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Abstract: Advantages and disadvantages of a dynamic load balancing algorithm
which minimizes Euclidean norm of data migration are discussed. A new effective
algorithm for a dynamic load balancing problem is suggested. The algorithm is
based on a transport problem solving and searching for shortest ways in a graph.
Experimental results for the algorithm are provided.

1 Introduction

The distributed logic simulation is the logic simulation using a network of computers.
Achieving a good load balance between processors of computers is crucial to minimize
time spent for a simulation process. The first step of the load balancing is to cut a
problem: to distribute the parts of the problem between processors. In some cases it is
enough because the balance won’t be changed. But in other cases the load balance
should be periodically restored. There are many methods and algorithms for static and
dynamic load balancing. We refer to review of graph partitioning algorithms [Po96] and
a multilevel algorithm [KK95] for static load balancing methods. For dynamic load
balancing methods see, for example, [AT95], [AT96], [JSL94], and also reviews [De05].

In [HB95], authors suggest a new criteria of optimization for load balancing – a
migration level. The migration level is an amount of data to be transferred between
processors to achieve a load balance. Indeed, after the load balancing algorithm has been
executed a schedule of data or subproblems migration between the processors is ready.
But the data migration needs time, and this time should be also minimized. In this paper,
we focus on methods which allow finding a good load balance and minimizing the
migration level and suggest a new approach to this problem.

2 Definitions

Let P be a number of processors and GP(VP,EP) be a processor graph, where
VP={1,2,…,P} is the set of vertices representing processors and EP is the set of edges.
An edge (i, j)∈EP if data can be transferred from a processor i to a processor j. In a
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distributed simulation a graph will always connected, and in many cases it will be a
clique, because in a computer network any pair of computers can exchange with data.

Let N be a number of subproblems. A subproblem can represent an element of
simulated scheme or a cluster of elements that depends of a simulation problem. Let a
graph GN(VN ,EN) be a problem graph, where VN={1,2,…,N} is the set of vertices
representing subproblems and EN is the set of edges. An edge (i, j)∈EN if the subproblem
j needs information or events from the subproblem i. We assume all subproblems have
equal complexity.

Let C={C1,C2,…,CP} be a partition of the graph GN(VN ,EN). Each Ci⊂VN is computed on
processor i. The subsets Ci and Cj are not intersected, i.e. Ci∩Cj=∅. The problem is to
find new partitioning C′={C′1,C′2,…,C′P} which minimizes concurrently the misbalance,
interprocessor communication and migration level. The misbalance can be found using
one of the following formulas [AT95], [AT96], [DS98]:
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The formula M1(C) presents the difference between the maximum and the minimum
load. If M1(C)=0 the misbalance is absent. The formula M2(C) is the second central
moment of the loads of different processors. This statistical magnitude is difficult to
evaluate, therefore it is used rarely. And M3(C) is the maximum value of processor load.
The maximum load doesn’t tell anything about misbalance directly, but the processor
which has the maximum load will work slower than others. Thus, if the maximum load
will be as minimal as possible the simulation process is the fastest. Others formulas
don’t give such advantages. Also the M3(C) can be easily evaluated, so it is the most
suitable.

The migration level can be evaluated as
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This function sum up the numbers of subproblems to be transmitted from each processor
|Ck|-|Ck\C’k| and the number of subproblems to be transmitted to each processor |C’k\Ck|.
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The factor ½ is needed because each transmitted subproblem is considered twice in the
numerator. Hence, the Q(C) is the number of transmitted subproblems.

In order to facilitate the algorithm development we assume the interprocessor
communications are not important for the task and do not consider it. But in [HB95] it
was noted that the reasoning with such assumption should take into account future
necessity of considering interprocessor communication. To do that, authors propose to
allow data migration between two processors only if there are an edge (i, j)∈EP in
processor graph and such subproblems k∈Ci, l∈Cj that (k,l)∈EN.

Let’s consider a graph G(C,EC), where C is a problem graph partitioning and (Ci,Ci)∈EC

if and only if (i, j)∈EP and the following condition is satisfied: ∃k∈Ci∃l∈Ci((k,l)∈EN). If
there is such Ci in C that li−lavg≥1, one or several subproblems k∈Ci should be
transferred to other part of the problem graph. The target part can be selected only from
the set {Cj|(Ci,Cj)∈EC}. If there is no such Ci that li−lavg≥1 the load balance is achieved.

We use li − lavg≥1 rule to check the necessity of data migration because if li ≤ lavg data
should be transferred to the Ci, but not from the Ci. And if li − lavg<1 only a part of
subproblem should be transferred to achieve the load balance, but the subproblems
cannot be divided. The rule li>lavg cannot be used because in cases with non integer lavg a
processors with the surplus load always exist, so the load balancing will be endless.

3 Minimizing Euclidean norm of data migration

The algorithm which minimizes Euclidean norm of data migration is described in
[HB95]. The authors assume that any subproblem can be infinitely divided and consider
a load as real number. Thus the amount of data to be transferred from the part Ci is
defined as li− lavg.

3.1 Algorithm description

The amount of data to be transferred from the part Ci to the part Cj is denoted as δij
(δij = −δji). To make the balance optimal the amounts δij should satisfy the following
linear system of equations:
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The number of independent equations is less than P, therefore the system of equations
has an unlimited number of solutions. A solution with minimum data migration should
be selected, that is we should
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This problem can be replaced by another system of equations Lλ=b, where λ is a
variable vector of size P, L is a matrix of size P×P, b is a vector of size P:
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A degree of the vertex Ci if the graph (G(C,EC) is the deg(Ci)=|{Ck|(Ci,Ci)∈EC}|.

After the value of the λ vector was found, the data migration amount can be evaluated as
δij =λi− λj.

The load balancing algorithm is [HB95]:

(1) Find the average load and the vector b.
(2) Solve linear system of equations Lλ=b for λ.
(3) The load to be transferred from a processor i to a processor j is λi − λj.

3.2 Algorithm discussion

The algorithm from [HB95] was originally designed for the parallel finite element
solution of PDE’s based on unstructured meshes. The big advantages of this algorithm
are simplicity of implementation and possibility of the parallel implementation on the
same parallel machine which is used for simulation. The authors suppose to use a
parallel machine with sparse interprocessor connections. This means that a degree of
each vertex in a processor graph is small.

In the distributed logic simulation any two processors can usually exchange data using
approximately equal time. Hence the processor graph has an edge for each pair of
vertices. We have studied properties of the algorithm in this case. Let’s consider the full
graph with 5 vertex-processors (see fig.1a) and the processors load is l=(40, 10, 50, 70,
30).
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Fig. 1 Example of the algorithm work on the full graph: a) the initial graph with the processors
load; b) data migration and new processors load obtained using the algorithm; c) an alternative

solution

Using the algorithm we have found λ=(−2.811, −6.811, 1.189, 7.189, −2.811). The data
migration in this case is shown on fig. 1b. We see that the load is balanced. The number
of transferred subproblems is 4+4+4+4+6+8+10+14=54, or QE = 920. But other possible
solution exists (see the fig. 1c) which gives the same load balance but transfers only
10+10+10=30 subproblems (QE = 600). Therefore, this algorithm doesn’t give the best
possible solution for the distributed systems.

The logic simulation has other difference from the finite elements method. The number
of subproblems can exceed the number of processors not much. Let’s consider one more
example to illustrate the work of the algorithm in that case. On the fig. 2a the processor
graph with the small processors load is presented. The figures 2b and 2c show the
subproblems migration schedule obtained with the algorithm and manually. We can see
that algorithm’s balance is not optimal, and it needs to transfer 4 subproblems (QE = 8).
Alternative solution gives the optimal balance and transfers 4 subproblems also, but QE=
12. Since the optimal load balance achieving is more important, alternative solution
which does it and transfers the same number of subproblems is better.

Reasoning from these disadvantages of the algorithm [HB95] for the load balancing, we
need new algorithm avoided these drawbacks.

a) b) c)
Fig. 2 Example of the algorithm work with small load: a) the initial graph with the processors load;
b) data migration and new processors load obtained using the algorithm; c) an alternative solution
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4 Transport-problem-based algorithm

The main problems of the load balancing are determination of a number of subproblems
to be transferred from each processor and a target processor for each transferred
subproblem.

4.1 Main idea of the algorithm

We have some processors with the load li − lavg≥1, each of these processors has to give
away ⎣li − lavg⎦ subproblems. Also we have some processors with the load li<lavg, each of
these processors may receive ⎣lavg − li⎦ subproblems. If we define a distance between any
pair of processors we can solve this problem as the transport problem using the method
of potentials. If some subproblem will be transferred from one processor to another
through the third one, it will be transferred twice (see fig. 3). Hence, the subproblem
should always be transferred using the shortest path in the graph. The shortest paths
between all pairs of vertices in the graph can be found using the Floyd algorithm. We
use the method of potentials [ME78] and the Floyd algorithm [Fl62] as subtasks of the
new algorithm.

a) b) c)
Fig. 3 Data migration route: a) the processor graph; b) the optimal but prohibited migration

schedule (the dotted line is the prohibited way of migration); c) the migration schedule using the
intermediate processor

The main idea of the algorithm is to find the shortest paths in the graph between all pairs
of processors and form the input data for the transport problem, solve it using the method
of potentials. Then the results of the transport problem should be interpreted in terms of
the load balancing.

4.2 Algorithm implementation

The transport-problem-based algorithm for dynamic load balancing is provided on the
fig. 4. This algorithm returns a matrix ∆ of the P×P size, ∆[i,j] are the number of
subproblems to be transferred from a processor i to a processor j. Initial values of ∆[i,j]
is assumed to be zero.

On the first step of this algorithm an average load is evaluated. The sets O and I of
processors which have to pass and receive the subproblems appropriately are calculated
then. The Floyd algorithm is used on the fourth step. The results of the Floyd algorithm
are the array D of the ways’ lengths and the array W which contains information about
ways.
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Input data for the transport problem are formed on the steps 6-8: the array T of the ways’
length between processors which pass their subproblems and processors which receive
them. Then the potential method is used on the step 9 to solve the transport problem. It
uses the array T of the ways’ lengths between processors, the set O − ⎣lavg⎦ of amounts of
subproblems to be given away from processors, the set ⎣lavg⎦ − I of amounts of
subproblems to be received by processors. The result of the potential method is an array
TS of size |O|×|I|, each element TS[k,m] is an amount of subproblems to be transferred
from an element O[k] to an element I[m].

⎣ ⎦ ⎣ ⎦

endfor
endfor
until c=m;.

W[c,m];c.
+TS[k,m][c,W[c,m]][c,W[c,m]].

repeat.
c:=vs.

Imforeach.
Okforeach.

I)l,lport(T,OSolveTransTS.
endfor

endfor
D[k,m]T[k,m].
Imforeach.

Okforeach.
|I|)ix(|O|CreateMatrT.
))EFloyd(G(C,D,W.
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Fig. 4 Transport-based algorithm for dynamic load balancing

After that the results of the method of potentials must be interpreted. For each “give
away - receive” pair of processors (steps 10-11) the shortest past should be restored
(steps 12-16). The variable c for path restoring is initialized on the steps 12 and refers to
the current processor of path. The variable c is the current vertex (processor) of the path.
Then the amount of subproblems to be transferred between processors k and m is added
to each edge of the path in the graph as it is shown on the fig. 3. In the algorithm
implementation this amount is TS[k,m] and it is added to the element ∆[c,W[c,m]] of the
return matrix, where W[c,m] is the next processor in the path. Operations are performed
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on the steps 13-16 until the value variable c which represents current processor will
equal target processor m, i.e. the path is over.

4.3 Algorithm discussion

The new algorithm allows avoiding cycles in data transferring. This is a big advantage in
compare to the [HB95] algorithm. It should avoid cyclic or indirect (see fig. 1.b) data
migration. Moreover, if a vertex has a surplus load it will only give the load away, and if
a vertex has lack of load it will only receive the load. With one exception – if there is no
edge between vertices, the data will migrate using the shortest path. We assume that it
will significantly decrease the migration level which is critical for distributed systems.
Also new algorithm will take away all surplus loads from each processor, so it should
create such migration schedules that will always minimizes the maximum load in the
best way. This is important for logic simulation, because it allow speed up simulation
process. For the example problems from figs. 1 and 2 the new algorithm gives an
optimal solution (like on the figs. 1c and 2c). The new algorithm has a disadvantage.
While [HB95] algorithm solves the linear system of equations which can be done in
parallel, new algorithm solve the transport problem and cannot be so effectively
parallelized.

5 Experimental results

The algorithm from [HB95] and the transport-problem-based algorithm were
implemented on Delphi language. Experiments on random graphs were performed.
Problem graphs were generated using the following scheme:

(1) Create the P parts of the graph; each part contains a random number of vertices
between Cmin and Cmax. The overall number of vertices is |VN|.

(2) Create the |VN|−1 edge to create a connected problem graph. First edge is added
between two randomly selected vertices. Each next edge is added between a
randomly selected vertex from already connected vertices and other vertex from not
yet connected vertices.

(3) Create all other edges at random until a needed graph density is reached.
(4) A processor graph is assumed to be a full connected graph with P vertices.

Input graph Minimum load Maximum load Migration
G || NV || NE minC TBCmin

HBCmin maxC TBCmax
HBCmax

TBQ HBQ
1 997 4970 96 97 99 104 100 101 10 9
2 1004 5040 96 96 99 104 101 102 8 8
3 1001 5010 95 97 99 104 101 101 9 12
4 999 4989 95 99 99 104 100 101 15 16
5 1002 5020 95 96 99 104 101 101 6 8
6 998 4980 96 99 98 103 100 101 11 7
7 990 4900 96 99 98 104 99 101 12 12
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8 989 4890 95 98 98 103 99 100 11 8
9 1000 4999 96 100 99 104 100 101 12 9
10 1000 4999 95 100 99 104 100 101 11 8

Table 1 Results for problem graphs with around 1000 vertices and 5000 edges on 10 processors

The experimental results are presented in Tables 1-3. Here G is the sequence number of
graph in the table, Cmin is the minimum load, Cmax is the maximum load, |VN| is the
number of vertices in the problem graph, |EN| is the number of edges in the problem
graph, CTB

min is the minimum load if the transport-problem-based algorithm was used,
CTB

max is the maximum load if the transport-problem-based algorithm was used, QTB is
the number of subproblems was transferred by the transport-problem-based algorithm,
CHB

min is the minimum load if the [HB95] algorithm was used, CHB
max is the maximum

load if the [HB95] algorithm was used, QHB is the number of subproblems transferred by
the [HB95] algorithm, Qavg is the average data migration norm for each algorithm.

Input graph Minimum load Maximum load Migration
G || NV || NE minC TBCmin

HBCmin maxC TBCmax
HBCmax

TBQ HBQ
1 10001 11002 425 482 498 570 501 502 386 510
2 10264 11588 431 498 511 570 514 515 353 485
3 10104 11230 427 490 503 574 506 507 414 558
4 10155 11343 445 503 506 565 508 509 273 385
5 9668 10281 429 476 481 573 484 486 319 427
6 10126 11278 428 493 504 566 507 508 383 514
7 9777 10514 428 486 487 558 489 492 417 503
8 10124 11274 430 491 504 572 507 509 370 504
9 10131 11290 444 498 504 569 507 509 359 457
10 10059 11130 427 502 501 566 503 505 391 517

Table 2 Results for problem graphs with around 10000 vertices and 11000 edges on 20 processors

Input graph Minimum load Maximum load Migration
G || NV || NE minC TBCmin

HBCmin maxC TBCmax
HBCmax

TBQ HBQ
1 9986 49860 432 489 497 574 500 501 419 536
2 9990 49900 425 490 498 550 500 500 324 441
3 9803 48049 425 474 489 572 491 492 419 553
4 9479 44925 431 473 471 565 474 476 308 424
5 10067 50672 430 491 502 572 504 505 347 472
6 10138 51389 427 505 506 574 507 509 382 509
7 10182 51836 431 492 507 573 510 510 444 561
8 10368 53747 429 509 517 571 519 520 396 514
9 9865 48659 429 479 491 571 494 497 300 436
10 9964 49640 429 483 497 569 499 501 369 478

Table 3 Results for problem graphs with around 10000 vertices and 50000 edges on 20 processors

In all cases (see tables 1-3) a maximum load after using the transport-problem-based
algorithm is less or equals a maximum load M3(C)=Cmax after using [HB95] algorithm,
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that is CTB
max≤CHB

max. Thus a logic simulation will be performed faster if the transport-
problem-based algorithm is used. But the index M1(C)=Cmax−Cmin is worse for the
transport-problem-based algorithm.
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Fig. 5 The migration level for the transport-problem-based algorithm (QTB) and known algorithm
(QHB) for each graph with 10000 vertices and 10000 edges on 20 processors (see table 2)
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Fig. 6 The migration level for the transport-problem-based algorithm (QTB) and known algorithm
(QHB) for each graph with 10000 vertices and 50000 edges on 20 processors (see table 3)

For small graphs (see table 1), a number of transferred subproblems by the transport-
problem-based algorithm can be bigger but if CTB

max is strictly less than CHB
max. For
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bigger graphs (see tables 2 and 3) the number of transferred subproblems by the
transport-problem-based algorithm is always less, it decreases a number of transferred
subproblems on 24.7% at average against the [HB95] algorithm. On the figs. 5 and 6
there are charts which show the difference between the migration levels of transport-
problem-based and [HB95] algorithms in dependency of graph. The 24.7% gain from the
new algorithm is almost constant.

6 Conclusions

Analysis of the load balancing algorithm which minimizes Euclidean norm of data
migration reveals some drawbacks of the algorithm using for the distributed logic
simulation. This algorithm gives not good solutions if a processor graph has high density
or a load of each processor is low. The new load balancing algorithm is developed. It
uses Floyd algorithm to find shortest ways in a problem graph and then solves a
transport problem using the potential method to minimize data migration between
processors and the lengths of ways for data transferring between processors.
Computational experiments show that the new algorithm decreases a number of
transferred subproblems on 24.7% at average against the existed algorithm. Also new
algorithm improves a load balance for the big problems. We plan improve the transport-
problem-based algorithm by considering the interprocessor communication as the third
criteria of optimization in future.
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