB), that allows us to bridge them. The second problem
we faced was related to software distribution. Given the number of CDF users and
the amount of existing applications, it was impractical to impose new ways of
software access on the end-users. The solution we have adopted instead is to use
Parrot, a user level application that allows a generic executable to access remote
files as if they were local.

Introduction

CDF is a high energy experiment at the Tevatron collider located at the Fermi National
Accelerator Laboratory in Chicago, USA. The experiment acquires data at a sustained
rate of 60 MB/s and needs an ever increasing amount of CPU power for analysis and
simulation. The data are composed of independent pieces, called events, that can be
analyzed and/or simulated in parallel; nevertheless, the total amount of CPU power
required is huge. The current requirement is of the order of SM SPECint2k which is
expected to climb to almost 15M SPECint2k by the end of 2007.

285

The current model of event reconstruction, simulation and analysis has been based on
dedicated Condor pools with a CDF-specific submission infrastructure, called CDF
Analysis Farms (CAFs)[LNSWO04]. In order to meet future needs, the CDF experiment is
reorganizing its computing model and is moving from dedicated resources towards the
Grid computing paradigm. This has been dictated mainly by the higher instantaneous
luminosity of the Tevatron collider, which requires large increases in computing
resources, and the realization that any further expansion of dedicated resources is
practically impossible.

The path chosen has been to augment the existing model with the Condor glide-in
mechanism which can dynamically extend an existing Condor pool into Grid resources.
Moreover, since moving from dedicated to Grid resources eliminates the possibility to
have CDF specific software on the worker nodes, Parrot has been used to access such
software over HTTP.

Condor Glide-Ins

Overview

A regular Condor pool is composed of a set of daemons managing different parts of the
system. The pool is defined by the collector daecmon, which gathers information about all
other daemons. The worker nodes are managed by starter daemons, while user jobs are
managed by a process called the schedd. Finally, the negotiator daemon assigns jobs to
starters, which execute them. A simple overview is given in Figure 1; for more
information have a look at [LNSWO04].

> QD <« €D~ Galop

Schedd Yot il N \
@ Negotiator Worker nodes

User
fori D ~ Ter Iob
prioritie!

Figure 1: A dedicated Condor pool

Condor glide-ins are just regular Condor starter daemons, properly configured and
submitted as jobs to Grid Computing Elements (CEs). Once such a job starts on a worker
node, it contacts the designated Condor collector and joins the Condor pool as a new
virtual machine (VM). From the Condor point of view, such a resource is
indistinguishable from a dedicated one, and it will be matched in the same way to a user
job with the best priority. Such a job will then be sent to that VM, effectively starting on
the Grid worker node. See Figure 2.

The original CAF we started from was Condor based, so the glide-in mechanism was the
easiest way to extend it. A simple glide-in factory was all that was needed, and from the
user point of view, nothing changed.

286

)

20000004
e e ,}.:.‘
T .
arter

2 D
R
1S/

1~ m’<
>"~~0’0“ & b’
S oelee]

Schedd e ¢
@ Negotiator i "‘ >S)

User ¥ Starter Jnal D

1
oin AL
Glide-insN\g i

Figure 2: A glide-in based Condor pool

Moreover, the Condor glide-in mechanism has several advantages over direct submission
of user jobs to the Grid CEs:

* Finer grained policy management: user priorities are managed inside the Condor
pool, preserving all the power and flexibility of the Condor fair share policies.
Moreover, the policies are managed at two different levels: by virtual organization
(VO) at the CE level, and among users at the Condor level.

* Black holes are not a problem: a defective node will kill glide-ins before they start,
so no user job is compromised. Additional sanity checks can be performed,
discarding worker nodes that do not meet the needs of the virtual organization before
a user job is started there.

« Late binding of resources: in case of multiple Grid sites, just glide-ins are sent to the
queues of the CE. User jobs, on the other hand, are sent to the Grid site only after a
glide-in started and resources are available, eliminating the risk of long, possibly
infinite waits in the CE queues.

The First Implementation

CDF has always adopted a step-by-step approach to problem solving and the present one
was no exception. The first step was to extend the Condor pools at the sites that already
had a CAF installed and enjoy close ties with the local Grid administrators. Several such
pools have been deployed at different Grid sites, most of which are in production mode.

The biggest such CAF is installed at CNAF, the Italian Tier-1 center in Bologna. It was
deployed in September 2005 and has since run ~700k jobs from approximately 150 users.
The system is behaving very well, with virtually no job loss, and has proved to scale up
to the full size of the present Tier-1, i.e. ~2k slots, as can be seen from Figure 3. The only
major complaint from users were related to long directory path names due to the multiple
middleware layers.

287

sl warrg sy

oa ami b

el AR H ik [l Mmicd iR - Sl X LR
ey e ER L ot L

Figwre 3 Running jobs gt CNAF
The phde-in solutim was cosy o mmplament, B b e very gener, Inonrder for il io
work, no firewalls are allowed, a fast and reliable network is needed between the Condor
submission node and worker nodes, and the CDF software distribution needs to be served
to the worker nodes by means of a shared file system.

To remove the above limitations, three tools have been identified: the newly released
Generic Connection Brokering (GCB) to bridge firewalls and work over wide area
networks, Parrot for software distribution, and HTTP caches for limiting the required
network bandwidth.

All three are planned to be present in the final incarnation of the Grid-based CAF.
However, each separately improves the functionality of the system and has been tested
and deployed independently.

Condor On The Wide Area Network

Overview

The Condor system was developed with a local area network in mind; Condor daemons
continuously exchange messages by means of UDP packets. Unfortunately, such a mode
is not suitable for the wide area networks where UDP packets are often lost and proxy
services are needed to bridge firewalls. To solve these problems, the Condor team has
developed the Generic Connection Brokering (GCB) service[SFLO5] and has released
the first production version in November 2005.

GCB is a proxy server, used by the starters to route all their communication, as described
in Figure 4:

+ astarter establishes a permanent TCP connection with GCB,

» communicates the GCB node and the obtained port to the other parties,

288

from this point on, any Condor daemon can connect via TCP to the specified GCB,
that will route the traffic to and from the correct open TCP connection.

Only outgoing connections #7000

from the Grid site /7™ et ¥
S m—r—

WS Starter bosoe,

‘g

Schedd Yl

> >
o SS90,
BN o r st e e acasstetotete

@ o enarsy
]G> T
/" . nodes]
oA /’,@A\A@‘Q‘OQ’
% Starter Zos «‘m‘&
1 XKL S

P Ny
Boame
Glide-insNg oo

Figure 4: A Condor pool using GCB

The GCB is very flexible:

It can be installed anywhere in the world, as long as the hosting machine accepts
incoming network traffic. In a very restrictive environment, when nothing can enter
nor exit the site boundaries, the GCB would need to be installed on a machine that
can see both the site network and the WAN.

Several GCB servers can be installed, both for scalability reasons and to
accommodate restrictive sites.

On the other side, when outgoing connections are available, GCB can be used just for
notification, and the starter will directly connect to the other daemons using TCP, for
efficiency reasons.

GCB supports strong authentication, currently by means of Grid Security Interface (GSI).
Kerberos should be supported soon, too.

The First Implementation

The first successful test system has been assembled in early January 2006. This system
was configured to:

run the Condor collector and schedd at Fermilab
the GCB run at Fermilab, too

the glide-ins were submitted to the CE of the OSG site at the San Diego
Supercomputing Center (SDSC), so they run on SDSC worker nodes, on a private
network

Note that this OSG site is already used for a regular glide-in pool, so software
distribution was not a problem. No problems were found, and user jobs were able to run
unmodified.

289

Work is now beginning on the assembly of an OSG wide Condor pool, which will use
GCB to communicate with glide-ins running throughout all the OSG sites. As a
preliminary to this, glide-ins are being submitted to multiples sites, with all
communications routed back to the head node via GCB. Successful submissions and
communications have been confirmed at OSG sites at both the University of Wisconsin,
and Brookhaven National Laboratory, although scaling tests are currently impaired due
to lack of CDF priority.

Deployment of the above pool, with beta-testing with production jobs, is slated to begin
in February of 2006.

Software distribution on the Grid

Overview

The CDF software model was developed with dedicated resources in mind. One of the
main assumptions is the availability of a large set of executables, shared libraries and
configuration files on a shared file system. As long as CDF ran on dedicated resources
distributed over only a few sites, this was easy to implement. In the Grid world, although
possible, installing and maintaining a copy of the CDF software distribution at each and
every Grid site is not a very attractive solution.

One obvious step was to create self contained tar balls, including the user executable and
all the used shared libraries, for as many use cases as possible. We were indeed quite
successful for most organized activities and some user analysis, but given the amount of
both users and existing applications, it proved impractical to force all the users to change
their way of work and stop relying on the CDF software distribution completely.

Instead, we decided to keep only one copy of the software at Fermilab and access it
directly from the worker nodes. Our jobs make heavy use of scripts, so modifying just the
analysis binary to access that was not an option. Luckily, using Parrot solved the problem
for the general case.

Accessing remote files from a generic executable

Parrot{ TKWBSIOS5] is a user level application that allows a generic executable, or script,
to access remote files as if they were local. It works by trapping a program's system calls
through the ptrace debugging interface, and replacing them with remote 1/O operations as
needed. It follows the complete lifetime of the executable, serving also any child that is
spawned from the original process.

290

User Defined Namespace
/home/cdfsoft =
/httpfs/dcafmon.fnal.\?ov/cdfso i

J/tmp = DEN

(Ptrace trap)

The Parrot Virtual File System

Partial Fife 1/0O
lose,regfll,write, Igeek)

Integration Allocation Full UNIX Traditional CDF
with Castor and Mgmt Semantics I/O Services Software

Figure 5: Overview of Parrot
The flexibility of Parrot does come with a price tag:

* A small CPU overhead is imposed on every I/O operation, no matter if it is local or
remote. The local overhead seems to be minimal and becomes noticeable only for
throughputs in excess of 10MB/s or 150k ops/s. Remote access overhead strongly
depends on the protocol involved. Testing on real CDF jobs, using the HTTP
protocol, showed an average overhead of about 5%.

» Suid executables cannot be run under Parrot; the operating system will non allow
Parrot to attach to the ptrace debugging interface, for security reason.

Neither of the above seem to be too high a price for the service we get.

Parrot supports several remote 1/O protocols, including HTTP, FTP, GridFTP, Chirp,
Nest, rfio and dccp. CDF is committed to use only HTTP, because this is the most mature
non-authenticated protocol that allows for easy proxy caching and load balancing.

Using proxy caching

HTTP proxy caching is an established mechanism used in a variety of fields, so it will not
be described here. We just want to stress that for the purpose of distributing CDF code it
is extremely useful, since virtually all information we serve via HTTP does not change
and is accessed by a large number of jobs.

Installing one or more Squid servers at or near a Grid site can drastically reduce the
bandwidth needed between the central information repository and the site. Moreover,
using a Squid server on a machine on the border of the Grid site, can allow us to work on
sites without outgoing connections.

291

The First Implementation

Parrot has been tested on real user jobs and the results are promising. Two simulation
packages, one based on fully compiled C++ code and one based on interpreted ROOT
code, have been tested within Parrot. No problems have been found when running in
interactive, but they refused to run in batch mode. The later is still under investigation.

We tested Parrot both with and without an intermediate Squid server and as expected, the
results were the same. When running on remote sites, HTTP caching greatly reduced the
wall clock time needed to run user jobs after the first one.

The above tests were done in mid January 2006, so there were no time to test the
scalability of the system.

Putting everything together

Due to bugs found in both GCB and Parrot, we were able to run with these pieces of
infrastructure just weeks before the due date of this paper, so there was no time to put
everything together.

Everything seems to work fine now, so we expect to assemble a fully working system,
integrating all the components, by early February 2006.

Conclusions

CDF is committed to changing its computing model from dedicated Condor pools
towards the Grid computing paradigm, and to do it with minimum changes to the way the
physics analysis is done by physicists. Extending the existing Condor-based infrastructure
with the addition of a glide-in factory, paired with the virtualization of the of the software
distribution access, seems to achieve this goal.

CDF has been successful in exploiting Grid resources on several friendly sites, and glide-
in based resources now account for almost a third of the total CDF CPU resources.

However, we do want to use any available Grid resource we are allowed to use, so we are
extending our infrastructure to remove any limit that would prevent us to get there. The
two most limiting factors, working over WANs and bridging firewalls, and the
distribution of CDF software, are being addressed and the needed technical solutions,
namely GCB and Parrot, are available. The preliminary results are very promising, and
we expect to have a working system available before the end of February 2006.

References

[LNSWO04] Lipeles, E.; Neubauer, M.; Sfiligoi, I.; Wuerthwein, F.: The Condor based CDF
CAF, CHEP 2004 proceedings, Interlaken 2004.

[SFLO5] Son, S.; Farrellee, M.; Livny, M.: A Generic Proxy Mechanism for Secure
Middlebox Traversal, Cluster 2005 proceedings, Boston 2005.

[TKWBSIO05] Thain, D; Klous, S.; Wozniak, J.; Brenner, P.; Striegel, A.; Izaguirre, J: Separating
Abstractions from Resources in a Tactical Storage System, Proceedings of
Supercomputing 2005, Seattle 2005.

292

