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Abstract: Event-based systems (EBS) are used to detect meaningful events with low
latency in surveillance, sports, finances, etc. However, with rising data and event rates
and with correlations among these events, processing can no longer be sequential but
it needs to be distributed. However, naively distributing existing approaches not only
cause failures as their order-less processing of events cannot deal with the ubiquity of
out-of-order event arrival. It is also hard to achieve a minimal detection latency.
This paper illustrates the combination of our building blocks towards a scalable pub-
lish/subscribe-based EBS that analyzes high data rate sensor streams with low latency:
a parameter calibration to put out-of-order events in order without a-priori knowledge
on event delays, a runtime migration of event detectors across system resources, and
an online optimization algorithm that uses migration to improve performance.
We evaluate our EBS and its building blocks on position data streams from a Realtime
Locating System in a sports application.

1 Introduction
High data rate sensor streams occur in surveillance, finances, RFID-systems, click stream

analysis [BBD+02], sports [GFW+11], etc. Event-based systems (EBS) turn the high data

load into smaller streams of meaningful events, filter, aggregate, and transform them into

higher level events until they reach a granularity appropriate for an end user application or

for triggering some action. EBS are as manifold as their requirements with respect to work-

loads and response times. For instance, a warehouse management system must focus on

the interface against which users program detection rules. It must hence interpret queries

at runtime. In contrast, EBS on distributed sensor nodes must avoid communication to

save energy and must filter and aggregate early as memory is only available sparsely.

This paper addresses EBS that also process data from a high number of sensors but that

have sufficient CPU power and main memory, as for instance in finance, autonomous cam-

era control (e.g. sports), or safety critical systems. When distributed processing of event

detection can be made fast enough, actions can be triggered with low latency. Consider the

soccer event dependency graph to detect a shot on goal from position sensor data provided

by a Realtime Locating System (RTLS), see Fig. 1. Since even the detection of proximity

in layer 4 (depending on the number of tracked transmitters) already consumes a machine’s

processing power, sub-event detectors must be spread to other nodes.
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Figure 1: Event processing hierarchy.

Distribution of EDs across several ma-

chines is difficult. As events are gen-

erated at different network points and

are no longer timely synchronized, de-

lays and out-of-order events are pre-

dominant.1 Thus, distributed EDs pro-

cess events incorrectly. As a-priori de-

fined parameters for event ordering do

not help, we derive low-latency order-

ing parameters at runtime, see Sec. 4.1.

For any predefined allocation of EDs

to machines, unexpected events (stock

trades, moves in a sports game, etc.) easily cause load imbalances and exhausted CPUs.

Sec. 4.2 presents a technique to migrate an overloaded ED at runtime to another node,

carefully considering the challenging timing delays.

Often there are hundreds of EDs linked by event dependencies and with a-priori unknown

loads. But in order to trigger actions, e.g., smooth camera movements, by events the de-

tection latency must be minimal. A poor allocation of event detectors (EDs) over available

nodes may cause high detection latencies that are impractical to automatically trigger ac-

tions. An optimal allocation of EDs to nodes can only be found at runtime. As there are no

polynomial time solutions and as greedy approaches often end up in local optima, Sec. 4.3

presents a latency-minimizing allocation heuristic.

We discuss related work in Sec. 2, sketch the architecture of our system in Sec. 3, and

present the technical contributions of our EBS in detail in Sec. 4. Our techniques work

well on position streams from an RTLS in a soccer application, see Sec. 5.

2 Related Work
The Borealis Stream Processing Engine [AAB+05] is the only other EBS we know that

also combines stream revision processing, optimization, and fault avoidance [HXZ07,

TcZ07]. Its stream revisioning by Cerniack et al. [CBB+03] uses so-called time-travels

and processes the events that are buffered when revisions occur. However, for predom-

inant out-of-order events almost all generated events must be revised, often triggering a

cascade of revisions along the detector hierarchy. As this puts pressure on the memory

management, Borealis limits the memory for revision processing and drops packets that

cannot be revised to implement an inherent load shedding. Of course, the resulting corrupt

states can make the EDs fail. In contrast, we dynamically determine the minimal buffer

sizes that avoid such failures and revision cascades. For the details of our out-of-order

event processing and a comparison to specific related work, see [MP13b].

Whereas the Borealis box-sliding operator migration from the same paper [CBB+03] can

only move EDs to the lower level ED’s node or to the higher level ED’s node (because it

is not order-preserving), we present a technique that can migrate EDs between arbitrary

1Delays are not only introduced by network or CPU. Events that are generated with earlier time-stamps than

the time-stamps of the events that cause them have a detection delay and can only be inserted into the event

stream long after they have actually happened. A technique for event ordering must also address this delay type.
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nodes, independent from the detector hierarchy. More details and a more thorough discus-

sion of related work in the area of migration can be found in [MP13a].

Xing et al. [XZH05] add dynamic load distribution to Borealis. Their greedy approach mi-

grates filter operators pair-wise and minimizes end-to-end latency by lowering load vari-

ance and by increasing load correlations. They periodically collect CPU load statistics and

either a one- or two-way algorithm migrates the operators. Whereas their greedy approach

does not consider network latencies but only CPU loads and is likely to just optimize

towards a local optimum, our technique migrates several EDs at a time and obtains a sig-

nificant benefit in performance that is closer to the global optimum.

Pietzuch et al. [PLS+06] take a-priori statistics of event loads and calculate an optimal

allocation of EDs in the network. Their method cannot be applied since usually event

loads are unknown in applications that analyze highly dynamical data. Threshold-based

techniques [YCJ06] optimize availability by monitoring network, CPU, and memory loads

but do not particularly care about detection latency or bandwidth minimization.

3 Architecture

Figure 2: Distributed publish/subscribe EBS.

Fig. 2 depicts our distributed pub-

lish/subscribe-based event processing

system. It is a network of several ma-

chines that run the same middleware

to process sensor readings that are

collected by a number of data distri-

bution services (DDS), e.g., antennas

that collect RFID readings. EDs are

spread across the machines. An ED

communicates subscriptions, publi-

cations and control information with

the middleware that does not know

the ED’s event pattern; the ED is un-

aware of both the distribution of other

EDs and the runtime configuration. The middleware implements a push-system with un-

known subscribers. At system startup the middleware has no clue about event delays on

other hosts but just notifies other middleware instances about event publications.

As it is difficult to manually implement EDs that process out-of-order events and devel-

opers often do not know the delays that their code may face at runtime, the middleware

provides a personal event ordering unit per ED. For that, it extracts a local clock out of the

event stream, see Sec. 4.1. The middleware is thus generic and encapsulated, and does not

incorporate the application-specific event definition of the EDs.

In our application domains all system units that directly communicate with sensors are

synchronized. Therefore there is a way to time-stamp sensor events with a single discrete

time source at the point where they are generated.2

2In warehouse applications, the RFID-readers may synchronize over LAN, time-stamp the sensor readings

accordingly, and push the data packets as sensor events to the network. In locating systems, the microwave signals

of transmitters are extracted by several antennas that are synchronized over fiber optic cables [GFW+11].
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4 Building Blocks
We use the following terminology throughout the rest of the paper:

Event type, instance, and time-stamps. An event type is identified by a unique ID. An

event instance is an instantaneous occurrence of an event type at a point in time. An event

has two time-stamps: an occurrence and an arrival, both are in the same discrete time

domain. An event appears at its occurrence time-stamp ts, or just time-stamp for short.

At arrival time-stamp ats the event is received by a particular node. The occurrence time-

stamp is fixed for an event at any receiver whereas the arrival time-stamps may vary.

Out-of-order event. Consider an event stream e1, · · · , en. Events of type ID are used

to set the local clock. Then ej is out-of-order if there do not exist ei, ek, with ei.id =
ek.id =ID and ei.ats ≤ ej .ats so that ei.ts ≤ ej .ts ≤ ek.ts, i.e., ej .ats does not fit

between the two consecutive clock updates.

Event stream. The input of an ED is a potentially infinite event stream that usually is a

subset of all events, holds at least the event types of interest for that ED, and may include

some irrelevant events as well.

4.1 Self-Adaptive Event Ordering

Our dynamic event ordering builds on K-Slack [LLD+07]. K-Slack assumes that an event

ei can be delayed for at most K time units. For a particular ED the ordering unit that turns

a stream with potential out-of-order events into a sorted event stream uses the maximal

delay K of all subscribed events to configure the size of a buffer for event ordering. The

ordering unit is mounted between the event input stream and the ED, extracts a local clock

clk from the event stream, and delays early events as long as necessary.

While there are EBS that use programmer-configured K-values [LLD+07], we have shown

in [MP13b] that it is both possible and better to measure event delays at runtime and to

configure optimal K-values dynamically. One reason is that EDs in practice often form a

detection hierarchy with an ordering unit per ED so that latencies add up along the hierar-

chy. For instance, to automatically trigger smooth camera movements with events, all the

K’s in the hierarchy must be as small as possible (to steer the camera as early as possible),

and must be as large as necessary to detect all the necessary events in the detection chain.

Overly large K’s result in large buffers and high latencies for EDs further up the hierarchy.

Fig. 3 shows how such an ordering unit works that is initialized

Figure 3: Event ordering unit for an ED.

with K=0. The ED

has subscribed to three

events A, B, and C.

The ordering unit is

mounted between the

event input stream and

the ED. It sets its local

clock clk whenever it

receives events (in this

example we just take A
to set clk). Whenever

clk is updated we esti-
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mate the maximal delay of all events that have been received since the last clk update, and

retro-fit K if necessary. All events that are currently buffered are evaluated and emitted if

they satisfy ei.ts+K≤clk. At the beginning, when A0 and A2 are received, K is still 0,

which means that both events are immediately passed to the output stream. When C1 is

received, it is pushed to the buffer and waits until A4 updates clk. As the delay for C1 is

3=4-1, we set K=3 and relay C1. A4 is buffered at least until clk equals 7. With A6 the

maximal delay of B3 is 3, K holds, and B3 is passed to the ED.

Hence, our method iteratively calibrates K and delays both late and early events as long

as necessary to avoid out-of-order events. We use a λ scaling factor to overestimate K
in relation to the standard deviation of the event delays to avoid sudden delay changes.

We signal increases of K to upper level EDs by sending a pseudo event that passes the

new delay to their ordering units. Two methods to initialize K at runtime so that there

is no initial stumbling in the ordering units can be found in [MP13b]. We discuss space

complexity and give results on the induced latency in a real-world setup in Sec. 5.1.

4.2 Runtime Event Detector Migration

A distributed EBS must somehow spread its EDs over the available system resources.

However, the system behavior can hardly be estimated before runtime and a predefined

allocation may perform poorly. An allocation may even be so poor that event processing

may fail due to network or CPU overload. For instance, think of a rare event that triggers a

cascade in the ED hierarchy for which not much computing power has been pre-allocated.

Detection and event generation then takes considerably longer, causing even more out-of-

order events at higher hierarchy levels. Runtime ED migration can help and also optimize

the detection latency to trigger certain actions, see Sec. 4.3.

(a) Example topology.

(b) Delay δ(e) of event e before mi-

gration, δ′(e) after migration; df is

the forwarding sub-delay.

Figure 4: Runtime migration of EDs.

However, to migrate an ED from one node to

another at runtime, not only requires to send

the ED’s state but also the measured event de-

lays and the size of the reordering buffer, both

of which are affected by the migration. Con-

sider Fig. 4(a). An ED on host N3 subscribes

to four events: A (with 60ms delay), B (with

0ms delay), C (with 20ms delay), and D (with

40ms delay). If a particular delay increases

after migration, the ED fails because the event

ordering uses the original K so that the emit-

ted out-of-order events make the ED fail. For

instance, after migrating the ED to N1 B’s de-

lay grows by 60ms, there is a plus of 50ms for

C, a minus of 10ms for D, and A becomes a

local event without delay. Hence, the previous

delays that configured the K of the ED’s or-

dering unit are no longer valid on N1. Related

work from the areas of virtual machine migration and cellphone handover is insufficient

or introduces long-lasting network or processing overheads [MP13a].
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The key idea of our runtime migration is that the new ED on the host N1 not only sub-

scribes the necessary input events from their sources, but the old host N3 also forwards

them to N1 for a short while, see Fig. 4(b). N1 can then derive the correct order by combin-

ing delay information from events that arrive along two paths and by taking into account

the forwarding sub-delay δf . When migration is initiated, N3 and N1 agree on a moment,

when the ED on N1 takes over and N3 deactivates its ED. Whenever N1 measures an event

delay of a directly received event, it can update its K-value (if necessary/possible) and sig-

nal N3 to stop forwarding that event type. Echoed events are dropped. If the K-value for

the migrated ED changes, we send a pseudo event to the ordering units of upper level EDs,

so that they can adapt their K-value also. More details can be found in [MP13a].

4.3 Runtime Latency Optimization

Our runtime latency optimization moves EDs to improve latencies and, as a consequence,

to also optimize their distribution so that they reduce the ordering unit sizes. As event

streams cannot be predicted sufficiently well, plan-based approaches do not work for on-

line optimization. As greedy approaches often end up in local optima we apply heuristics

to optimize the ED distribution at runtime. This requires continuous monitoring of all

event stream statistics in a centralized optimization master (OM) component. The OM

collects the number of transmitted events for each ID, the measured network latencies to

other nodes, and the number of generated events.

The OM periodically triggers a Cuckoo Search (CS) combined with a particle swarm op-

timizer (PSO) [GL12]. CS models the aggressive breeding behavior of cuckoos that lay

their eggs (an ED distribution) into other birds’ nests (a container to store distribution), and

evicts the original eggs (selecting the fitter ED distribution). The host birds either breed

the eggs or abandon the nest.

The key idea of the algorithm is that in each iteration i≤n, a cuckoo performs either a

lévy flight, i.e., it creates a new solution far away from the current solution (we use a

Levensthein distance between ED distributions), or an ordinary low-distance movement

depending on the solutions found recently. Next, the cuckoo randomly chooses a host

nest for its egg, i.e., a container to store its distribution. The number of nests is fixed

from the beginning. If the chosen nest is not empty, the fitness of both solutions/eggs is

evaluated and the one with lower quality is evicted. The number of nest determines the

number of concurrently existing solutions. The number of cuckoos configures how many

new solutions are generated per iteration. After each iteration, a number of (bad) nests is

replaced by new, empty ones. The lévy flight can be parameterized to control the variance

of solution space scanning. By combining CS and PSO we replace the ordinary movement

with a swarm behavior. The particular particles, i.e., the cuckoos, know each other, and

adapt their lévy flights to reach areas with better solutions. This significantly improves the

results.

Problem formalization. Let n be the number of EDs, m the node count. An allocation

is a three-tuple consisting of an m × n matrix X with xi,j=1 if ED i runs on node j, an

n × n matrix L where li,j is the latency between hosts i and j, and an m × m matrix T
where ti,j is the number of events transmitted from node i to j. The goal is to minimize
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ϕ (X,L, T ) =
m∑
i=1

m∑
j=1

n∑
k=1

xi,k · xj,k · (ct · ti,j + cl · li,j) ,

which describes the cost of the current ED distribution under the runtime measurements L

and T, weighted by ct (emphasis on network transmissions) and cl (emphasis on latency).

Solution. An optimization based on heuristics needs (1) a formal encoding of possible

solutions (individuums), and (2) a fitness function that grades the solution’s performance.

Individuum. In an ED allocation �X = (x1, x2, · · · , xn)
T , with xi ∈ [1;m], an ED i runs

on host xi.

Fitness function. The fitness function is used to grade possible solutions and must project

them onto numbers. The higher the quality f( �X) of a solution �X , the fitter is the indi-

viduum in the evolutionary algorithm. Our function incorporates network latencies and

traffic, and is again weighted by the parameters ct and cl:

f( �X) =
n∑

i=1

n∑
j=1

ai,j · ct · ti,j −
n∑

i=1

n∑
j=1

bi,j · (ct · ti,j + cl · li,j).

ai,j is 1 if EDs i and j run on the same host, i.e., xi = xj , and 0 otherwise. Contrary, bi,j is

1 if EDs i and j run on different hosts, and 0 otherwise. The left part of the fitness function

sums up the cost savings by events that are transmitted locally between EDs and that must

not travel through the network. The right part sums up the cost for ED dependencies that

cause network traffic. Hence, f( �X) grows with locally transmitted events and decreases

with events that are subscribed by hosts with higher latency or with more generated events.

Due to limited CPU power we skip and discard solution vectors that would overload hosts.

5 Performance Results
We have analyzed position data streams from a Realtime Locating System (RTLS) in-

stalled in the main soccer stadium in Nuremberg, Germany. The RTLS tracks up to 144

transmitters at 2,000 sampling points per second for the ball and 200 sampling points per

second for players and referees. Players are equipped with four transmitters, one at each

of their limbs. The sensor data consists of a time-stamp, absolute positions in millimeters,

velocity, acceleration, and Quality of Location (QoL) for any direction [GFW+11].

Soccer needs this sampling rates. With 2,000 sampling points per second for the ball and a

velocity of up to 150 km/h, two succeeding positions may be more than 2cm apart. Hence,

reducing the sampling frequency of position events would make detection of several events

impossible. Since soccer events like pass, double pass, or shot on goal happen within a

fraction of a second, event processing must ensure that events are detected in time so that

a hierarchy of EDs can, for instance, control an autonomous camera system for smooth

camera movements or help a reporter to work with the live output of the system.

5.1 Self-Adaptive Event Ordering

To evaluate the event ordering units we recorded the delays of incoming events for the

Player Hits Ball ED, see Fig. 5(a). These events are Is Near, Is Not Near, both oscillating

between 5 and 45ms delay, and Ball Acceleration Changed with a delay of 1-2ms. With
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Figure 5: K-values over time.

our self-adaptive dynamic K configuration, over 95% of all events are correctly ordered

without a-priori knowledge, see the λ=0 line. There are rare points at which K is too small

and causes a misdetection, see the mismatch crosses, before it is increased. With an over-

fitted K (added safety margin λ=0.5) not a single K misses the maximal event delay, and

the ED is always supplied with ordered events. This ED detects ball hits with a delay of

only 59.8ms whereas a manual K-selection by an expert would cause a latency >500ms.

Hence, with our method smooth camera movements can be triggered early and automati-

cally by events. The memory consumption of our buffering approach is negligible, since

usually only a few milliseconds of events are buffered. The main result of our approach is

to reduce the detection latency.

5.2 Runtime Event Detector Migration

To evaluate the runtime migration we replayed recorded test match data and processed it

in our lab (an ESXi server with a cluster of VMs, each with a 2 GHz Dual Core CPU, 2GB

of main memory, and 1 GBit virtual network communication configured to simulate a real

environment). We migrated an ED that subscribes to four different event types and emits

the pass event. We compared it to classic migration approaches. They either fail, are too

slow, or take too many resources.

Fig. 5(b) shows the K-value of the ED migrated in the classic way (dotted line, K starts

with 40ms). This ED fails 5 times within the first 17 seconds after migration, and when-

ever it fails, K is increased to prevent future misdetections (as dynamic K-slack would

do). In contrast our migration technique lets the migrated ED start with a slightly larger

K and lowers it whenever an event shows up earlier along the direct subscription path.

Hence, our technique not only avoids misdetection as the K-value is always large enough.

The K of the migrated ED is also only 17% too large at the beginning (70ms instead of

the final 60 ms) and melts down quickly. For this example migration, it took 30s for all

events to be detected at least once. Whereas a classic migration has to forward a total of

13,337 packets just for the single ED, our migration only forwards 51 packets and saves

99.6% of the network bandwidth and shipping overhead.

Hence, our method only forwards a minimal amount of events, and the old ED can im-
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Figure 6: Runtime optimization algorithm with two alternating phases.

mediately stop processing, as the new host takes over. Overload situations can always be

mitigated by migration of event detectors to underloaded hosts.

5.3 Runtime Latency Optimization

To evaluate the runtime optimization we created a synthetic event processing hierarchy

consisting of 8 EDs on 2 nodes, see Fig. 6(a). Arrows show event subscriptions, i.e., active

event transmissions from one ED to another. The larger curved boxes depict the optimal

allocation of EDs to nodes. For the synthetic benchmark after every 100s the EDs change

their event subscriptions, i.e., the situation swings back and forth between the two sides

of Fig. 6(a). For the two communication patterns different allocations of EDs to nodes are

optimal.

Fig. 6(b) holds the resulting network load for 300 seconds. The upper straight line shows

the network traffic for a fixed static ED distribution (0, 2, 5, and 7 on node #1, the others

on node #2). The dotted line shows the network traffic of the ideal distribution.

Our runtime optimization (thin line) comes close. It finds the optimal ED distribution

soon after the phases have switched and redistributes the EDs accordingly. Note that our

runtime latency optimization approaches the optimum incrementally. The reason is that

there is a cycle consisting of some measurements, 0.5s of cuckoo search, plus the actual ED

migration. The cycle is repeated as the heuristic may not have found an optimum within

the 0.5s or because the EDs’ dependencies might have changed again in the meantime.

6 Conclusion

The presented building blocks of our EBS enable a low-latency processing of high data rate

sensor streams to trigger actions with low delay. Our heuristics optimize the distribution

of EDs over the available system resources at runtime. Packet loss has no influences on

our algorithm but only on the event detectors. We also showed that our methods work well

on sensor data streams from Realtime Locating Systems (RTLS) in a soccer application.

Future work will incorporate the ability to speculatively process a portion of events that

would normally be withheld for a while due to the strict K-Slack approach. First results

are promising and will further reduce detection latency.
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