
AutoShard – A Java Object Mapper (not only) for

Hot Spot Data Objects in NoSQL Data Stores

Stefanie Scherzinger

OTH Regensburg

stefanie.scherzinger@oth-regensburg.de

Andreas Thor

Deutsche Telekom, University of Applied Sciences for Telecommunications

thor@hft-leipzig.de

Abstract: We demonstrate AutoShard, a ready-to-use object mapper for Java applica-
tions running against NoSQL data stores. AutoShard’s unique feature is its capability
to gracefully shard hot spot data objects that are suffering under concurrent writes. By
sharding data on the level of the logical schema, scalability bottlenecks due to write
contention can be effectively avoided. Using AutoShard, developers can easily em-
ploy sharding in their web application by adding minimally intrusive annotations to
their code. Our live experiments show the significant impact of sharding on both the
write throughput and the execution time.

1 Introduction

NoSQL data stores are highly appealing in web development, where applications require

high scalability and high availability. Their flexible data model suits an agile software

development style since the database schema does not have to be designed up front. More-

over, the sheer scalability of these systems is impressive: Due to a highly distributed archi-

tecture, they gracefully handle large amounts of users and data. To optimize user response

time, several NoSQL data stores implement optimistic concurrency control [ADE12].

Transactions execute immediately, and then check at commit time if some other trans-

action has already committed a conflicting update. If so, the transaction is aborted and it

is up to the application to handle the failure. This approach is appropriate for web applica-

tions where users spend most of their time browsing data, rather than generating content.

Since web applications are commonly read-intensive, users are less likely to concurrently

update the same data. However, there are certain features in web applications that are

inherently prone to write contention: This could be something as simple as a counter

registering the number of visitors to a website, or the number of votes (or “likes”) cast in-

teractively against a blogpost. Write contention on hot spot data objects has a long legacy

in database research, and at the same time is a timeless topic, e.g., recently motivating

sophisticated concurrency control protocols that avoid shared-memory writes [TZK+13].

The established approach in the developer community for managing hot spot data objects

in NoSQL data stores is property or counter sharding [ST14, San12] on the level of the

651



database schema. Sharding physically balances write requests by dividing logical units

of data into multiple shards. For example, instead of storing a single counter we main-

tain multiple shard counters. Updates are performed on one shard (chosen at random) and

the sum over all shards is the overall counter value. While intuitive to grasp, a robust

implementation of sharding is nevertheless a nontrivial task: On top of aggregated reads

and distributed writes, sharding has to be safe under transactions. Custom-coding shard-

ing requires a deep understanding of the underlying concurrency control mechanisms, is

system-dependent, and introduces additional complexity to the application code.

In this demonstration, we present AutoShard, a Java object mapper designed for NoSQL

document stores of the Google Cloud Datastore [San12] family. AutoShard relieves the

application developer from handling low-level sharding, and thus restores a clearer sepa-

ration between logical and physical database design. We have shown in [ST14] that Au-

toShard significantly improves throughput and execution times of writes against hot spot

data objects. AutoShard is easy-to-use, since it merely requires declarative annotations in

Java classes and relies on self-modifying code to handle sharding transparently.

2 The AutoShard Object Mapper

The AutoShard object mapper is, to our knowledge, the first Java object mapper capable

of sharding data automatically, based on simple annotations. Like other NoSQL object

mappers, AutoShard takes care of the mundane marshalling of persisted entities into Java

objects and back, thus greatly simplifying application development. In the following, we

show how AutoShard addresses write contention. The Java class from Figure 1 (left) rep-

resents a blog post that can be voted up. As customary with object mappers, annotation

@Entity specifies that an instance of class BlogPost is persisted as an entity. Annota-

tion @Id marks the unique key.

The votes counter is a performance bottleneck when several users concurrently vote on

the same blogpost. To solve this problem, we merely add the annotation @Shardable to

declare that counter votes is to be sharded. When processing shards, the method anno-

tated with @ShardMethod will be applied to a single shard, rather than the global value

of the votes counter. We could even declare several sharding functions (e.g., to increment

and to decrement votes). Since in this example the shard method is incrementation, we

specify zero as the neutral element (see neutral=0). This is exploited in initializing

new shards. With annotation @ShardFold, we declare the static function sum as the

folding function. This function is called for aggregating over all shards. We may specify

even more complex folding operations, as long as they are commutative and associative.

It is the responsibility of the developers to correctly annotate their Java classes.

The AutoShard approach relies on self-modifying code, by blending Java code with Groovy

technology (www.groovy.codehaus.org). Groovy is a dynamic language that runs in the

JVM and smoothly inter-operates with Java code. Further, Groovy allows us to anno-

tate code structures for transformations in the abstract syntax tree (AST) during compi-

lation. Figure 1 (middle) shows the architecture of the AutoShard framework. A Java

652



Figure 1: Compilation of an annotated Java class (left) with the AutoShard framework (middle).
Evaluation of property sharding with 2,0000 users incrementing 16 counters (right).

class with AutoShard annotations serves as input. The Groovy parser produces an AST

and our AutoShard AST transformer restructures this tree. Class members annotated as

@Shardable, as well as the sharding and the folding method, are now transformed. We

refer to [ST14] for the details of this compilation, and merely present the basic idea here.

For the sharded property votes, AutoShard’s compilation introduces a new (private) at-

tribute shard votes that stores a single shard value. The body of user-defined method

voteUp is transferred to a private method, and the original method is replaced. This new

implementation calls the original function both for the shard value (shard votes) and

for the actual value (votes). Since the signatures of the class methods do not change, the

remaining application code need not be adapted.

When a persisted BlogPost is loaded, AutoShard retrieves the main entity to map all

unsharded class members. For the sharded class member votes it reads all shards and

generates two data members. First, the (regular) data member votes is initialized to

the aggregated shard value. AutoShard uses the @ShardFold method (sum for class

BlogPost) to aggregate over all shards. Second, the (internal) member shard votes

is initialized to the neutral element zero. When shard method voteUp is invoked for

updating the counter value, the update is executed on both the (regular) data member

votes as well as the (internal) data member shard votes. This ensures that whenever

the application code accesses votes, it sees the expected value.

When entity BlogPost is persisted after changes have been made, AutoShard first up-

dates the main entity (if necessary). For the sharded class member, a random shard is

loaded from storage. Its value is updated by invoking the @ShardFold method (sum

for class BlogPost) on the loaded shard value and on shard votes. The shard is

persisted within a nested transaction, so we do not interfere with transactions that may be

running in the remaining code. Since the sharded value is re-set to the neutral element, it

will capture future updates. The regular property votes still holds the current value.

653



3 Demonstration Description

In our demonstration we illustrate how AutoShard can effectively be employed in building

scalable web applications that persist data in NoSQL data stores. Our scenario deals with

a Java implementation of a voting tool. The application runs on Google App Engine and

is backed by Google Cloud Datastore. We start with a naive implementation that does

not take any precautions w.r.t. massively concurrent writes. We simulate an increasing

number of users voting on blogposts. This causes write contention, and ultimately, failed

web requests. We dynamically visualize the success rate as well as the average transaction

time using Google Charts. For instance, Figure 1 (right) shows the effects of sharding

counters in a voting app where 2,000 users concurrently update 16 counters.

We then add a few lines of annotations to the Java class declarations within Eclipse. Upon

the push of a button, the Java code is re-compiled and deployed to Google App Engine. To

the interested audience we can also go into the implementation details of the AutoShard

AST Transformer. We repeat the experiment with the AutoShard-powered application.

Now, the application handles web requests much more successfully: In the example from

Figure 1, with the naive implementation, 25% of all transactions fail. Generating 16 shards

with AutoShard, the failure rate can be reduced down to 4%.

In a second scenario, we add a simple retry mechanism and repeat failing transactions

until they succeed. This simple approach obviously increases the chances of requests

succeeding at the expense of higher execution times. We re-run our experiment with the

naive and the sharded approach. Now, all requests succeed eventually, yet the sharded

version shows superior transaction times (see Figure 1 (right)).

The audience may further investigate the details and differences between the naive and the

sharded version by manipulating certain parameters such as the number of shards, or by

employing alternative sharding strategies [ST14]. Again, AutoShard’s easy-to-use anno-

tation approach makes it convenient to modify the Java source code that is then compiled

and deployed to Google App Engine. The audience will be able to assess the trade-offs

between sharding strategy, success rate, and execution time under different workloads.

Acknowledgement: The authors would like to thank Werner Schier for contributing to the

AutoShard code base as part of his Master thesis project at OTH Regensburg.

References

[ADE12] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Data Management in the Cloud
– Challenges an Opportunities. Synthesis Lectures on Data Management. 2012.

[San12] Dan Sanderson. Programming Google App Engine. Google Press, 2012.

[ST14] Stefanie Scherzinger and Andreas Thor. AutoShard - Declaratively Managing Hot Spot
Data Objects in NoSQL Data Stores. In Proc. WebDB’14, 2014.

[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, et al. Speedy Transactions
in Multicore In-memory Databases. In Proc. SOSP’13, 2013.

654


