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Exploration and systematic assessment of the resource
efficiency of Machine Learning

Achim Guldner1, Sandro Kreten1, Stefan Naumann1

Abstract: Estimations of today’s energy consumption of information and communication technologies
(ICT) range from 2 to 9 % of the total produced energy and forecasts for the year 2030 predict
an increase up to 21 %. Even though these numbers are controversial, it cannot be denied that the
consumption growth of large impact factors, like data centers, networks, consumer devices, and
the production of ICT needs to be reduced. In addition to Green IT, which is primarily focused on
hardware, software is increasingly seen as an energy consumer with considerable savings potential. In
this paper, we take a look at software for artificial intelligence (AI) and especially machine learning
(ML). We describe a method for in-depth measurement and analyses of the energy consumption
and hardware usage of ML algorithms and a series of experiments where we use the method on
convolutional neural networks (CNN). We also compare existing estimation methods with our own.
As outlook, we propose a holistic approach along the AI life cycle and additional experiments and
assessments that could show potential efficiency improvements and consumption savings in AI.
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1 Introduction

In the last decade, AI and ML gained significant momentum, both in research and society.
New technologies, like general-purpose computing on GPUs2, new optimization algorithms,
like ADAM (introduced byKingma et al. in 2015 [KB15]), and new libraries, like TensorFlow
(first released in 2015), brought the field to a level never seen before. Of course, this trend
brings many advantages, especially, because of the many areas it can be applied to and the
usability improvements that enable a more widespread usage. Companies such as Google,
Amazon, and Microsoft already provide networks in their ML development environments,
which can be applied in various productive areas. Thus, the combination of different
pre-trained networks is often faster and more successful than the development of new
processes. Especially in speech, text, and image recognition, rapid success can be achieved
with pre-trained networks and ready-to-use data sets.

Recently, the implications of AI on a sustainable society shifted into research focus. Many
works seek to implement new solutions to environmental issues, using machine learning.
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2 like Nvidia’s Compute Unified Device Architecture (CUDA), released in 2007
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Khakurel et al. [Kh18] find significant impacts of AI, both positive and negative, on
all five dimensions of sustainability. Vinuesa et al. [Vi20] state that AI can enable the
accomplishment of 134 targets across all of the United Nations 17 Sustainable Development
Goals (SDGs), but it may also inhibit 59 targets. AI and ML can also be used in efforts to
reduce the energy- and resource consumption across many subtopics, as evidenced, e.g. in
the new journal ”Energy and AI” (Jin et al. [JOJ]). The evaluation of the sustainability of
AI and ML was first addressed by Strubell et al. [SGM19], estimating the �$2 emissions
of Natural Language Processing (NLP). They use Intel’s RAPL tool3 and nvidia-smi4
while training the networks and approximate the energy usage and �$2 emissions. They
report, e.g. that a neural architecture search for translating English to German used 415409
kilowatt-hours (kWh), or 656347 kWh, factoring in Power Usage Effectiveness (this equals
the annual energy consumption of ca. 200 households). Henderson et al. [He20] propose
an experiment-impact-tracker framework for Python that also uses RAPL and nvidia-smi
and encapsulates the assessment of the energy consumption. Schmidt et al. [Sc21] also
provide a Python package based upon RAPL and nvidia-smi, called CodeCarbon that takes
into account the computing infrastructure, location, usage, and running time. Both tools
estimate how much �$2 is produced by the algorithm. Canilang et al. [Ca21] take a look at
the consumption in edge AI applications. This is especially advisable because of the limited
hardware of those devices.

Since 2009, our research focuses on developing and assessing green and sustainable software
systems. We defined Sustainable Software as software whose development, deployment,
and usage results in minimal direct and indirect negative impacts or even positive impacts
on the economy, society, human beings, and the environment (Naumann et al. [Na11]).
From this definition, we derived criteria to evaluate a software product’s sustainability in
Kern et al. [Ke18], which includes our measurement method. In Naumann et al. [NGK21],
we describe the process of the creation of a sustainability label (Blue Angel) for software
products.

In this paper, we base the assessment of the sustainability of AI and ML upon the approach
devised in these previous works and set three goals. We (1) assess, if the implemented
measurement and analysis approach can be applied to the area of AI and ML and modify
it where necessary, (2) perform two experiments and assess the energy consumption and
hardware usage of a PC while training a CNN and compare it with the existing estimation
approaches, and (3) provide an outlook on further experiments, assessments, and a holistic
approach along the whole AI/ML life cycle.

2 Method

In this section, we describe the measurement setup and how we applied it to ML. The
setup (depicted in fig. 1) is based upon Kern et al. [Ke18] and follows ISO/IEC 14756, as
3 https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl [accessed 2021-04-04]
4 https://developer.nvidia.com/nvidia-system-management-interface [accessed 2021-04-04]
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introduced by Dirlewanger [Di06]. It consists of a system under test (SUT) on which the
software that is to be assessed, is executed. In this case, the “software” is a Python script that
trains CNNs. The power draw of the SUT is measured by a power meter (PM). A workload
generator (WG) puts load on the SUT. With desktop or client-server software, this usually is
a script that repeatedly performs and logs user inputs via an automation tool. Here, we used
a python-script that executes and logs the training process. The recorded data is aggregated
and evaluated (DAE) with a script, written in R, to produce the efficiency report.

Fig. 1: Measurement setup

The PM saves the per second average power draw of the SUT. TheWG script logs timestamps
for the start and end of the test runs and training phases (epochs). The SUT collects its own
performance data (CPU load, RAM usage, etc.) using collectl5. In addition to the previous
setups, we integrated graphics card usage logs, collected with nvidia-smi and training and
validation loss and accuracy in the analysis process. For later reference, the finished model
architecture is also exported (using model.save).

The components of the used SUT are detailed in table 1. For the experiments, we set up the
described software stack and measured the power draw and hardware usage for a baseline
measurement (SUT runs only the operating system) and 3 usage scenarios: idle (Python
script is running with no net being trained), CNN (training a CNN to classify pictures) and
transfer learning (using a pre-trained CNN and training only the last layer). The scenarios
are described in more detail in section 3. To combine and compare the method with the
approaches from Henderson et al. [He20] and Schmidt et al. [Sc21], we set up additional

5 http://collectl.sourceforge.net/ [accessed 2021-04-09]
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Tab. 1: SUT hardware specifications and software stack
Component Specifications
CPU AMD Ryzen 7, 1700
RAM 16GB G.Skill RipJaws V DDR4-3200 DIMM
Main Board MSI B350 PC MATE
Power supply Cooler Master Silent Pro Gold, 600 W
SSD 256GB WD Black M.2 2280 NVMe SSD (WDS256G1X0C)
Graphics card ZOTAC GeForce GTX 1060 AMP! Edition, 3 GB 192 Bit GDDR5
Operating System Ubuntu 20.04.2 LTS
Python Version 3.8.5
TensorFlow Version 2.4.1
CUDA Version 10.1.243

scenarios, where we measured the SUT’s power draw, while simultaneously running the
experiment-impact-tracker and CodeCarbon, respectively.

Finally, to get a feeling for the accuracy of nvidia-smi’s gpu power draw readings, we
compared the logging results with voltage and current measurements at the power plug of
the graphics card while running GPU benchmarks. This is by no means as accurate as the
measurement with the PM, but the results showed that the nvidia-smi logs are believable.
The whole measurement setup is shown in fig. 2.

Fig. 2: Photo of measurement setup

The analysis method is largely identical to the one described in [Ke18]. We average each
logged hardware component over the test runs and calculate the average energy consumption
of the scenario in watt-hours [Wh], as the sum over all per-second averages of the power
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draw (recorded by the PM during the execution of the scenarios, resulting in watt-seconds)
and dividing the result by 3600 B

ℎ
. Subtracting the mean baseline values, adjusted for the

scenario duration, gives us the part of the energy consumption and hardware usage that is
induced by the software. Additionally, we calculate these indicators also for each training
epoch.

In order to make the experiments and analysis reproducible, we provide all source code files,
measurement data, analysis scripts, and efficiency reports in a replication package as git
repository at https://gitlab.rlp.net/a.guldner855830/exploration-and-systematic-
assessment-of-the-sustainability-of-machine-learning/-/tree/master6.

3 Experiments

As a first set of experiments, we used the method to assess the energy consumption and
hardware usage of the SUT while training CNNs to classify images from the tf_flowers
data set7. The WG script first groups the images into folders according to their labels (roses,
daises, dandelions, sunflowers, and tulips) and then randomly augments them (re-scale,
rotate, change width- and height, flip horizontally, and zoom) to enhance the training process
and have access to more training and validation data sets. Figure 3 depicts some examples.
Finally, the images are fed to the fit function using an ImageDataGenerator object.

Fig. 3: Exemplary training images from the tf_flowers dataset (top) and image augmentation (bottom)

The scripts are based upon examples available from the TensorFlow git8. We ran each
scenario (idle, CNN, and transfer learning) 30 times (=“test runs”), so as to produce
normally distributed samples [Ke18]. The scripts execute the scenarios described below,
and log the time for the beginning and end of each test run. In addition to the scenarios, we

6 the model architectures are available at https://seafile.rlp.net/d/6001c483b42342a0bdb5/
7 available at https://www.tensorflow.org/datasets/catalog/tf_flowers [accessed 2021-04-09]
8 https://github.com/tensorflow/examples [accessed 2021-04-09]
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also recorded the baseline for the SUT, with only the operating system installed and without
any scripts running. The idle scenario consists of the same script as the CNN and transfer
learning scenario, except that instead of a model being trained, the execution is suspended
for 10 minutes, using Python’s time.sleep() function. This was included e.g. to simulate
developers running an interactive session when implementing algorithms.

Fig. 4: CNN scenario model visualization

The CNN scenario consists of a Sequential model with 3 sets of Conv2D and MaxPooling2D
layers, followed by a Dense hidden layer with 512 nodes and an output layer with 5 nodes
(see fig. 4)9. For the transfer learning scenario, MobileNet V2 from TensorFlow Hub is
used10. Here, only the last layer is exchanged for an output layer with 5 nodes and only this
layer is trained (this method is called ”fine-tuning”). Both nets use the adam optimizer for a
maximum of 100 training epochs, or until a validation accuracy of 80 % (CNN scenario)
or 85 % (transfer learning scenario) is reached. This usually results in a different number
of epochs for each test run. Therefore, the scripts also log timestamps for each action of
the training process: image preparation, creation of the net, training process up to 80 %
or 85 % validation accuracy, and for each epoch. After the test run, the script exports the
trained model architecture and history (training- and validation-accuracy and loss) and resets
the conditions as they were before the test run (deleting folder structures and pre-trained
models). The actions within each test run are structured as follows:

test run 1

prepare images (unzip data set, sort into folders, create ImageDataGenerator)

create CNN (build model layers (CNN scenario) or download and prepare

pre-trained model (transfer learning scenario), compile model)

train CNN until set validation accuracy is reached

epoch 1

epoch 2

...

epoch n

export and clean-up (not part of the measurement)

test run 2

...

9 Created with visualkeras, available at https://github.com/paulgavrikov/visualkeras/ [accessed 2021-04-13]
10 https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4 [accessed 2021-04-09]
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4 Analysis results

We now present an overview of the analysis and some explorative aspects. Table 2 shows the
recorded data. From it, we calculated the energy consumption for the SUT and the graphics
card, as well as the hardware usage averages, as described in section 2. Because the test
run durations vary, we also calculate the averages for the whole training process and for
each epoch. The data is visualised and aggregated in the report documents in the replication
package.

Tab. 2: Recorded data, units, and recording method
Indicator Unit Method
SUT power draw W Power meter
SUT total CPU load % collectl
SUT RAM usage kB collectl
SUT disk activity (reading and writing) kB collectl
SUT network traffic (sending und receiving) kB collectl
GPU performance state no unit nvidia-smi
GPU PCIe link generation no unit nvidia-smi
GPU core temperature °C nvidia-smi
GPU load % nvidia-smi
GPU memory load % nvidia-smi
GPU memory allocated MiB nvidia-smi
GPU power draw W nvidia-smi
GPU SM, memory and graphics clock frequency MHz nvidia-smi

As an overview, fig. 5 shows the per second and overall average SUT power draw for the
two usage scenarios. The results show the expected large benefits of using a pre-trained net
and fine tuning it: The energy consumption induced by the transfer scenario amounts only
to 0.374 Wh, compared to 10.032 Wh for the model that is trained from scratch (see fig. 6).
Of course, this does not take into account the energy that was used to train the MobileNet in
the first place. Thus, the two scenarios are not directly comparable, but that was also not the
intention in this paper.

Looking at epoch-level, it is interesting to note that the energy consumption for the training
process in the transfer scenario used 0.448 Wh per epoch with an average duration of
29.95 seconds, whereas for the CNN scenario, each epoch used only 0.423 Wh and, on
average, took 28.304 seconds. This is evenmore surprising, because the complexity of the self-
trained CNN is much larger (total and trainable parameters according to model.summary():
25,716,773) than that of the adapted MobileNet (total parameters: 2,264,389; trainable
parameters: 6,405).

Because the reports provide an in-depth analysis down to epoch-level for all recorded
indicators, depending on the use case, it is possible, e.g. to analyse the energy consumption
and hardware usage up to a certain epoch or until the validation accuracy of the net reaches
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Fig. 5: Power draw measured with the PM for the CNN- (top) and transfer scenario (bottom).

a certain percentage. This allows detailed insights into how adjustments to the net relate to
the energy and hardware consumption. E.g. it caught our eye that as soon as the model is
initialized with model = Sequential(), the GPU memory was allocated even though no
layers had been added or trained. Here, more research is necessary (see also section 5).

Fig. 6: Power draw and energy usage overview for all scenarios.
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Fig. 6 depicts the average power draw, the average energy consumption, and the average
energy consumption induced by the ML-algorithm (scenario energy minus adjusted baseline
energy), per scenario. From this overview we can gain some insights: (1) considering energy
consumption, using a pre-trained CNN seems to be by far the better choice for image
classification, (2) the GPU’s energy consumption rises from about 35 % in the baseline to
about 46 % in the idle scenario and to about 70 % in the scenarios that train CNNs.

Fig. 7: Hardware usage overview.

For fig. 7, we chose to plot the CPU and GPU load, RAM usage, and network traffic as the
main hardware usage indicators. Here, we find that the average hardware usage is also, for
the most part, lower for the transfer scenario than for the CNN scenario. However, because
the pre-trained model needs to be downloaded for the transfer scenario, this generates some
network traffic and disk activity.

Another point we wanted to investigate was if the loss or accuracy would correlate with
the energy consumption. This was, however, not the case in our measurements. What we
did find was that the energy consumption per epoch correlates with the GPU temperature
(A = 0.98), as can be seen in fig. 8. Likely, the GPU draws more power when it heats up.

From the collected data, it is also possible to calculate an efficiency factor, based upon the
metrics proposed by Johann et al. [Jo12] as

Energy efficiency =
Useful work done
Used energy

.

For this paper, we used the validation accuracy as the “useful work done” in the training
process. This results in the unit validation accuracy per watt-hour. It is depicted in fig. 8.
Because the accuracy is not a sufficient measure for the “work” of the neural net, in the
future more indicators should be taken into account (see section 5).

In summary, it seems advisable to include at least the following indicators for further
analyses: Total energy consumption, GPU and CPU energy consumption (if available), CPU
and GPU load, RAM and GRAM usage, network traffic and disk activity, as well as loss and
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Fig. 8: Energy consumption per CNN scenario epoch (left) and efficiency factor comparison (right).

accuracy. The baseline measurement also proves useful to assess the energy consumption
and hardware usage that is induced by the algorithms.

5 Discussion and outlook

In this section, we discuss the goals set in section 1: Applying our approach to the field
of AI/ML, comparing our method to the existing approaches, and providing an outlook
on our planed work. The devised method seems promising for the systematic and in-
depth assessment of the sustainability of ML algorithms. Where the trackers, especially
CodeCarbon, provide a good tool for familiarizing oneself with the energy demands of the
implemented algorithms, using a PM makes it possible not only to estimate the energy
consumption, but to measure it. Combined with hardware usage logs, the calculation of
efficiency factors, and baseline measurements to assess the consumption induced by the ML
algorithms, the method allows comparing scenarios, down to source code level. This allows
further experiments to assess how changes to the algorithms effect the resource efficiency.

Since this is the first evaluation of our method in the area of ML, there are some threats to
validity that we now discuss. We used only one ML library (TensorFlow), one SUT, and one
programming language (Python). To mitigate this, our scenarios were based on standard
use cases and, as future work, we plan to extensively evaluate the approach on a large set
of ML applications, ranging different languages and technologies. We took precautions
to minimize side effects in the measurements, performed baseline measurements of the
SUT energy consumption, and executed each test case multiple times in order to ensure
the statistical relevance of the data. We assessed the precision of the measurement setup
by calculating the standard deviation of the power measurements and execution times and
checked the plausibility of the gpu measurements. There is still potential for measurement-
and coding errors and conclusions may be prone to subjective interpretations. In order to
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mitigate these threats, we jointly inspected and discussed the results in order to identify
potential occurrences of divergent interpretations and provide a replication package.

For the comparison with “CodeCarbon” (CC) [Sc21] and “experiment-impact-tracker”
(EIT) [He20], we wrapped the test runs with the EmissionsTracker from CC and the
ImpactTracker from EIT, respectively and then executed them as before, while recording
the same three scenarios again (see fig. 9). Baseline measurements cannot be recorded with
the trackers, because they require python to be running (= idle scenario). Of course, since
our SUT contains an AMD CPU, RAPL could not be used and only the graphics card was
available to the trackers. The CC tracker worked as expected and reported approx. 78 % of
the PM measurements, which is close to the nvidia-smi readings.

Fig. 9: Comparison of measured energy consumption of CC, EIT and our PM.

Although we used the EIT as described in the documentation with standard settings, the
results cannot be correct. It is not the focus of this work to go into detail on why these
errors occurred. From what we could see in a brief code review of EIT, the error is likely
due to the fact that the power and energy averages are not calculated over time, but the
first result from nvidia-smi over a measurement interval is used. This can produce large
measurement errors because power spikes or drops can be missed. Furthermore, the tracker
did not record any consumption for the idle scenario. This is the case, because the tracker
considers the gpu-processes and bases the estimates on those. Since there are no processes
running in the idle scenario, the tracker records no consumption. Compared to CC, EIT
itself induces approx. 0.49 Wh additional energy consumption in the idle scenario, likely
because it produces frequent console outputs and large amounts of log files with the standard
settings. This results in additional power draw.

Since Strubell et al. [SGM19] do not provide or use a tool, but rather directly log the data
with nvidia-smi and RAPL. Thus, the method seems directly comparable and should lead
to similar estimation results if the scenarios we defined here were used. The focus here
was on bringing the issue to the attention and quantifying the approximate financial and
environmental costs. With our approach, this can be taken one step further, showing how
adjustments to the net relate to energy and hardware consumption.

In the future, we plan to extend the method in two directions: influence factors along the
AI life cycle and further comparison approaches. So far, only the training process of ML

Resource efficiency of Machine Learning 297



algorithms was considered. We propose to stretch these considerations to a holistic approach
along the complete life cycle of AI systems. This starts with data collection, taking sensors,
networks, data reduction, etc. into account, which may influence the algorithms and their
resource usage. The way the data is pre-processed and managed also needs to be addressed.
This includes questions of data quality, storage, the use of synthetic data, data augmentation,
the proportion of training, validation, and test data, etc. In the usage and optimization phase,
influences from different classification, detection, and synthesis applications should be
addressed, as well as possible saving that can be achieved with edge-AI. Furthermore, we
plan to investigate the balance between the energy consumption during the training and
usage phase. E.g. if a model is used only infrequently or over a short time, maybe it does
not need high accuracy levels and thus shorter training, etc.

When modelling the algorithms, we plan to compare optimization algorithms and ML-
libraries (TensorFlow, Theano, PyTorch, Keras, OpenCV, Caffee2, scikit, MXNet, etc.) with
each other and with minimal implementations. Different ML-algorithms that can perform
the same or similar tasks should be compared, as well as, implementations in different
programming languages. In the area of deep learning, we plan to evaluate impacts from
factors like network topology (e.g. layer structure, layer sizes, dropout layers), activation
functions, gradient descent algorithms, performance measures, epoch and batch sizes, etc.
For CNNs especially, the influence of factors like kernels, strides, pool sizes, pooling
methods, number of pooling layers, number of filters, etc. should be assessed through
comparison experiments.

Finally, the relation between energy consumption and ML success indicators needs to be
evaluated, depending on the “useful work” of the ML-model for the energy efficiency factor.
Here, measures like precision, recall, or F-measure during tests should be taken into account.
This would result in e.g. the unit correct classifications per Wh.
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