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Adapting the TPL Trust Policy Language for a Self-Sovereign
Identity World
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Abstract: Trust policies enable the automated processing of trust decisions for electronic transactions.
We consider the Trust Policy Language TPL of the LIGHTest project [Mö19] that was designed
for businesses and organizations to formulate their trust policies. Using TPL, organizations can
decide if and how they want to rely on existing trust schemes like Europe’s eIDAS or trust scheme
translations endorsed by them. While the LIGHTest project is geared towards classical approaches like
PKI-based trust infrastructures and X.509 certificates, novel concepts are on the rise: one example is
the self-sovereign identity (SSI) model that enables users better control of their credentials, offers
more privacy, and supports decentralized solutions. Since SSI is based on distributed ledger (DL)
technology, it is a question of how TPL can be adapted so that organizations can continue to enjoy the
benefits of flexible policy descriptions with automated evaluation at a very high level of reliability.

Our contribution is a first step towards integrating SSI and the interaction with a DL into a Trust Policy
Language. We discuss this on a more conceptual level and also show required TPL modifications. We
demonstrate that we can integrate SSI concepts into TPL without changing the syntax and semantics
of TPL itself and have to add new formats and introduce a new built-in predicate for interacting with
the DL. Another advantage of this is that the “business logic” aspect of a policy does not need to
change, enable re-use of existing policies with the new trust model.
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1 Introduction

Automated trust decisions are an essential component of many business and government
processes. When Alice sends an electronic transaction to Bob, the latter must verify Alice’s
signature on the transaction, in particular, that it is the person claimed here and it is legally
binding. That, in turn, relies on trust in the organization that certified Alice in terms of a
credential or in an organization that translates this trust in some way. Bob’s prerogative is to
determine his policy, i.e., which issuers or trust schemes to trust and what requirements to
ask from Alice.
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The trust verification system introduced by the LIGHTest project [BL16] enables this: a
high level of assurance, a rich and flexible Trust Policy Language (TPL), and automated
policy verification. In this context, the term transaction is used in a quite liberal way: it can
include, for instance, a bid in an auction house or a simple login at an online system.

The Trust Policy Language was introduced by Mödersheim et al. [Mö19] inspired by
existing concepts of trust policy systems [BFG10; DD10; GN08; He00; LFG99]. Using
a policy language is obviously more flexible and declarative than rules hard-coded in an
implementation. TPL is in particular based on logic-programming and uses a Prolog-style
syntax and semantics, allowing to separate “business logic” from lower-level aspects of the
evaluation like interfacing with trust servers.

Centralized trust and identity management approaches represent an attractive target for
criminals and cyber war [Fr20]. Furthermore, storing identity data in centralized data silos
increases the likelihood and impact of data breaches [Be17; Be20; Th17]. For this reason,
in recent years, more decentralized trust management architectures caught the research
community’s attention.

Our goal is to integrate support for such modern identity solutions with TPL and trust
policies in general. We focus on two concepts: distributed ledgers (DL) and self-sovereign
identity (SSI). DLs decentralize storage and governance helps to mitigate issues like a
single point of failure, split-world attacks, and the loss of identity retention [Ko20]. SSI
describes the concept of storing identities decentralized at the owner, also called holder,
instead of centrally at an identity provider. The SSI community furthermore introduced
several concepts regarding credentials [SLC19] and identities [Re21; SS20] while ensuring
interoperability, privacy, and decentralized storage by combining SSI with DLs and other
promising technologies (e.g., zero-knowledge proofs).

In this paper, we present a vision of bringing LIGHTest’s world of automated trust decisions
together with novel concepts of SSI and DLs. Our contribution is to show how this integration
can be made without changing the syntax and semantics of TPL itself. That has several
advantages. First, the tools based on TPL do not need substantial modification: the logical
evaluation stays the same, and only new modules for the interfacing with the DL and parsers
for new document formats are needed. Indeed, the connection of the theorem prover RP-

that provides LIGHTest trust decisions with an independent verification does not require
any changes. Second, a policy’s “business logic” does not have to change either. That
makes it possible to formulate policies accepting classical eIDAS credentials and modern
SSI-credentials in a uniform way, making the lower level only a “technology-choice”.

The rest of this paper is structured as follows: In Sect. 2 we give an overview of DL and
DL-based Trust Management, SSI, and TPL. We discuss our position on extending TPL for
the DL/SSI world in Sect. 3 and show the extension by example in Sect. 4. We discuss the
support of additional SSI concepts and conclude the paper in Sect. 5 with an outlook into a
concrete implementation.
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2 Background

Distributed Ledger (DL)-based Trust Management A distributed ledger (DL) is a
decentralized data storage model. The data is stored redundantly at several distributed nodes
maintained by different entities, improving resilience. Each node preserves independent
control, and they agree on a common state by running a consensus protocol [Xi20]. A DL is
often referred to as “blockchain”, although it indicates a subset of the ledger technology.
Access-wise, DLs support a large spectrum of models, mostly grouped and described by the
terms public, private, permissionless, and permissioned [Zh18].

The Self-Sovereign Identity (SSI) community aims to replace centralized or federated
identity concepts [ZZS14] with a decentralized model, i.e., keeping the identity in the
holder’s sole possession [Ab17]. In the SSI model, a user creates a Decentralized Identifier
(DID) for its identity [Re21; SS20] and publishes it by defining a DID document (DIDoc)
containing the DID, a corresponding public key, and other application dependent information.
That is often done using a DL.

The vision of SSI is that any party can certify attributes of any other party, e.g., a higher
education institution can accredit graduation to a student, or an interior ministry can
attest someone’s date of birth. For such certifications it is common to use the Verifiable
Credentials (VCs) data model [SLC19]. This specification defines a generic way of
packaging claims and the corresponding issuing authority in a signed JSON document.

Trust Policy Language (TPL) In a previous publication [Mö19], we introduced TPL to
enable service providers to flexibly define and run an automated process for deciding when
to accept a transaction, e.g., based on whether the signatures and certificates that come with
the transaction are sufficient for the service providers to consider the transaction’s sender
trustworthy. TPL was initially created in the context of the LIGHTest project [BL16; Ro17;
Wa19].

A TPL policy is a list of Horn clauses in the syntax of Prolog. Each Horn clause is in the form
?(C) :- @1 (D1), ..., @= (D=).meaning: if all the @8 (D8) are true, then also ?(C) is true. We refer
to the Horn clauses as rules. A set of rules of the form ?(C) :- @1 (D1), ..., @= (D=). for the
same ? defines the predicate ?. Rules can be evaluated in the same way as Prolog would: To
see if a query ?(B) succeeds, find a suitable rule; e.g. the above ?(C) :- @1 (D1), ..., @= (D=). if
B and C can be unified. Then apply the resulting unifier to all @8 (D8) and evaluate them; if the
evaluation for the subqueries evaluates to success, then we say that the original query also
evaluated to a success. If that is not the case, then try again with the next suitable rule if any
such exists. The subqueries are evaluated in the same way by recursion, except for the case
where a @8 is a so-called built-in predicate, i.e., a predicate that interacts with, e.g., servers
or formats. In that case, the interaction is performed, which either results in a success or a
failure. We notice that the rules define the policy in a positive way: the transaction is rejected
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if and only if in every applicable rule at least one of the conditions is not met. For a policy
where the above procedure takes too long, we reject the transaction based on a timeout.

TPL features built-in predicates which essentially wrap context-specific discovery and
verification logic. In the LIGHTest context that includes all the interactions with Europe’s
eIDAS and comparable trust schemes. The Automated trust discovery and the verification
of trust status information use DNSSEC [Ar05] for security and authenticity protection.
Therefore, the application of TPL in LIGHTest focused on centralized PKI, although means
for a trust translation between different trust schemes have been presented. For a more
in-depth description see our previous publication on the topic [Mö19]).

3 Concept

In this section, we introduce our vision of an SSI extension to the TPL system. We give
an overview of the process flow typical in the SSI world to create and register an identity,
acquire credentials of identity attributes, provide them with legal value, and use these
credentials to authenticate at service providers (SPs). At the same time, we show how
this flow integrates into the TPL infrastructure. Further, we discuss the policy system’s
functionalities and show the extensions needed to support the described SSI model. Finally,
we conclude the chapter with a discussion on the consequences concerning accountability
of integrating TPL with SSI.

3.1 Step by Step Flow

To derive qualified identity credentials for our purpose in SSI, we utilize the process
introduced by Abraham et al. [Ab20]. A holder (user holding a credential) needs to generate
a decentralized identifier (DID), and a corresponding DID document, let the DID document
get registered at a DL, and acquire legal identity credentials. Only then the holder can
attempt to authenticate herself to a service provider (cf. Fig. 1).

To generate a DID, the holder first generates a public/private key pair. From the public
key, they derives a decentralized identifier (DID) that can refer to them as the holder in a
privacy-friendly way. The holder can then choose what credentials she wants to obtain for
this DID, e.g., one certifying only their birth date.

To acquire credentials for their identity attributes, the holder first authenticates at an Identity
Provider (IdP) such as their government’s E-ID system. Additionally, the holder needs to
prove the ownership of their DID to the IdP. That is done by initiating a challenge-response
protocol with the IdP using the holder’s DID keys. The IdP then uses the public key from the
transmitted DID document to verify the signature that resulted from the challenge-response.
After the holder has successfully proven the ownership, the IdP system generates various
identity credentials. Each of those credentials contains one of the holder’s identity attributes.
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Fig. 1: Architectural overview of our concept. After retrieving credentials from the identity provider
(IdP), the VC Holder sends an electronic transaction (including the verifiable credentials) to the service
provider (SP) and proves ownership of their DID. The service provider then uses an Automated Trust
Verifier (ATV) to interpret the TPL policy, resolve the DID document using a DL, and forms an
automated trust decision about the transaction.

The VCs are bound to the holder by adding their DID as a credential subject. The IdP system
signs the credentials and sends them to the holder. The IdP also adds the holder’s DID
documents to the DL, enabling retrieval by all other nodes.

Using SSI, a holder can now authenticate to a service providerwith the registered DID and
the obtained identity credentials. First, the holder provides one or more identity credentials
to the service provider, which the service provider can use for authentication. The holder
also provides additional transaction information, signed with the secret key corresponding to
their DID. The holder also proves their DID ownership to the service providerby including
a challenge provided by the SP in the signed transaction. To verify the signature on the
transaction, the service provider discovers and retrieves the holder’s DID document from the
DL and uses the contained public key. To ensure a qualified issuer issued the holder’s identity
credentials, the service provider needs to authenticate the issuer. In our case, the issuer
is the IdP. That ensures that the IdP is indeed a qualified issuer and that it indeed signed
the credentials. If this authentication succeeds, the service provider trusts the attributes
contained in the credentials.

In LIGHTest this authentication uses a trust infrastructure, e.g., the eIDAS trust scheme. To
that end, the service provider uses an automated trust verification system (ATV). The ATV
uses TPL to interpret the holder’s policy that enables the definition of custom trust rules.
TPL’s built-in predicates allow specifying queries to servers that the ATV must perform.

Adding SSI Support: To support the SSI model, we introduce the new built-in predicate
resolveDID. With this predicate, users can create policies that use information stored on the
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DL (cf. Sect. 3.3). Further, we add support for several SSI data-structures by introducing
new TPL formats for each of them (cf. Sect. 3.2).

We show that all necessary modifications can be made within the extensible built-in predicate
and formats system of TPL. Hence, no syntax changes are needed, and formal properties of
TPL and the accountability of policy evaluations are not weakened, as shown in Sect. 3.4.

3.2 New TPL Formats

In TPL, the concept of formats is used to connect policies with parsers that extract values
from complex data formats and ensure compliance with data schemas [Mö19]. These
values can be concrete numbers, constants, or of some format themselves. The extract
predicate is used in a policy to extract values, e.g. we write extract(Form, certificate,
Certificate) to extract a certificate from a form into the variable Certificate. The special
key format is used to specify what format we expect, e.g. we write extract(Certificate,
format, x509) if we require the certificate to be an x509 certificate. Consequently, to make
additional data used in SSI accessible in TPL, we introduce two new formats:

ssi_credential is the format for Verifiable Credential (VC). The format contains the VC’s
fields and supports verification of the VC’s signature. For example, if we have a VC with a
birthday attribute, we can directly call extract(Credential, format, ssi_credential),
extract(Credential, date_of_birth, Birthdate) to extract the birthdate to the variable
Birthday. This is only an example: different formats for different VC contexts can exist.

ssi_diddoc is the format for DID Documents. It contains names from the name-value of
the DID Document. For example, if we want to access a corresponding public key, we
specify extract(DIDDoc, format, ssi_diddoc), extract(DIDDoc, pk, PK). Similar to
the ssi_credential format, for each context different a DID document format may exist,
supporting different versions of the DID specification (such as w3id.org/did/v1).

3.3 New TPL Predicate

Built-in predicates wrap functionality that is executed by the ATV and not inside TPL, such
as lookups and signature verifications. Built-in predicates may return their result in the
variables that have been passed to the call (output parameters). For our extension to SSI, we
introduce one additional built-in predicate:

resolveDID(DID subject, min_blockage, out: DID document) takes three arguments:
The first argument is the DID to resolve. The second argument specifies the minimal age of
the block. On call, the ATV will try to look up the DID document at the DL and, on success,
return the result to the last argument’s variable. If a ledger-based system (like in this paper)
is used, the block age parameter can be seen as a choice of assurance level regarding the
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DID document because a young block could be dropped as the blockchain grows, while an
older block is more established and is unlikely to drop out. That means the higher number
we choose, the more sure we will be that the block is not dropped.

3.4 Verification and Accountability

In [SM20] we investigated how we can formally verify aspects of trust decisions and make
them accountable: for instance, in case a business transaction enters a legal dispute, it is
valuable to have a precise argument available consisting of all data, especially involved
credentials, and the policy rules upon which a decision was made.

Obviously, there are several problems that such a package cannot solve. First, the author of
a trust policy may have made a mistake so that the trust policy does not truly reflect the
business or organization’s needs. Second, there may be problems in the implementation, like
an overflow problem in a document parser. Third, especially when we look at an electronic
document decades in the future, today’s cryptographic algorithms like signature schemes
may be broken. Fourth, when retrieving trust information from a server, it may be later
impossible to prove that this server indeed gave a particular answer at the time of the policy
decision. Here distributed ledger technology can give an advantage (and partially also with
respect to the third problem) because it has interesting archival properties since as long as
all but the few latest blocks are undisputed, we can reconstruct the state at every given point
in time. Moreover, due to the distributed nature, we do not rely on a single party (that could,
e.g., be hacked or out of business). However, with the distributed ledger technology come
also different problems, most notably, a policy decision is made with respect to a block that
has not yet “aged” sufficiently and is ultimately not included in what becomes the accepted
chain of blocks. For this reason, we add the min_blockage parameter to the new resolveDID
predicate to specify which block age is required for relying on an entry.

A problem we can solve concerns the correct implementation of trust policy’s semantics in
the decisions of the automated trust verifier ATV. Suppose, due to a bug, the ATV accepts
a transaction that should be rejected according to the policy semantics. Building on the
paper by Schlichtkrull; Mödersheim [SM20] results in a solution to this problem: the ATV
records a proof certificate, i.e., a package consisting of a set of relevant facts about the
transition, the state of the world at the given time, and the policy; then one can check if
the acceptance indeed logically follows from the policy using an independent and verified
software tool named RPX introduced by Schlichtkrull et al. [SBT19; Sc20]. It is extremely
unlikely that a logical mistake in the ATV decision process gets erroneously accepted by
this “independent pair of eyes”. In particular, we have no semantic gap, as the semantics of
TPL rules can directly be formulated as first-order sentences, and thus in the native language
of RPX . Since this logical deduction is independent of the concrete technology (like formats
and cryptography) that implements the facts, it works immediately with the extensions of
TPL for SSI and DL.
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4 Age Verification Example

We now give an example of the concept introduced in Sect. 3. To illustrate the concepts,
we use a social online platform for teenagers. In this fictional platform, teenagers can join
without revealing their legal identity, but they need to be in their teens (older than 12, not
older than 18) to ensure only teenagers participate in the discussions. Since other identity
attributes of the teenagers are not relevant, it is sufficient to provide an age credential. This
age credential only contains the date of birth of the teenager and no further information.

The age credential is a VC containing the user’s DID as subject and the date of birth
encoded in the credential’s credentialSubject field. To add (legal) value to the credential,
a qualified issuer must issue it. A government authority or a similar trusted institution can
be a legitimate issuer for such claims.

accept(Form) :-

extract(Form, format, registrationFormat),

extract(Form, birth_credential, Credential),

extract(Credential, format, ssi_credential),

extract(Credential, date_of_birth, Birthdate),

calculateAge(Birthdate, Age), Age >= 13, Age <= 18,

extract(Credential, dIDsubject, DIDsubject),

extract(Credential, dIDissuer, DIDissuer),

get_DIDdoc(DIDsubject, PKu, DIDDocSubject),

verify_signature(Form, PKu),

get_DIDdoc(DIDissuer, PKi, DIDDocIssuer),

verify_signature(Credential, PKi),

check_issuer(DIDDocIssuer).

get_DIDdoc(DID, PK, DIDDoc) :-

resolveDID(DID, 3, DIDDoc),

extract(DIDDoc, format, ssi_diddoc),

extract(DIDDoc, pk, PK), verify_signature(DIDDoc, PK).

check_issuer(DIDDocIssuer) :-

extract(DIDDocIssuer, trustScheme, TrustSchemeClaim),

trustscheme(TrustSchemeClaim, trustedTrustScheme),

trustlist(TrustSchemeClaim, TrustListEntry),

extract(TrustListEntry, pubKey, PKi),

verify_signature(DIDDocIssuer, PKi).

List. 1: TPL policy sketch for our exemplary age verification use case
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4.1 Example Policy

We show an example policy in List. 1 corresponding to the age verification use case (cf.
Sect. 4). A user sends a transaction containing a registration request registrationForm to
the discussion platform. The discussion platform uses the given policy and an automated
verification tool to assess if the user is in the right age span to be admissible to the platform.

The input parameter passed to the TPL interpreter (Form) contains the registration request,
signature, and credential of the user. After ensuring the incoming transaction has the correct
format, it checks the user’s age by extracting the date of birth from the birth credential. Then
it uses the predicate calculateAge to derive the user’s age before it verifies if the age is
within the specified range. We omit a concrete explanation of the calculateAge predicate
since it is of no interest to this discussion.

Next, the built-in predicate extract is used to retrieve the DID of the sender (credential
subject) and of the credential’s issuer. These two DIDs are then used with the new built-in
predicate resolveDID (cf. Sect. 3.3) to retrieve the DID documents of the two entities. This
step also takes the minimum age of the DID document into account, as specified by the
second parameter. Each DID document contains a public key corresponding to DID, which
is first used to verify the DID document itself. Further, the sender’s key is used to verify the
transaction, and the issuer’s key to verify the credential. If all those checks succeed, there is
a valid trust chain between the issuer and the registration request. The interpreter proceeds to
authenticate the issuer itself. In our example, we authenticate the issuer in check_SSI using
a common LIGHTest authentication flow [Wa19] and a trust scheme trustedTrustScheme,
showing that both centralized and decentralized world can be used together in one policy.

5 Future Work

5.1 Towards an implementation

We have shown that TPL’s extensibility supports novel trust and identity management
concepts like SSI. To give more insights into this adaption’s consequences and explore
further extensions or modifications to the TPL language, we propose implementing the
stated concepts following an agile approach. Doing so supports the verification of the stated
concepts while at the same time keeping up with the ongoing development of SSI concepts
to ensure compatibility. Given that the first version of TPL is currently interlocked with
the LIGHTest toolchain, we propose a more stand-alone implementation, enabling other
projects to use the TPL interpreter. Nevertheless, LIGHTest provides powerful concepts
which are essential to TPL. It is unavoidable and reasonable to keep building on these
concepts. Finding the middle ground might be challenging.
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5.2 Outlook

In this section we discuss further possibilities and future work in the intersection of
distributed trust management and trust policies.

Issuer accreditation While authentication of a credential is performed by resolving and
retrieving the signer’s DID document and verifying the credential’s signature, a DL is
not always used to authenticate the signer or their respective issuer. On the one hand, if a
consortium of qualified entities operates the ledger, the fact alone that a DID is registered on
the DL provides legal value to the DID. The same is true for (identity) credentials registered
on such a “qualified ledger” – as only qualified entities can add credentials to the DL, the
registration alone acts as a certification of the credential’s content. Thus, authentication of
issuers can be achieved by supporting the respective discovery means using a DL.

On the other hand, if the used ledger is a public ledger such as the commonly used
“Ethereum mainnet", other means are needed to define which entities represent qualified
trust (service) providers or otherwise relevant entities. In the end, it depends on the service
provider’s local rules, laws, and other regulations which issuers are trusted by them. So
it makes sense to anchor these rules in a trust policy. For instance, the service provider
could define all qualified trust service providers as defined by their existing and trusted
trust scheme to act as SSI (credential) issuers. In the example shown in Sect. 4, we sketch
out how such a definition of a trusted scheme could be integrated into a TPL trust policy.
To extend this (centralized) trust scheme-based authentication framework, we propose to
support decentralized frameworks such as those realized by a smart contract-based web of
trust [Mo21].

Privacy-preserving features In our example (cf. Sect. 4), even the date of birth provides
more information than needed. The only relevant information is the 1-bit of information
whether a person is in the defined age-range. Thus, more privacy could be added by
supporting, e.g., range proofs, which we intend to do in a later version of TPL.
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