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Abstract: Manycore platforms with tens and even up to hundreds of processing cores
per chip are becoming a commercial reality and are subject of intensified research.
This concept paper describes work in progress on the applicability of HW supported
communication and processing virtualization on regular structured, tiled manycore ar-
chitectures for the benefit of improved fault tolerance against transient and permanent
perturbations. Temporarily unused, naturally redundant tiles are dynamically occu-
pied during run time via transparent task relocation. This means, the execution of a
task can pro-actively and transparently for the application be switched by distributed
system management and virtualization services from a tile, which is considered un-
reliable, to a more reliable tile. In order to support different requirements regarding
safety, timing integrity and minimized overhead for the relocation services, several
established strategies can be enacted by the system management. The migration pro-
tocol for signaling during run configuration and actual relocation allows migration
with minimal downtime and no communication loss. The actual migration is triggered
by a configurable threshold on critical system parameters on a per task basis.

1 Introduction

The growing transistor integration densities following Moore’s Law enabled manycore

platforms with tens and even up to hundreds of processing cores per chip. So-called tiled

architectures, where compute, IO and memory resources are structured in individual tiles

interconnected by a packet-based Network-on-Chip (NoC), are a particularly promising

set-up for scalable manycores (see Fig. 1 for a generic example of a tiled multicore). Ex-

isting implementations include Intel’s “Single-Chip Cloud Computer” (SCC) [GHKR11]

or the TILEPro100 platform by Tilera [Aga07], containing 24 and 100 tiles, respectively.

However, technological progress is not the only driver towards manycore architectures.

The trend is to consolidate multiple applications, each consisting of several tasks with indi-

vidual safety, security and real-time requirements onto a single shared processing platform.
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Figure 1: Generic tiled manycore architecture

Examples are sensor or media processing applications, augmented reality and robotic con-

trol or other recognition, mining and synthesis (RMS) applications [Dub05], all running

on the same multi-/manycore processing platform. Those applications have in common

that they require high performance and parallel execution.

The aforementioned platforms are subject to dependability issues as they favor latest tech-

nology implementation and 3D integration with increased potential error rates, either tran-

sient or permanent [B+04]. One example is stress by thermal hotspots resulting in in-

termittent errors in signal integrity or run time behavior (short term effects) as well as in

physical damages in form of transistor aging or even electromigration [NX06]. To guaran-

tee the operativeness of the applications, counter measures must be taken at all abstraction

levels of integrated circuit and system design.

In this concept paper, we propose to enhance regular structured manycore architectures

with HW supported processing and communication virtualization techniques in order to

increase the fault tolerance of the applications. This is centered around the dynamic re-use

of temporarily unused or weakly loaded tiles by transparent task relocation. The execution

of a task is switched over from a tile marked as unreliable to a more reliable tile as a

service by the underlying distributed system management. In order to support different

requirements regarding safety, timing integrity and minimal relocation overhead, several

established strategies can be enacted by the system management. tiles by

The remainder of the paper is structured as follows: In chapter 2 the platform with its

basic building blocks and supporting extensions for virtualization is described. Chapter 3

explains the different error and failure concepts on this platform and the protocols to signal

migration, triggered by task specific thresholds violations. The paper concludes with a

summary in chapter 4.

2 Tiled Manycore Platform

2.1 Basic Building Blocks

Fig. 2 depicts a common tiled manycore platform constructed from a limited set of building

blocks.
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Figure 2: Tiled manycore architecture in detail

Processing is performed in compute tiles, consisting in general of one or few small RISC

cores and local memory connected via a shared bus. Due to resource constraints and the

overall design decisions compute tiles only have small feature set. To avoid complex cache

coherence algorithms and synchronization, the basic runtime environment usually spans

only individual compute tiles. It provides SW tasks running on top of it with limited

services.

A NoC with router nodes and links acts as a generic communication infrastructure to con-

nect individual tiles. Every tile has at least one network adapter (NA) providing access to

the NoC. All interaction and data exchange between tiles is done via explicit communica-

tion, i.e. message passing, over the NoC. In order to prevent message loss or blockage in

case of broken NoC routers or links, the NoC has to flexibly provision alternative routes.

IO, e.g. network interfaces or high-speed links, is encapsulated in own tiles and can is

shared via the NoC by a large number of compute tiles. Memory resources are either on-

chip, dedicated SRAM based memory tiles, or for larger memory ranges, off-chip DDR

SDRAM modules accessible through memory controllers. Local memories within the

compute tiles, on-chip SRAM tiles and off-chip memory form the memory hierarchy of

the manycore.

The regular structure of such an architecture and the high number of available homoge-
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neous (compute) tiles enables approaches to enhance the reliability by using (temporarily)

unused tiles as fallback alternatives in case of failures and errors within the designated

tiles. In general, limiting factor is the static configuration/deployment of the architecture

and (up to now) missing methods and strategies to migrate tasks in a transparent way, i.e.

without modifications and side-effects for the tasks and their runtime environment.

2.2 Extensions for Virtualization

As tiled manycore architecture provide a consolidating environment for hundreds or even

thousands of tasks, those can have different requirements towards their running environ-

ments in terms of real-time, required operating system and performance/throughput. The

system needs to be provisioned, scheduled and partitioned for those concurrently running

tasks and environments.

Virtualization of the physical HW by a hypervisor or virtual machine monitor (VMM)

is an established concept for providing such a function ( [BDF+03], [Hei09]). Different

domains are running in separate virtual machines (VM). A domain can include a single

task with only a rudimentary operating system up to a complex general operating system

with several tasks. The underlying platform resources are shared and compartmentalized

by the hypervisor.

To avoid a single point of failure a hypervisor instance should be only controlling one or a

few cores ( [lin]) and communicate/coordinate with the the other hypervisor instances via

a distributed system management and their local slaves.

To reduce the overhead for processing virtualization and enhance compartmentalization

HW support for this is preferred. Similar approaches exist already for High Performance

Computing (HPC), e.g. VT-X on Intel CPUs [NSL+06] and can be scaled down for cores

in compute tiles. The explicit communication between compute, memory and IO tiles is

highly performance critical. Here, dedicated HW support is also required to eliminate

overhead otherwise occurring in software to provide virtualization for communication.

To avoid changes to the NoC and and enable re-use of existing implementation this HW

support should be added to the edges of it, i.e. within the network adapters in the tiles.

As NoC is is packet-based concepts from the HPC network and IO virtualization can be

adapted for this ([WSC+07]). IO tiles share the most resemblance to normal virtualized

network interfaces and therefore have an extensive virtual network interface controller

(VNIC). Virtual Network Adapter (VNA) for the compute tiles are a subset of the features

of VNIC as their have a only a limited number of connections to share and to service.

Fig. 3 highlights the differences between a common tiled manycore architecture and one

with virtualization extensions described above.

In order to achieve a performing and cost efficient realization for the VNIC/VNA entities,

NoC packet queues, caches for individual communication configurations and packet buffer

management should not be stored entirely in the respective entity. Although this would

be advantageous from throughout and real-time aspects it essentially duplicates memory

requirements. With the assumption that only a limited number of real-time and high-
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Figure 3: Tiled Manycore Architecture with virtualization extensions

priority connections are active at any point of time, it should be possible that a bounded

number of queues/caches/buffers can be shared between those connections in a dynamic

way [RWH10]. By managing those elements for real-time/high-priority tasks and for best-

effort tasks by scheduling and (de-)multiplexing the associated resources, different levels

of services can be provided (see Fig. 4.

Because of the incooperation of communication and processing virtualization it is now

possible have transparent task relocation. Furthermore, hypervisors with their small foot-

print provide a minimal trusted computing base and can be used to enhance overall relia-

bility even further via monitoring of runtime environments and their tasks [DKR08], via

check-pointing complete runtime environments or via loose-lock-stepping ([TSKM08],

[CLO+08]). This can be used to provide flexible (dual) modular redundancy for cores in

intra and inter tile scope but without requiring special or dedicated HW. Drawback is a

higher overhead due to handling it mostly in SW via hypervisor.

Results reported in the literature ([CCS10], [JRK10]) show only minimal downtimes dur-

ing live migration of complete operating systems in HPC environment. We expect that

for tightly integrated tiled manycores architecture with HW enablement for processing

and communication virtualization with only small runtime environments live migration

without communication data loss under real-time constraints should be possible.
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3 Error/Failure and Migration Handling

3.1 Classification

To decide if and when a task relocation is needed the components required for this task,

e.g. runtime system, compute tile, cores, NoC or IO, have to be categorized by their

operativeness. The following states are possible:

1. No Error, No Failure: The component is operating normally.

2. Some Errors, No Failure: The component is not operating error-free, but there is

no failure yet. Errors include parameters exceeding a defined threshold, e.g. a too

high temperature in a tile.

3. Significant Errors, No Failure: The component experiences errors over a defined

rate, but this still does not result in a failure.

4. Failure: There is a failure and the component’s behavior is corrupted.

The first three states can be handled by task relocation without information loss. The

last state requires additional mechanisms to return to a valid state. According to varying
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safety criticality and timeliness requirements, task relocation can be divided into different

strategies based on existing protection methods [VPD04].

• Cold Task Relocation: No alternative set-up has been configured. The system

management has to create this alternative from scratch. This involves reserving

compute tile resources and NoC routes and activating them. This approach does not

bind additional resources beforehand, but requires the most actions straight before

and during the relocation. See Fig. 5a) for an example involving tasks on a compute

tile processing IO data coming from an IO tile and and storing data on a memory

tile.

• Warm Task Relocation (1:1, N:1): An alternative set-up has been pre-configured.

The basic system and task are existing, but not running. The state of the task has be

transferred and the communication routes have to be activated. Overcommitting the

alternative compute tile for different tasks is possible. This strategy should provide

a good trade-off between increased reliability and utilized resources. See Fig. 5b)

for an example.

• Hot Task Relocation (1+1): An alternative location has been pre-configured and

is running. All communication is already up both for the original and alternative

location. In case of a relocation only the active setting is switched over. In this

variant the task itself can be allowed to trigger its relocation and inform the system

management afterwards to eliminate it from the critical decision path. Here, low

latency, minimal downtime and high fault tolerance is achieved with high resource

utilization. See Fig. 5c) for an example.

According to the criticality for an individual task, a particular strategy for task relocation is

pre-defined during design time and potentially pre-configured by the system management

during run time. This strategy is triggered when the task is under a dependability threat.

Sensors within the tiled manycore architecture monitor the components and report failures

and errors to the system management. This uses the aggregated information to generate

a model of the system. See chapter 3.2 for the triggering and chapter 3.3 for the used

protocol.

For cold and warm task relocation a chain of strategies can exist as to prior relocation of

other tasks the first fallback is already impossible. Set-ups must be constructed and chosen

carefully to prevent overload in the system in case of a migration.

A special case is task migration within a tile. This is only possible if this tile contains

two or more cores. Such a migration is preferred due to the limited configuration effort

in opposition to inter tile migration. No changes or reconfiguration other than within

the tile have to be performed and no complex migration protocol is required (see below).

Nevertheless, inter tile task migration is needed if the reason for the compute tile becoming

unreliable are errors or failures in required components, e.g. the shared bus. Another

reason is too strained resources in this tile to support a consolidation of all tasks on a

reduced number of cores. Furthermore, task migration to another tile can be required

because of errors and failures in the vicinity of the tile, e.g. existence of a thermal hotspot

or problems with routers or network adapters nearby.
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Figure 5: Task migration with different strategies a) cold task relocation, b) warm task relocation, c)
hot task relocation involving two tasks on a compute tile processing IO data coming from an IO tile
and and storing data on a memory tile
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3.2 Threshold-based Migration

In the system management a pre-set matrix for each task exists with its sensitivity to error

and failure states in a definable time slot and per individual components. Some tasks have

a high sensitivity to errors and failures in certain components because this will almost cer-

tainly lead to a failure of the task, e.g. a wrong timer value for a real-time task. Other tasks

are maybe more relaxed regarding errors or failures, for example small data corruption in

video input data for a object recognition task can be ignored due to the noise robustness.

This matrix is weighted with factors decided during design time and used in the decision

to relocate based on configurable threshold for this specific task. The criticality of the task

is accounted for in the weighting, i.e. highly critical tasks have high weighting factors.

The threshold is defined by the migration cost for this task. The relocation consists of

two factors: The cost for the actual migration operation (the amount of to be transferred

task data for this relocation between tiles in form of a memory snapshot, reconfiguration

overhead ) and the load increase of the system after migration in the new set-up (e.g. traffic

over more NoC links). If the actual value generated by errors and failures for the weighted

matrix is over the threshold the task relocation is triggered as configured by the respective

system management slave. This concept is visualized in Fig. 6. This approach goes beyond

Polze et. al [PTS11] which ignores the cost for migration and only triggers migration on a

failure prediction.
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Figure 6: Visualized migration trigger calculation with configurable threshold

3.3 Protocol for Migration Management

As migration management has to act in a timely fashion we propose to integrate the criti-

cal steps of it as dedicated HW blocks and queues into the VNA and VNIC modules. The

communication for the migration protocol has a higher priority and/or reserved commu-

nication resources in the NoC compared to the normal data communication. The system

management can pre-configure alternative (i.e. shadow) set-ups. Such a set-up consists of

a bundle of communication and processing configurations which have to exist for a task

deployment. By deactivating the old set-up and activating a new set-up a task migration is
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performed.

Each set-up has a global unique ID. This is used to locate the set-up (local memory in

a tile or in a memory tile, for example by a VNIC). Linked to a set-up is a list of all

involved tiles. Each tile has its own configuration linked to this set-up (e.g. the run time

and hypervisor parameters and memory address ranges).

If triggered by a task threshold violation the responsible system management slave (SMS)

initiates switching to the designated alternative set-up. The first step is writing the ID of the

old set-up to be purged and the ID of the new set-up replacing it to a special configuration

interface of the tile’s VNA. Receiving this write the VNA locks itself against other task

migration requests. It then transmits a request to VNAs and VNICs listed in the new set-up

informing about the activation initiation of the new set-up.

VNAs receiving this request are locking themselves, are acknowledging it by replying with

a response and are informing their respective SMS via notification. The SMS then starts

reconfiguring its tile resources for this new set-up. After successful reconfiguration it then

informs its VNA about it. The VNA sends then a second acknowledgment response to the

triggering VNA.

VNICs receiving this request are locking themselves and are acknowledging it by replying

with a response.

If all addressed VNAs and VNICs respond in a configurable time frame with all acknowl-

edgment responses the migration protocol continue with the deactivation initiation of the

old set-up by sending a request to the VNAs and VNICs listed in the old set-up. The VNAs

and VNICs receiving this request are acknowledging it by replying with a response and

locking themselves.

If all addressed VNAs and VNICs respond in a configurable time frame with the acknowl-

edgment the switching is performed (including a downtime for the task). In this stage also

running state information is exchanged in case of warm standby relocation.

The triggering VNA sends out a request for invalidating the old set-up. The addressed

VNAs reply with an acknowledge response and inform their SMS about it which will

then purge all related resources to the old set-up. For VNA which are both involved in

the new and old set-up incoming messages are buffered for the time being. Otherwise

communication is dropped.

VNICs involved reply with an acknowledgment response and if both active in the new and

old set-up buffer communication during this downtime and drop them otherwise.

By adding an individual timer value per VNA/VNIC allows a tasteful shutdown of com-

munication so that no communication will be dropped.

When receiving all the acknowledgment responses the triggering VNA sends out the ac-

tivation for the new set-up. All VNAs and VNICs are using directly the new set-up. If

communication is already incoming for a not yet activated set-up on a VNA or VNIC it is

buffered until activated.

Sending out the deactivation of the old set-up and activation of the new set-up can be be

done together if packet loss during the migration phase is acceptable.
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Further requests for a different task migration are denied with a negative response mes-

sage. Then the locking of the VNA/VNIC resource is acknowledged and also the system

management part for this VNA is informed. It performs the needed resource requirements

for task migration. If there is any time out or problem during the stages of the migration

protocol, e.g. a VNA is already blocked for different and still running migration the pro-

cess is stopped for now, the triggering VNA is informing all participant which roll back

possible configuration changes.

A sequence of set-ups is possible to prevent deadlocks due to resource constraints, e.g.

first a set-up is enacted to free up resources then the set-up for the actual task migration is

done. Parallel task relocations are possible as long they do not share tiles with VNAs and

VNIC to be reconfigured.

4 Summary

In this paper we have described how the regular structure of tiled manycore architectures

can be utilized to enhance dependability of applications running on it. With HW supported

communication and processing virtualization it is possible to migrate tasks transparent

within such a platform under real-time and performance constraints. Different task migra-

tion strategies can be used based on the required reliability level of its application. For

triggering the actual migration a threshold-based configuration on individual task basis is

proposed. This concept would allow to run dependable applications on a platform with

generally undependable components by preventing single points of failure, live substitu-

tion of failed components and virtual redundancy.
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