Modeling the Purposes of Models

Cédric Jeanneret, Martin Glinz Thomas Baar
University of Zurich Hochschule fiir Technik und Wirtschaft Berlin
Binzmiihlestrasse 14 Wilhelminenhofstrale 75A
CH-8050 Zurich, Switzerland D-12459 Berlin, Germany
{jeanneret, glinz} @ifi.uzh.ch thomas.baar @htw-berlin.de

Abstract: Today, the purpose of a model is often kept implicit. The lack of explicit
statements about a model’s purpose hinders both its creation and its (re)use. In this
paper, we adapt two goal modeling techniques, the Goal-Question-Metric paradigm
and KAOS, an intentional modeling language, so that the purpose of a model can be
explicitly stated and operationalized. Using some examples, we present how these
approaches can document a model’s purpose so that this model can be validated, im-
proved and used correctly.

1 Introduction

With the advent of Model Driven Engineering (MDE), models play a more and more
important role in software engineering. Conceptually, a model is an abstract representation
of an original (like a system or a problem domain) for a given purpose. One cannot build
or use a model without knowing its purpose. Yet, today, the purpose of a model is often
kept implicit. Thus, anybody can be mislead by a model if it is used for a task it was
not intended for. Furthermore, a modeler must rely on his experience and his feelings to
decide how much and which detail is worth being modeled. This may result in models at
the wrong level of abstraction for its (unstated) purpose. Stating the purpose of a model
explicitly is only a first step to address these issues.

Eventually, the purpose of a model can be characterized by a set of operations. There
are two kinds of operations: (i) operations performed by humans to interpret (understand,
analyze or use) the model and (i1) operations executed by computers to transform the model
into another model (model transformations). Being able to express the purpose of a model
with a set of model operations allows to measure how well a model fits its purpose. In
previous work [JGB11], we have made a contribution towards measuring the confinement
of a model (the extent to which it contains relevant information) given the set of formal
operations to be executed on it.

Having a set of operations is not enough, though: we must ensure that these operations
can be performed on the model — no matter whether these operations are performed by
humans or executed by computers. For this, we have to make explicit which information
the operations need from the model and we have to determine which structures a model

12 Cédric Jeanneret, Martin Glinz, Thomas Baar

has to conform to. In other words, we need to state which elements the metamodel must
contain for enabling the operations.

Our previous work assumes that these operations and these metamodels exist. This as-
sumption may hold in an MDE context, but not in a wider context: Often, the purpose
of a model is not even stated explicitly. Thus, there is a need for (a) methods to elicit
and document modeling purposes in the first place and (b) methods to operationalize these
modeling purposes systematically. In goal modeling, there are many approaches for these
two tasks. However, these approaches were designed for other contexts than modeling.

In this paper, we adapt two of these goal modeling approaches for systematically deriving
a set of of model operations and associated metamodel elements from a qualitatively stated
model purpose. First, we present Goal-Operation-Metamodel (GOM), a generalization of
the Goal-Question-Metric (GQM) paradigm [Bas92]. Second, we propose to use KAOS
[VLO9] (a goal modeling language) as a metalanguage to create intentional metamodels.

The remainder of this paper is organized as follows. In the next section, we present
the problem context of our work in more details. In Section 3, we describe the Goal-
Operation-Metamodel method and we present intentional metamodeling with KAOS in
Section 4. We discuss our findings in Section 5 while Section 6 discusses related work.
Finally, we conclude the paper in Section 7.

2 Problem Context

Many modeling theories distinguish two roles in the model building process: the modeler
and the expert. Modeling is a collaborative activity involving a dialog among these two
roles: The modeler elicits information about the original from the expert before formal-
izing it, while the expert validates the content of the model as explained by the modeler.
These roles and the relationships are reprented in Figure 1. Hoppenbrouwers et al. even
consider the model as the minutes of this dialog [HPdWO0S5].

While building a model may be valuable on its own, the value of modeling consists of
using the model as a substitute of the original to infer some new information about it.
These inferences are made by the interpreter — a third role related to modeling. To achieve
this, the interpreter performs various model operations on the model, like executing queries
on it, extracting views from it or transforming it to other models or artefacts.

When describing the nature of modeling, Rothenberg listed the following purposes of
models [Rot89]:

The purpose of a model may include comprehension or manipulation of its
referent [the original], communication, planning, prediction, gaining experi-
ence, appreciation, etc. In some cases this purpose can be characterized by
the kinds of questions that may be asked of the model. For example, predic-
tion corresponds to asking questions of the form “What-if...?”” (where the user
asks what would happen if the referent began in some initial state and behaved
as described by the model).

Modeling the Purposes of Models 13

build
W Model = Interpreter

A =
c = =. ~ s T TTTTTT RN
= = & D \
8 SEA =]
O D
2 £ g = &' Purpose !
S =5 2
=] g é— ©n ‘\ ,' Legend:
B e — -
>
\ @ \ 4

<W Original

Figure 1: The roles involved in a modeling activity.

A clearly stated modeling purpose can be used as a contract between the modeler and
the interpreter. Establishing contracts is costly, as they must be negotiated and edited.
Nevertheless, such a contract can be useful in two ways: First, as a specification for a
model’s purpose, it provides a strong basis on which the model can be validated. It can
also provide the modeler with some guidance for improving the model so that it reaches
the right level of abstraction. Second, as a description of a model’s purpose, it tells an
interpreter whether the model at hand is fit for the intended use or, if several models are
available, it helps him to choose which model will best fit his purpose.

In the vein of [LSS94], we consider a model as a set of statements M. For each modeling
purpose, there is a set of relevant statements D). In an ideal case, the set D should corre-
spond to the set of statements in the model M. When the sets M and D differ, we can
quantify the deviation of M from D by using measures from the Information Retrieval
field: precision and recall. Precision measures the confinement of a model, the extent
to which it contains relevant statements. Recall, on the other hand, measures the com-
pleteness of a model, that is, the proportion of relevant statements that has actually been
modeled. By measuring the confinement and completeness of a model, a modeler can as-
sess how adequate is its level of abstraction for its purpose. Indeed, a model at the right
level of abstraction for its purpose is both confined and complete (M = D).

However, defining the set D is challenging. In our previous work [JGB11], we made a
contribution towards measuring the confinement of a model given a set of operations that
characterizes its purpose. When these operations are executed on a model, they navigate
through its content and gather some information by reading some of its elements. The
set of elements touched by a model operation during its execution forms the footprint of
that operation. Thus, the footprint contains all elements that affect the outcome of the
operation. For a set of operations, the global footprint of the set of operations is the union
of the footprints of each operation. This global footprint is the intersection M N D: it is
the set of statements that are both present in the model and used to fulfill its purpose.

14 Cédric Jeanneret, Martin Glinz, Thomas Baar

In this paper, we propose two approaches to operationalize a qualitatively stated model-
ing purpose into a set of model operations and their supporting metamodels. Instead of
inventing new methods from scratch, we adapt two existing goal modeling techniques,
GQM [Bas92] and KAOS [vL09], so that they can be used in a modeling context in ad-
dition to measurement and requirements engineering, respectively. To illustrate the use of
these methods in modeling, we first present two examples.

2.1 Motivating Examples

In this section, we introduce two examples to motivate and illustrate our approaches to
capture the purpose of a model. The first example is the London Underground map, used
by Jeff Kramer in [Kra07] to highlight that the value of an abstraction depends on its pur-
pose. The second example is related to Software Engineering, where an architect models
her (or his) system according to the “4+1” viewpoints of Kruchten [Kru95] for making
some performance analysis as described in [CMO0O]. We have used this example in our
previous paper to explain the various usage scenarios of model footprinting [JGB11].

The London Underground Map

As most major cities, London has an underground railway system. To help its users to nav-
igate in London with it, its operator, the Transport for London (TfL) company provides a
map of this transit system. Figure 2 shows the evolution of the map along the years. In
1919 (Figure 2a), the map was a geographical map of London with the underground lines
overlaid in color. In 1928 (Figure 2b), ground features like streets were removed from the
map and the outlying lines were distorted to free some space for the congested center, mak-
ing it more readable. The first schematic representation of the network appeared in 1933
(Figure 2c¢): the precise geographic location of stations is discarded; only the topology of
the network is represented. The current map (Figure 2d) contains additional information
such as the accessibility of stations, the connections to other transportations systems and
fare zones.

In this example, the modeler is the employee of TfL designing the map. The expert is an
employee of TfL who knows the underground network well. The interpreter is a user of
the map. The map is used to plan trips in London, that is, the map must help travelers
to answer the following questions: how to get from A to B? How much does it cost?
How long does it take? Is that route accessible for disabled people? Interestingly, in this
example, the people who use the model to plan their trip also use the modeled system to
actually travel in London.

Performance Analysis on Software Architecture

For the second example, we consider an architect analyzing the performance of a piece of
software. To this end, she describes its architecture using the “4+1” view model proposed

Modeling the Purposes of Models 15

(c) Map in 1933 (d) Map in 2009

Figure 2: Maps of the London Underground.
(a), (b) and (¢): ©T{L from the London Transport Museum collection
(d): ©Transport for London

by Kruchten in [Kru95]: This view model includes (1) use case and sequence diagrams for
the scenario view, (2) class diagrams for the logical view, (3) component diagrams for the
development view, (4) activity diagrams for the process view and (5) deployment diagrams
for the physical view. Her model is first transformed into an extended queueing network
model (EQNM) as explained by Cortellessa et al. in [CMO00]. Performance indicators are
then measured on the EQNM. The architect wants the following questions to be answered:
What is the response time and throughput of her system? Where is its bottleneck?

In this example, EQNMs can be seen as the semantic domain for architecture models writ-
ten in UML. There are therefore two chained interpretations: the first interpretation trans-
lates a UML model into an EQNM, while the second interpretation analyses the EQNM.
In this example, we focus on the translation from UML to EQNM.

16 Cédric Jeanneret, Martin Glinz, Thomas Baar

The architect plays all three roles in this example. As the architect of her software, she
is the expert. As she creates the model, she is the modeler. As she uses the model for
evaluating the performance of her software, she is the interpreter. However, there are two
additional stakeholders involved in this example: Cortellessa and his team developed the
analysis used by the architect, while Kruchten, by defining the “4+1” viewpoint, proposed
a “contract” between the modeler and the interpreter.

Contrary to the previous example, the performance analysis is mostly automated. As the
architect is only interested in its results, she may know little about the internals of the
technique. Thus, the documentation of the analysis must state explicitly which information
the analysis requires in input models.

3 Goal-Operation-Metamodel

GQM is a mechanism for defining and evaluating a set of operational goals using mea-
surement [Bas92]. In the GQM paradigm, a measurement is defined on three levels:

o Atthe conceptual level, the goal of the measurement is specified in a structured man-
ner: It specifies the purpose of the measurement, the object under study, the focus
of the measurement and the viewpoint from which the measurements are taken.

o At the operational level, the goal is refined to a set of questions.

o At the quantitative level, a set of metrics is associated to each question so that it can
be answered in a quantitative manner.

Our approach consists of using GQM for models other than metrics. According to Ludewig
[Lud03], metrics are some kind of models. However, GQM has to be extended on its three
levels to describe modeling purposes other than quantitative analysis. At the conceptual
level, the goal template must support purposes like code generation! or documentation. At
the operational level, the set of questions will be replaced by a set of (general) operations:
Beside queries, one may need simulations and transformations to refine the goal stated
at the conceptual level. Finally, the quantitative level becomes the definable level: meta-
models replace metrics to support the model operations from the operational level. These
operations will be run on conforming models in a similar way that questions can be an-
swered with the value of a metric. Thus, we call this approach Goal-Operation-Metamodel
(GOM).

3.1 GOM and the London Underground Map

Based on the GQM template described in [Bas92], we define the goal of the map as the
following:

ICode generation, as an operation, is not supported when a model is at a conceptual level. Here, we consider
code generation as the model’s purpose to be described with GOM.

Modeling the Purposes of Models 17

Analyze the London Underground

For the purpose of characterization

With respect to reachability and connectivity of its stations

From the view of a traveler

In the following context: the traveler may be a disabled person, the tube is
part of a larger transportation system, the map is displayed on a screen or on
paper in stations

From this goal, we derive the following questions to be answered from the model:

(a) What is the shortest path between two stations?

(b) How much does it cost to travel along a given path?

(c) How long does it take to travel along a given path?

(d) Is a given path accessible to a disabled person?

(e) When traveling along a path, at which station to leave a train?

(f) When traveling along a path, in which train (line and direction) to enter?

Table 1 lists which questions are supported by the 4 versions of the map displayed in
Figure 2. All maps can be used to find the shortest path between two stations and where to
step in and step off trains. However, only the 2009 version fully supports disabled people
and allows for computing the cost of a trip. Since it preserves the geographic location of
stations, the map of 1919 can be used to estimate the time needed for a trip (without taking
transfers into account).

Table 1: Operations supported by the different versions of the map.

| Map | Path (a) | Cost(b) | Time (c) | Accessibility (d) | Step Off (e) | Step In (f) |

1919 V — V _ v YV
1928 V — — _ V Y
1933 |/ - - - v Y
2009 |/ v — V Vv v

A map conforming to the metamodel depicted in Figure 3 could be used to answer all
the questions characterizing the purpose of the map. Segments, lines and stations form
the topology of the network, allowing a traveler for planning (question (a)) and executing
(questions (e) and (f)) a trip with the Underground. Fare zones are involved in the compu-
tation of the cost of a trip (question (b)). The accessibility of a station serves for question
(d) while the distance covered by a segment is needed to answer question (c).

In this example, questions are answered “mentally” by the travelers. Still, all these ques-
tions could be formalized with queries in OCL or operations in Kermeta [MFJ05]. For
example, Listing 1 presents the operation computing the cost of a trip (encoded as a se-
quence of segments) in Kermeta. This operation is defined for the metamodel presented in
Figure 3.

18 Cédric Jeanneret, Martin Glinz, Thomas Baar

FareZone Station +destinationStation +incomingSegments Segment
+zonelD : Integer +zone +name : String 1 0." |+distance : Integer
+cost : Real 1.2 +isAccesible : Boolean | +sourceStation +leavingSegments

1 0.*
+fareZones | * +stations | * 1..* {ordered}
+segments
+lines
1+
Map +lines Line
* +name : String

Figure 3: A metamodel for a map of the London Underground.

// Compute the cost of a trip
operation cost(path: Sequence<Segment>): Real is do
result := 70”.toReal
// First, collect all traversed zones
var traversedZones: Set<FareZone> init Set<FareZone >.new
path.each{seg |
var src: Set<FareZone> init seg.sourceStation.zone
var dst: Set<FareZone> init seg.destinationStation.zone
var inter: Set<FareZone> init src.intersection (dst)
if not inter.isEmpty
then
// Both stations are in the same zone
traversedZones .addAll(inter)
else
// The segment traverses a boundary
traversedZones .addAll (src)
traversedZones .addAll (dst)

end }
/1 Second, sum the cost of each traversed zone
traversedZones .each{z | result := result + z.cost}

end

Listing 1: Operation computing the cost of a trip.

3.2 GOM and the Performance Analysis on Software Architecture

In this example, we only consider the immediate goal of the model, which is the generation
of an EQNM, and we leave the final goal (the performance analysis) out. Still, both goals
could have been captured by GOM. Slightly adapting the GQM template [Bas92], the
immediate goal of the model can be stated as follows:

Analyze the architecture of a software system

For the purpose of generating an EQNM

With respect to the scenario view and the physical view as defined in [Kru95]
From the view of the software architect

In the following context: the generation of an EQNM is explained in [CM00],

Modeling the Purposes of Models 19

this generation is automated, the generated EQNM will be used to analyze the
performance of the architecture

[CMO00] describes, formally, the various steps in the generation of the EQNM from UML
models:

(1) deduce a user profile from the use case diagram,
(2) combine the sequence diagrams into a meta execution graph (meta-EG),

(3) obtain the EQNM of the hardware platform from the deployment diagram and tailor
the meta-EG into an EG-instance for that platform,

(4) assign numerical parameters to the EG-instance, and

(5) assign environment based parameters to the EQNM, process the EG-instance to obtain
software parameters before assigning them to the EQNM.

This chain of transformations requires information from the following UML diagrams: use
case diagrams, sequence diagrams and deployment diagrams. The other diagrams of the
“4+1” model — the class, the component and the activity diagrams — are not needed for
this purpose.

While GOM allows to state the purpose of a model explicitly and operationalize it, goals
expressed in GOM are not formal enough to be analyzed automatically, for example, to
find conflicts among them. In the next section, we present how a model’s purpose can be
expressed in a goal-oriented modeling language.

4 Intentional Metamodeling

In the previous section, we presented a structured but informal way to specify a model’s
purpose. In this section, we introduce intentional metamodeling with KAOS, a goal mod-
eling language designed for use in early phases of requirements engineering. A KAOS
model consists of four interrelated views:

Goal modeling establishes the list of goals involved in the system. Refined goals and
alternatives are represented in an AND/OR tree. Conflicts among goals are also
represented in this diagram.

Responsibility modeling captures the agents to whom responsibility for (leaf) goal satis-
faction is assigned.

Object modeling is used to represent the domain’s concepts and the relationships among
them.

Operation modeling prescribes the behaviors the agents must perform to satisfy the goals
they are responsible for.

20 Cédric Jeanneret, Martin Glinz, Thomas Baar

A goal can be refined into conjoined sub-goals (the goal is satisfied when all its sub-goals
are satisfied) or into alternatives (the goal is satisfied when at least one of its alternatives
is satisfied). Therefore, goals are represented as AND/OR trees in KAOS. In such a tree,
the goals below a given goal explain how and how else the goal can be realized. On the
opposite, goals higher in the hierarchy provide the rationale for a given goal, explaining
why the goal is present in the model.

[VLO9] provides a taxonomy of goals based on their types and their categories. There are
two main types of goals: behavioral goals (such as Achieve, Cease, Maintain and Avoid
goals) prescribe the behavior of a system, while soft-goals (such as Improve, Increase,
Reduce, Maximize and Minimize goals) prescribe preferences among alternative systems.
Similarly, there are two main categories of goals: functional goals (like Satisfaction [of
user requests] or Information [about a system state] goals) state the intent behind a system
service and non-functional goals (like Usability or Accuracy) state a quality or constraint
on its provision or its development. This taxonomy can be helpful for eliciting and speci-
fying goals.

Goals are refined until they are assignable to a single agent. Leaf goals are then made
operational by mapping them to operations ensuring them. Operations are binary relation-
ships over systems states. They can be derived from the formal specification of goals or
built from elicited scenarios. Finally, a conceptual model gathers all concepts (including
their attributes and the relationships among them) involved in the definition of goals and
operations.

We use KAOS as a metametamodel and not as a metamodel as it was initially designed
for: In our approach, KAOS models are metamodels. Goals depict the modeling purposes.
Operations prescribe the operations that can be executed on models and the conceptual
model defines the abstract syntax of the language. Thus, a metamodel written in KAOS
specifies many aspects of a modeling task: it states the purpose and intended usage of
models as well as their structure. In the remainder of this section, we present KAOS
metamodels for our examples.

4.1 Intentional Metamodeling and the London Underground Map

A KAOS metamodel of the London Underground map is presented in Figure 4. The main
goal of the map is to provide travelers with a means to understand how to travel from
a station A to another station B successfully. To achieve this, the map must satisfy the
following sub-goals: to help travelers to plan their trip, to help them to buy the right ticket
for it and to help them for the navigation, that is, to prevent them from getting lost during
their travel.

These goals are operationalized through the following operations performed by the trav-
eler: find the shortest path between stations A and B, compute its cost (by summing the
fares of traversed fare zones) and carry out the plan by riding on the right line and con-
necting on the right station. As we did in Section 3.1, we can define these operations
formally and derive a metamodel to support them. For space reasons, this metamodel is

Modeling the Purposes of Models 21

not included in Figure 4, but it presented in Figure 3.

Provide a means for
understanding how to travel
from A to B successfully

/<S< / Achieve [Buy
7 Right Ticket]
Achieve Avoid
[Plan Trip] [Getting Lost]

Compute
Shortest
PathA—- B

‘i’ Traveler

Figure 4: A KAOS metamodel for the London Underground map.

4.2 Intentional Metamodeling and the Performance Analysis

We present an intentional metamodel of the performance analysis in Figure 5. The final
goal of the architect is to analyze the performance of her architecture. This goal has been
refined to three sub-goals: First, performance models are generated automatically from
some UML diagrams. Then, these performance models are parametrized and solved. For
space reasons, we did not further elaborate these two latter goals. We also considered
UML diagrams as atoms, ignoring their internal elements such as actors, messages and
nodes.

A computer is responsible for the generation of performance models. This goal is oper-
ationalized with four automated operations: generate the user profile from the use case
diagram, generate the meta-EG from sequence diagrams, instantiate the meta-EG into an
EG-instance with the help of the deployment diagram and generate an EQNM from the
deployment diagram. These operations correspond to the first three steps described in
[CMO0]. The last two steps are captured in the two remaining goals, parametrize and
solve the performance models.

5 Discussion

This paper is an initial contribution towards the modeling of models’ purposes. For this,
we have adapted two existing goal modeling approaches and applied them to two modeling
tasks, demonstrating the feasibility of such metamodeling.

22 Cédric Jeanneret, Martin Glinz, Thomas Baar

Achieve
[Performance Analysis]

Achieve [Solve Achieve [Parametrize
Performance Models] Performance Model]
. Achieve [Generate .
m . —i @

Generate User
Profile

Instantiate
EG

Create Meta
EG

Use Case User Sequence EG Deployment
Diagram Profile Diagram Meta EG Instance Diagram EQNM

Figure 5: A KAOS metamodel for a performance analysis.

In the remainder of this section, we compare the two approaches presented in this paper,
GOM and intentional metamodeling. We also discuss the benefits and difficulties related
to these approaches.

5.1 Comparison GOM and Intentional Metamodeling

Contrary to GOM, intentional metamodeling with KAOS can capture the complete ratio-
nale behind the creation and the use of a model. As explained in Section 4, goal models are
organized in AND/OR trees. By navigating the tree from an element upwards, a modeler
can find the rationale explaining a given operation, meta-class or modeling purpose. Like-
wise, but using downward navigation, the modeler can figure out how a model purpose is
realized by looking at its sub-goals or its alternatives.

In this paper, we only presented semi-formal KAOS models. However, these models can
be completely formalized and thus are amenable to automated analysis, including the ver-
ification of goal refinements or the derivations of goal operationalizations [vL0O9]. The
weaknesses of KAOS lie in the cost and difficulties of formalizing goals and operations. In
comparison, GOM is a semi-formal approach. It only provides templates for stating mod-
eling purposes and guidelines for deriving questions from this purpose. Future research
should explore under which conditions a low or a high level of formality is preferred or
required.

Modeling the Purposes of Models 23

We have presented GOM and intentional metamodeling as two different approaches, be-
cause they come from different field: software measurement and early requirements en-
gineering, respectively. Future work may integrate these two approaches, combining the
ease of use of the templates and guidelines of GOM and the formality of KAOS.

5.2 Benefits and Limitations

Stating a model purpose and making it operational allows for measuring the fitness of
a model for this purpose. A model is complete if it contains all the elements necessary
to fulfill its goals. Conversely, a model element is pertinent if it contributes to the sat-
isfaction of at least one goal. Confined models only contain pertinent elements. With a
formal KAOS model, it is possible to measure these qualities objectively by establishing
satisfaction arguments.

However, eliciting a model’s purpose and elaborating it has a cost. The benefits must be
higher than the costs if the practice is to be adopted by practitioners. Models are like sys-
tems. Making explicit requirements about models (such as stating their purpose) aims at
reducing the risk of creating the wrong models. Models at the wrong level of abstraction
have consequences ranging from small annoyances for their interpreters to the impossibil-
ity of fulfilling the purposes they were made for.

Furthermore, goal modeling is difficult. First, many modelers are not experienced in in-
tentional modeling. Courses on Software Engineering or Modeling typically cover data,
behavior and process modeling languages but leaves out goal modeling. Thus, (inten-
tional) metamodelers will be rare in the near future. Second, goal models grow rapidly as
goals are refined and alternatives are identified.

6 Related Work

In this section, we present the state of the art in metamodeling and model quality and we
discuss its limitations. For van Gigch [vG91], a metamodel should cover many aspects
of modeling, not only “data” metamodeling (the syntax of the language). In this vein,
Kermeta proposes to metamodel the behavior of models, so that the operational semantics
of models can be specified [MFJ0S5]. In this paper, we go one step further by metamodeling
modeling agents and their goals.

In their model of modeling [MFBC10], Muller et al. place the intention of a model at the
heart of their notation. They define intention as follows:

The intention of a thing thus represents the reason why someone would be
using that thing, in which context, and what are the expectations vs. that
thing. It should be seen as a mixture of requirements, behavior, properties,
and constraints, either satisfied or maintained by the thing.

24 Cédric Jeanneret, Martin Glinz, Thomas Baar

In their notation, intentions are considered as sets and thus represented as Venn diagrams.
While this notation allows to represent the intersection and the overlap among intentions,
it does not allow to represent the internal content of the intention behind a model. The
focus of our paper is to represent this intention, so that its modelers and its interpreters can
agree and reason on it.

For Nuseibeh et al. [NKF93], a viewpoint consists of (1) a style (the modeling language
and its notation), (2) a work plan describing the development process of the viewpoint
including possible consistency check or construction operations, (3) a domain defining
the area of concern with respect to the overall system, (4) a specification describing the
viewpoint’s domain using the viewpoint’s style (in other words, the view of the system
from the viewpoint) and (5) a work record keeping track of development history within
the viewpoint. According to the IEEE 1471 standard, a viewpoint captures the conventions
for constructing, interpreting and analyzing a particular kind of view. Thus, a viewpoint
defines — among others — modeling languages, model operations that can be applied
to views and stakeholders whose concerns are addressed in the views. Viewpoints define
the various views (and their relationships) in a software specification or in an architecture
description, thus, they provide the modeler with guidelines on what they are expected to
model. However, we are not aware of guidelines to define these viewpoints, nor techniques
to validate that a view actually satisfies the needs of the stakeholders using it.

In [MDNO9], Mohaghegi surveyed frameworks, techniques and studies of model qual-
ity in model based software development. They identified 6 quality goals: correctness,
completeness, consistency, comprehensibility, confinement and changeability. Manual re-
views [LSS94] and metrics [BB06] can be used to assess and improve the confinement and
completeness of models. However, these techniques are either bound to a given modeling
language and a given process [BB06] or must be tailored for the modeling task at hand
[LSS94]. In comparison, intentional metamodeling and GOM are not bound to any spe-
cific language or process. Because they document the purpose of models, goals expressed
and operationalized in GOM or KAOS may serve as basis to derive checklists, guidelines
and metrics for validating models.

In previous work [JGB11], we propose and compare two methods to compute the footprint
of an operation — the set of all information used by the operation during its execution. Dy-
namic footprinting reveals the actual footprint of an operation by tracing its execution on
the model. In contrast, static footprinting estimates footprints by first analyzing, statically,
the definition of the operation to obtain its static metamodel footprint, the set of all model-
ing constucts (i.e., types, attributes and references) involved in this definition. The model
footprint can then be estimated by selecting only those model elements that are instances of
elements in the metamodel footprint. In this previous work, we assumed that the purpose
of a model can be characterized by the set of operations being carried on it and that these
operations were formally defined. These assumptions are reasonable in a MDE setting.
Still, in this paper, we are interested in methods to specify an arbitrary model purpose and,
if possible, to refine this purpose into a set of operations whose footprints can be looked at.
In other words, the focus of this paper is the elicitation, documentation and operationaliza-
tion of modeling purposes. The operationalization produces metamodels and operations
that can be used, accessorily, as input for model footprinting.

Modeling the Purposes of Models 25

In addition to GQM and KAOS, there are other goal oriented techniques and methods for
requirements engineering, such as i* [Yu97] and Tropos [CKMO02]. While we could have
selected these approaches to capture and analyze the purposes of models, we chose KAOS
and GQM instead for their strong focus on the operationalization of goals.

7 Conclusion

One cannot build a model without knowing its purpose, and one must not use a model
for purposes it is not fit for. Despite its importance, the purpose of a model is often kept
implicit.

In this paper, we adapted two existing goal modeling approaches — GQM [Bas92] and
KAOS [vL09] — to capture the purpose of a model and operationalize it into a set of
operations and a metamodel. With these elements in hands, it is possible to measure
how fit a model is for the purpose. We demonstrated the feasibility of the approaches by
applying them to two examples.

These early results are promising, but the benefits of such intentional metamodels re-
main to be established empirically (e.g., with industrial case studies). With the experience
gained in modeling the purpose of models, we can elaborate the templates and adapt the
guidelines offered by KAOS and GQM in more detail. In this vein, further research could
define a profile for KAOS and develop specific analysis for intentional metamodels.

For the first time, goal modeling techniques were applied to modeling itself, raising many
open issues: What is the source of modeling goals, that is, who are the metaexperts? Do
intentional metamodels help in model management and model reuse?

Acknowledgement

Our work is partially funded by the Swiss National Science Foundation under the project
200021134543/ 1.

References

[Bas92] Victor R. Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Technical Report UMIACS TR-92-96, 1992.

[BBO6] Brian Berenbach and Gail Borotto. Metrics for model driven requirements development.
In 28th International Conference on Software Engineering (ICSE ’06), pages 445-451,
Shanghai, China, 2006. ACM.

[CKMO02] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven in-
formation systems engineering: the Tropos project. Information Systems, 27(6):365—
389, 2002.

26 Cédric Jeanneret, Martin Glinz, Thomas Baar

[CMOO0]

[HPdWO5]

[JGB11]

[Kra07]

[Kru95]

[LSS94]

[LudO3]

[MDNO09]

[MFBC10]

[MFJO5]

[NKF93]

[Rot89]

[vGI1]

[vL09]

[Yu97]

Vittorio Cortellessa and Raffaela Mirandola. Deriving a queueing network based per-
formance model from UML diagrams. In International Workshop on Software and
Performance (WOSP 00), pages 58-70, 2000.

Stijn Hoppenbrouwers, H. A. Proper, and Th P. der Weide. A Fundamental View on the
Process of Conceptual Modeling. In Conceptual Modeling (ER 2005), volume 3716 of
LNCS, pages 128-143. Springer, 2005.

Cédric Jeanneret, Martin Glinz, and Benoit Baudry. Estimating Footprints of Model
Operations. In 33rd International Conference on Software Engineering (ICSE 2011),
pages 601-610, Waikiki, Honolulu, HI, USA, 2011. ACM.

Jeff Kramer. Is abstraction the key to computing? Communications of the ACM,
50(4):36-42, 2007.

Philippe Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42-50,
1995.

Odd Ivar Lindland, Guttorm Sindre, and Arne Sg¢lvberg. Understanding Quality in
Conceptual Modeling. IEEE Software, 11(2):42—49, 1994.

Jochen Ludewig. Models in software engineering - an introduction. Software and Sys-
tems Modeling, 2(1):5-14, March 2003.

Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. Definitions and approaches to
model quality in model-based software development: A review of literature. Informa-
tion and Software Technology, 51(12):1646—-1669, 2009.

Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoit Combemale.
Modeling modeling modeling. Software and Systems Modeling, 2010.

Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executabil-
ity into Object-Oriented Meta-Languages. In 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2005), volume 3713 of LNCS,
pages 264-278, 2005.

Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. Expressing the relationships
between multiple views in requirements specification. In 15th international conference
on Software Engineering (ICSE ’93), pages 187-196, Baltimore, MD, USA, 1993.

Jeff Rothenberg. The nature of modeling. In Artificial intelligence, simulation & mod-
eling, pages 75-92. John Wiley & Sons, Inc., New York, NY, USA, 1989.

John P. van Gigch. System Design Modeling and Metamodeling. Plenum Press, New
York, NY, USA, 1991.

Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Specifications. Wiley, 2009.

Eric Yu. Towards modelling and reasoning support for early-phase requirements engi-
neering. In 3rd International Symposim on Requirements Engineering (RE ’97), pages
226-235, 1997.

