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Abstract: Fingermark quality assessment is an important step in a forensic fingerprint identifica-
tion process. Often done in the scope of criminal investigation, it is performed by trained fingerprint
examiners whose quality assessment can be rather subjective. The goal of this work is to develop
an automated fingermark quality assessment tool, which would assist the fingermark examiners in
their work. In this paper, we present a fast, open-source, and well documented fingermark quality
assessment toolbox, which contains more than 20 algorithms for feature extraction, segmentation,
and enhancement of fingermark images. We demonstrate the utility of the toolbox by assembling a
feature vector and training various baseline machine learning models, capable of predicting the qual-
ity of fingermark images with high accuracy. The AFQA toolbox source code is publicly available
online.

Keywords: fingermark, forensic, biometric, quality, evaluation, open-source.

1 Introduction

Fingerprint comparison is one of the oldest types of biometric identification, used exten-

sively in automated fingerprint identification systems (AFIS) for forensic investigations. A

particular challenge in this area present fingermarks (in the USA latent fingerprints), partial

friction ridge skin impressions typically from fingertips, left in an unconstrained environ-

ment, e.g., a crime scene. Fingermarks are lifted from various surfaces and their quality

is influenced by several external factors, which often result in distorted or only partially

visible impressions. The scientific method of comparing fingermarks, ACE-V [As99], is

well established and followed by trained forensic examiners. An important first step in

this process is determining the quality (or value for identification) of a fingermark. This

value establishes how the fingermark will be processed and indicates, whether its quality

is sufficient for finding a mated fingerprint in an open-set biometric dataset. Due to the

involvement of human experts, quality assessment is subjective, prone to bias and can po-

tentially result in evidence mishandling. An Automated Fingermark Quality Assessment

(AFQA) toolbox assists forensic fingermark examiners by proposing a probabilistic qual-

ity value, helps to reduce their subjectivity and improves their efficiency.

Based on the initial review, a novel automated, reliable, and open-source AFQA imple-

mentation would greatly benefit the forensic community. Within the existing work, ac-

cessibility and reproducibility are currently the major limiting factors: (i) Commercially

available solutions are widespread but require the user to pay for the product. In rare cases,
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companies offer limited access to their software, but only for research purposes and such

arrangements do not include access to the source-code. (ii) Some solutions are designed

specifically for local law enforcement or larger intelligence agencies and are not avail-

able publicly to minimize intentional tampering or spoofing with the goal of concealing

identity. (iii) Existing published work is rarely accompanied with open-source code, data,

or data annotations. This is particularly noticeable in novel approaches, which are largely

data-driven machine learning (ML) solutions [Yo13, Ch18]. Popular fingermark datasets

being recently discontinued [GM00], it makes many methods difficult or in some cases

impossible to reproduce. (iv) Some fingerprint-related algorithms, published in the open-

source format [TWW04, Ta21], are commonly implemented in low-level programming

languages and intended for integration into end products. While this is beneficial in a pro-

duction environment, research productivity is lowered. Furthermore, the majority of avail-

able open-source programs are focused on fingerprints and not on fingermark processing.

To boost research in this field and improve accessibility of related methods, we propose an

open-source AFQA toolbox for fingermark analysis and quality assessment. This includes

a centralized and ready to use collection of most frequently used computer vision tech-

niques for feature extraction, segmentation, and enhancement of friction ridge images,

written in a high-level programming language (Python). We use the toolbox to extract

features from fingermarks and construct a fixed-length feature vector. Using popular ML

algorithms and with the help of existing quality assessment methods to annotate the data,

we train predictive models in order to assess the quality of fingermarks. We demonstrate

the accuracy of our models on a publicly available fingermark dataset and provide the mo-

tivation in favour of using the AFQA toolbox to develop new quality assessment methods.

In Section 2, we describe the related work within friction ridge quality assessment. In

Section 3, we present and describe the fingermark toolbox and demonstrate its usage by

proposing a quality assessment pipeline in Section 4. Finally, we compare our approaches,

discuss the results in Section 5, and conclude with final thoughts in Section 6.

2 Related work

Fingerprint quality. Initially, quality assessment of fingerprints was based on various

local image quality indicators, such as local frequency and clarity, deviation of Gabor

features, and other pixel intensity or gradient methods [Al07]. The National Institute of

Standards and Technology (NIST) fist aimed to standardize fingerprint quality assessment

and developed the NIST Fingerprint Image Quality (NFIQ) algorithm [TWW04]. This was

the first attempt to define a fingerprint quality measure as being indicative of the probabil-

ity to find a mated reference fingerprint in a database for a questioned fingerprint. Thanks

to the advances in fingerprint recognition technology, NIST initiated work on an upgrade,

the NFIQ 2 [Ta21]. The authors implemented 155 feature extraction algorithms, elimi-

nated features with low predictive power and trained an improved random forest classifier

to assign quality values. They observed improved predictive capabilities and a faster exe-

cution time in comparison with the original NFIQ. The open-source method was gradually

improved and culminated with a recent (2021) release of version NFIQ 2.1.
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Fingermark quality. After the 2004 Madrid bombings, the FBI misidentified a prime

suspect based on a single fingermark. In response, they investigated the decision-making

process of their forensic examiners. The findings were used to develop the Universal La-

tent Workstation (ULW), a toolbox assisting forensic examiners with fingermark analysis,

which also contains a fingermark quality metric (LQmetric). The LQmetric is not publicly

available and is only partially published [KBH20]. Based on operational feedback from

the FBI Laboratory, it performs well on good- and bad-quality fingermarks, but not on

borderline cases [HGB19]. To define a quality measure specifically for fingermarks, Yoon

et al. developed the Latent Fingerprint Image Quality (LFIQ) [Yo13]. The algorithm uses a

combination of local clarity indicators and minutiae data to determine quality. The method

relies on manual minutiae extraction for best performance. Sankaran et al. [SVS13] pro-

posed a heuristic to determine the local clarity and quality of fingermarks, however, they

did not consider minutiae data as a qualitative indicator. Chugh et al. [Ch18] gathered ex-

pert crowd-sourced data and cross referenced it to develop a predictive model for quality

assessment. Ezeobiejesi et al. [EB18] were the first to utilize deep learning in the context

of quality assessment, however, in their approach, the final quality measure is computed

trivially only by counting the number of patches of certain quality. In general, published

fingermark quality assessment methods use a combination of commonly used algorithms,

heuristics, and machine learning practices for processing friction ridge impressions, which

we combined into a versatile open-source collection.

3 Automatic Fingermark Quality Assessment Toolbox

In this section we describe the contents of the AFQA Toolbox. The algorithms included

are presented graphically in Figure 1. The majority of algorithms (green labels) are im-

plemented in Python and make use of common Python libraries, such as NumPy, SciPy,

scikit-learn, scikit-image and OpenCV. For other methods, which benefit more from their

original low-level implementation, we offer a Python wrapper function (red labels), which

enables seamless integration of complex methods into the toolbox. The AFQA toolbox is

provided ”as-is” under the MIT open-source licence and can be accessed online: https:

//github.com/timoblak/OpenAFQA.

Preprocessing. Determining the region of interest is the first step when processing a fric-

tion ridge image. The foreground, containing friction ridge information, is separated from

the often noisy background. This task is particularly challenging in cases, in which fin-

germarks are captured directly on the surface, on which they were deposited. The friction

ridge is typically described using the features distributed at different levels. The toolbox

includes a heuristic algorithm, which determines the fingermark foreground based on the

analysis of pixel values in a local area. The friction ridge impression can often include

distorted regions, which are recoverable with the use of enhancement algorithms. Such

algorithms exploit the deterministic structure of friction ridge to correct local damage and

improve ridge clarity. The initial set of tools includes a Difference of Gaussian-based fil-

ter [MH80], which enhances local contrast, and Hong’s method [HWJ98], which uses

oriented Gabor filters to enhance the structure.

https://github.com/timoblak/OpenAFQA
https://github.com/timoblak/OpenAFQA
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Fig. 1: AFQA toolbox. The toolbox (Python) contains pre-processing and feature extraction modules

and includes other useful tools for friction ridge impression analysis.

Feature extraction. Friction ridge skin has inherent features, categorized into 3 levels of

detail: (i) Level 1 features represent the flow of the friction ridge and its class, which is

based on abrupt changes in friction ridge orientation. These features are usually detectable

even in low quality or low resolution images. (ii) Level 2 details describe the salient points

(endings and bifurcations) of individual ridges, called minutiae points. Many automatic

fingerprint identification systems (AFIS) are heavily dependent on level 2 details. Sim-

ilarly, they are used extensively in mark-to-print comparisons by forensic experts. (iii)

Level 3 details are most visible on high resolution images and describe friction ridge at the

highest level, e.g., skin pores, shapes of ridges, etc. Such features are highly deterministic,

but can be hard to detect and compare. Due to the widespread use of level 2 features, we

include in our toolbox several methods for minutiae extraction. The first is MINDTCT, an

algorithm included in the NIST Biometric Image Software (NBIS)3 distribution and used

by NFIQ as well as in FBI’s ULW. The second is a robust open-source minutiae extractor

called FingerJetFXOSE4, also used in the NFIQ 2. For these methods, we provide a wrap-

per function, which calls either a compiled binary or a library, implemented in a low-level

language. Additionally, we include a simple and customizable Python implementation of

the Crossing Number algorithm [Ka08].

Another class of features originates from the more general field of image quality. Through

time, these were adopted specifically for analysing friction ridge impressions and are used

commonly within the related literature [LJY02, CJY04, OŠB16, Sw21, Ta21]. These fea-

tures can be used to capture the following friction ridge properties: (i) Frequency of ridges

on human fingers has a known value of around 2.1 and 2.4 ridges/mm for males and fe-

males, respectively. A deviation from this value indicates the absence of friction ridge or

the presence of local deformations. To calculate frequency, we use Gabor filtering of 2D

Fourier transform. (ii) Clarity describes the separability between pixel values of nearby

3 https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis
4 http://github.com/FingerJetFXOSE/FingerJetFXOSE
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Fig. 2: Predictive pipeline. Predictive pipeline of AFQA toolbox, consisting of pre-processing, fea-

ture extraction, and machine learning algorithms.

ridges and valleys of the impression. Higher clarity ridges in close proximity to detected

minutiae points indicate higher probability of their existence. We use image derivatives or

other pixel intensity methods to calculate local clarity. (iii) Orientation of ridges should

not change drastically in a local neighborhood of image blocks. A large difference in ori-

entation could indicate a presence of local distortions or singular points. We calculate

orientation with image gradients or by analyzing the frequency domain. (iv) Structure is

another important factor. Ideally, the width of ridges should be consistent and comparable

to the width of valleys. The ridge structure is extracted by using various pixel intensity

methods.

Feature vector assembly. Due to the unconstrained nature of fingermark imposition, their

image can vary drastically. To represent all fingermarks with a unified description, our

toolbox enables automatic construction of a fixed-length feature vector from minutiae data

and feature maps of different sizes.

4 Baseline quality assessment

In this section, we propose a baseline quality assessment method, which is derived from

the AFQA toolbox feature vectors. The pipeline is visualized in Fig. 2.

For an input fingermark impression, we use image equalization and a heuristic analysis of

local pixel values to determine the friction ridge area. Then, in a block-wise manner, the

15 feature extraction algorithms calculate local features, which result in 15 feature maps.

FingerJetFXOSE algorithm is used to detect minutiae points within the segmented region.

Each of the 15 feature maps are then compressed into a vector of 12 values. The first two

values represent the mean and standard deviation of the entire feature map. The remaining

10 values represent a histogram with 10 bins, where each bin amounts to the number of

values within a specific range. The edges of histogram bins are computed from an average

feature map of the entire training dataset. Minutiae data are described in a similar fashion

with a vector of length 12. First value represents the mean minutia quality, the second

value is the number of all detected minutiae, and the remaining 10 values again represent

a histogram of qualities of detected minutiae. The minutiae quality is calculated for each
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Fig. 3: Distribution of quality scores. Shown here are the annotated labels of the test set (NIST

SD301 dataset) by three different quality assessment methods. The majority of scores is clustered

towards the low quality side of the spectrum.

detected minutiae using FingerJetFXOSE. The aggregated fingermark feature vector is 192

features long.

Different ML techniques are used to train three predictive regression models for finger-

mark quality assessment, all of which are implemented in the scikit-klearn Python library.

The first is a fully connected neural network, which has a single hidden layer with 100

neurons using ReLu activation and a single linear output neuron. The second is a random

forest regressor, which uses an ensemble of 750 decision trees with a maximum depth of

110. The third method is a support vector regressor (SVR), for which default parameters

are used. For all methods, the hyper-parameters were determined by using random search

across a wide range of available values and validated on a reserved part of the training

data. The task for each quality estimator is then to minimize the square difference be-

tween predicted quality values and the annotated quality values. Since dataset annotation

with trained forensic examiners was not available at this point of time, we employ ex-

isting quality assessment algorithms to provide the necessary baseline quality labels for

fingermark images. We use the following methods to annotate the public datasets:

• NFIQ 2.1 [Ta21] is an open-source software, originally trained and intended for

predicting quality values of flat fingerprints.

• The fingerprint quality assessment method included in the Verifinger SDK [Ne98],

sold by a commercial vendor Neurotechnology. We refer to it as the VerifingerQ

metric in this paper.

• LQmetric [KBH20] is fingermark quality measure, used within the FBI’s Universal

Latent Workstation software.

All three quality assessment methods are used to generate three sets of ground-truth labels,

which are then used to train three different models for each of the ML approaches.
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Tab. 1: Evaluation results on the test set. Random forest achieved best results in terms of per-

formance metrics. Our feature vector is able to capture NFIQ 2.1 and VerifingerQ properties but

struggles with LQmetric scores.

Neural network Random Forest SVR

Model MSE MAE r2 MSE MAE r2 MSE MAE r2

NFQ 71.63 6.09 0.50 41.62 5.16 0.71 49.84 5.51 0.65

VFQ 47.51 5.07 0.64 41.50 4.84 0.68 56.81 5.49 0.57

LQM 183.00 9.35 0.72 181.50 9.66 0.72 281.15 12.65 0.56

5 Evaluation

Experimental setup. We use NIST SD 302 [Fi18a] and SD 301 [Fi18b] fingermark im-

age datasets. Both datasets contain fingermarks, lifted from various surfaces by trained

forensic experts in a simulated environment. To better capture the properties of the whole

spectrum of friction ridge quality, we use fingermark as well as fingerprint images to train

the models. We split the data into a training set of 10,000 fingermarks (SD 302) and 2,000

fingerprints (SD 302), and a test dataset of 1,200 fingermarks (SD 301). The distribution

of scores attributed to fingermarks by the three quality values is shown in Fig. 3. We evalu-

ate the performance of the three trained ML models with common regression metrics. We

monitor the Mean Squared Error (MSE), as well as the Mean Absolute Error (MAE) to

reduce the effect of the predicted outliers. To assess the correlation between the predicted

and ground-truth quality values, we also calculate the coefficient of determination r2.

Results and comparison. By using the annotations from existing quality assessment

methods NFIQ 2.1, VerifingerQ, and LQmetric, we produce three models, which we label

NFQ, VFQ, and LQM, respectively. The results are shown in Table 1. Based on the metrics

alone, the random forest regressor was able to approximate fingermark quality the closest

for all annotated sets of scores. Neural network and SVR performed slightly worse on av-

erage. The neural network model was able to estimate VerifingerQ and LQmetric scores

better while, in contrast, the SVR achieved better results on NFIQ 2.1 scores.

There are notable differences in MSE and MAE metrics between models trained on differ-

ent sets of scores, particularly LQM stands out out of the three. This, however, is due to the

different distribution spread of the annotated scores. A more comparable metric here is r2,

which shows the amount of variance, that can be explained by the learned model. Despite

higher MAE and MSE metrics, the r2 achieved with LQmetric scores is the highest, which

means the correlation of predicted scores with original scores is higher. The high r2 score

of around 0.7 suggests that the assembled feature vector is able to capture the properties of

all quality assessment algorithms, which were used to annotate the data. Overall, the VFQ

model, trained using random forest, achieves the smallest MSE and MAE values. While

the same metrics are slightly higher for NFQ and LQM random forest models, the coef-

ficient of determination r2 is higher, which indicates predicted NFIQ 2.1 and LQmetric

scores are better correlated with the ground-truth values in comparison with VerifingerQ

scores.
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Fig. 4: Random forest predictions. The models are trained using (a) NFIQ 2.1, (b) VerifingerQ, and

(c) LQmetric quality values. All models appear to slightly overestimate the lower quality fingermark

values and underestimate higher quality fingermarks, as indicated by the red regression line. Lighter

color indicates larger error between the prediction and ground truth values.

In Fig. 4, we show scatter plots of predicted and ground-truth quality scores for the best

performing random forest regressor. The NFQ model forms the most uniform distribution

with only a few outliers and shows a clear trend, following the ideal diagonal line. The

VFQ model shows a similar picture with small differences. First, there is a gap with no

values in the bottom left corner of the graph, which exists because 10 was the lowest score

that VerifingerQ attributed to fingermark images. The exception are a few examples where

the method failed and a score of 0 was assigned instead. In contrast with the NFQ, the

VFQ attributes a wider range of quality values. Finally, the predictions of the LQM model

are most scattered across the spectrum but still follow a clear trend. The reason again is

due to the larger variance in initial annotations. The red regression line is displayed for

all models and shows that all models tend to slightly overestimate bad quality fingermarks

and underestimate good quality fingermarks. Around the area, where the regression line

crosses the ideal diagonal line, the models are most accurate in their predictions. The exact

location of crossing is at a quality value of 20.0 for the NFQ model, 24.1 for VFQ model

and 24.7 for the LQM model. These values are consistent with the distributions annotated

quality values, where the majority of fingermark examples are considered to be of lower

quality, as shown in Fig. 3.

These experiments show how the feature vector, constructed using the AFQA toolbox, can

capture the properties of NFIQ 2.1, VerifingerQ and LQmetric quality assessment meth-

ods. Since our toolbox implements the majority of NFIQ 2.1 features, the compatibility

between NFIQ 2.1 and our trained model was expected. We do not know how Verifinger

calculates their quality values, but the AFQA toolbox features are able to represent the

properties of their qualtiy assessment method well. Finally, the LQmetric was designed

specifically for assessing the quality of fingermarks and like the remaining 2 methods,

our feature vector can capture its properties. This means that the AFQA toolbox features

are sufficient for representation of fingerprints as well as fingermarks. These models will

serve as as a baseline for the future development of a new, independent, and open-source

fingermark quality assessment methods.
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(a) VFQ top 3 (b) NFQ top 3 (c) LQM top 3

Fig. 5: Qualitative comparison between random forest models. We demonstrate model capabil-

ities based on actual examples from the SD 301 dataset. Ordered from top to bottom, we display

fingermark images, which were given highest quality scores by (a) the VFQ model, (b) NFQ model,

and (c) LQM model. For each image, we provide scores for all three models in format ”MODEL:

predicted value (true value)”. We can observe that the most consistent is the VFQ model, which

attributes high value only when clear ridge structure is present.
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Qualitative evaluation. For the best performing random forest model, we visualize some

of the examples from the test dataset together with their respective predicted and ground-

truth quality values. This is shown in Fig. 5. For each model, we show the top three finger-

marks based on their predicted quality value.

We begin with the (a) column examples, which the VFQ model considers to be of best

quality. All of the examples contain a clear ridge structure, which could be easily recov-

ered with various enhancement methods. The width of ridges and valleys is uniform and

the area of the impression is relatively large. In the middle column (b) are top examples

based on the NFQ model. Here we see examples with a large amount of high frequency

ridge-like formations, which are in most cases not actually friction ridges, but rather specks

or smudges. The NFIQ 2.1 method is in essence not intended to be used with fingermarks,

which might explain why the trained model cannot differentiate between real ridges and

impression distortions. In the right column are top quality examples based on the VFQ

model. Here we observe a stronger bias toward fingermarks with a darker average color.

It appears that the middle fingermarks contains no recoverable friction ridge, but the LQ-

metric falsely detects the high frequency background patterns as friction ridge and conse-

quently assigns to it a high quality value. Another comparison can be made between VFQ

and LQM. As discussed, VFQ model assigns good quality to fingermarks with high clarity

in the left column (a), but LQM scores for the same marks are more proportional to the

area of the visible friction ridge, giving the smaller fingermark a smaller estimate, despite

good quality of ridges.

The predicted values for these examples are a relatively close approximation of the ground-

truth scores. However, our intent here was not to evaluate the suitability of individual

methods for the task of fingermark quality assessment. As apparent from the qualitative

results, each method assigns quality based on different friction ridge features, which can

result in high differences between scores for a singe fingermark. To leverage the collective

power of multiple quality assessment methods, a fusion of predicted scores could improve

the overall consistency of the quality assessment process and produce even more objective

quality values for fingermarks.

6 Conclusion

In this paper we proposed the AFQA toolbox for fingermark analysis, which contains a

large collection of established algorithms, intended for friction ridge feature extraction, as

well as various pre-processing for segmentation and enhancement. By making the tool-

box open-source, we want to improve the accessibility of existing methods and the repro-

ducibility of future work for the biometric and forensic communities.

We demonstrated the usability of the toolbox by extracting friction ridge features and cre-

ating a compact feature vector to represent individual fingermarks efficiently. We then

trained three baseline fingermark quality assessment models, based on annotations from

existing methods, and evaluated them on a public dataset. The results indicate a high com-

patibility between the proposed feature vector and the inner workings of existing friction

ridge quality assessment methods.



Fingermark Quality Assessment Toolbox

In the future work we plan to expand the toolbox with additional algorithms and better

define, what friction ridge properties influence quality the most. We also plan to make use

of more contemporary ML methods, such as deep learning, with the objective to further

improve the fingermark image quality assessment.
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