
Microservices and Containers Ű Architectural Patterns for
Cloud and Edge

Claus Pahl1, Pooyan Jamshidi2, Olaf Zimmermann3

Abstract: Software architecture research needs to address the speciĄc needs and constraints of
speciĄc deployment contexts. We propose an architectural style for cloud-deployed software referring
to principles and patterns. Patterns map abstract principles to development and deployment platform
solution templates Together, principles and patterns link common software architecture concepts,
such as services, adaptivity or models at runtime, to deployment speciĄcs such as virtualisation and
controller-based feedback loops. The results of this broader framework shall be discussed in the
context of recent trends such as microservices.

Keywords: Software Architecture, Architectural Style, Patterns, Cloud, Edge, Microservices,
Container.

1 Architectural Principles for Cloud Software

Software architecture should support the speciĄc needs and constraints of speciĄc deployment
contexts. An architectural style for cloud-deployed software can provide this support based
on the following principles [PJZ18]: (1) service-orientation: services provided using layering,
modularity, and loose coupling. (2) virtualization: services for shared resources and portable
containers. (3) uncertainty: distribution, heterogeneity, and multi-user involvement cause
uncertainty. (4) adaptivity: operation and management support allow for dynamic adaptation.

Patterns map principles to development and deployment platform solution templates:
(1) microservices: Ćexible composition with independent, self-managed containers and
cloud-native services. (2) models at runtime: allows aspects of uncertainty to be addressed
dynamically. (3) controller-based feedback loop: allows controllers to adapt to and manage
change. Together, principles and patterns link common software architecture concepts, such
as services, adaptivity or models at runtime, to deployment speciĄcs such as virtualisation
and controller-based feedback loops.

The results of this broader framework shall be discussed in the context of open challenges
such as self-adaptive microservices (see [Ja18, Pa17, Me19]), but also deployments not
only in cloud, but also related edge and IoT settings [Le19].

1 Software and Systems Engineering, Free University of Bozen-Bolzano, Bozen, Italy
2 Computer Science and Engineering, University of South Carolina, Columbia, USA
3 Institute for Software, Hochschule für Technik Rapperswil, Rapperswil, Switzerland

cba doi:10.18420/SE2020_34

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 115

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_34


2 Self-Adaptive Microservices

A self-adaptive system dynamically adapts its behaviour to preserve or enhance quality attri-
butes in uncertain operating conditions. Here, the development of microservice applications
as such self-adaptive systems is still a challenge. In practice, e.g., the Kubernetes container
orchestration platform facilitates to deploy and manage microservice applications, natively
only supports autoscaling (automatically change the number of instances of a service) and
self-healing (automatically restart failed service instances. Microservice quality attributes
can be improved by using planning techniques (determine the best adaptation strategy for
each microservice), machine learning (learn new adaptation strategies from past adaptation
results), reasoning under uncertainty (cope with noisy monitoring data), and multi-objective
optimization (cater for multiple, possibly conĆicting requirements). However, an important
observation is that independent and frequent deployments, the need for a high degree of
automation in a DevOps context, and complex run-time architectures make microservices
ideal candidates to be deployed as self-adaptive systems.

3 Containerised Edge and IoT

Containers and microservices are lightweight approaches for architecting and deploying
software that are particularly needed for an edge computing model, which aims to provide
low-cost local clusters at the outer edge of the cloud, possibly composed of IoT devices
themselves. We can demonstrate that fully containerised microservice architectures for data
streaming platforms can be deployed even on small, e.g., single-board device clusters. They
can serve IoT use cases for which the data volume is not too high. BeneĄts include Ćexible
container deployment and (at least) sufficient performance and scalability despite device
limitations. Challenges still exist in the dynamic load-driven distribution management of the
containers in clusters and the adaptivity problem already discussed. Autoscaling is feasible,
which we implemented for a serverless architecture using a fuzzy controller.

Literaturverzeichnis
[Ja18] Jamshidi, P.; Pahl, C.; Mendonca, N. C.; Lewis, J.; Tilkov, S.: Microservices: The Journey

So Far and Challenges Ahead. IEEE Software, 35(3):24Ű35, 2018.

[Le19] von Leon, David; Miori, Lorenzo; Sanin, Julian; El Ioini, Nabil; Helmer, Sven; Pahl, Claus:
A Lightweight Container Middleware for Edge Cloud Architectures. In: Fog and Edge
Computing. John Wiley and Sons, Ltd, Kapitel 7, S. 145Ű170, 2019.

[Me19] Mendonca, N. C.; Jamshidi, P.; Garlan, D.; Pahl, C.: Developing Self-Adaptive Microservice
Systems: Challenges and Directions. IEEE Software, 2019.

[Pa17] Pautasso, C.; Zimmermann, O.; Amundsen, M.; Lewis, J.; Josuttis, N.: Microservices in
Practice, Part 1: Reality Check and Service Design. IEEE Software, 34(1):91Ű98, 2017.

[PJZ18] Pahl, Claus; Jamshidi, Pooyan; Zimmermann, Olaf: Architectural Principles for Cloud
Software. ACM Trans. Internet Technol., 18(2):17:1Ű17:23, Februar 2018.

116 Claus Pahl, Pooyan Jamshidi, Olaf Zimmermann


