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Abstract: This paper explores the use of formal verification methods for complex and
highly parallel state machines. For this purpose, a framework named Synchronous
Transfer Architecture (STA) is being used.

STA is a generic framework for digital hardware development that contains VLIW,
FPGA, and hardwired ASIC architectures as corner cases. It maintains a strictly de-
terministic system behavior in order to achieve substantial savings in hardware costs,
thus enabling systems with high clock speed, low power consumption and small die
area. The high degree of parallelism requires a diligent development methodology to
avoid implementation errors. Consequently, formal verification is the methodology of
choice for reliable verification.

The contribution of this paper is a formal semantics for the STA hardware archi-
tecture framework. This semantics is then used for the formal verification of an opti-
mized parallel implementation of Fast Fourier Transformation (FFT) on STA. This is
achieved using a combination of the semantics and symbolic evaluation.

1 Introduction

Synchronous Transfer Architecture [Cic04, CRS+04b] is an architectural framework for

the design of special purpose hardware which is used to assist the main processor at de-

manding computational tasks in small devices such as mobile phones or car electronics,

e.g. in advanced driver assistance systems (ADAS). Typical tasks to be offloaded to such

specialized hardware are signal processing algorithms such as FFT and filtering, algo-

rithms for error-correcting codes (Reed-Solomon, Viterbi), graphics and image processing,

and generic linear algebra (solving equation systems, least mean squares (LMS), singular

value decomposition (SVD), Kalman).

Traditionally, such components are implemented either as 1) application specific integrated

circuit (ASIC): hardwired circuitry is fast but costly to develop and verify; or as 2) field-

programmable gate array (FPGA): reconfigurable logical circuits are still reasonably fast

and less expensive to develop than ASIC, but costly to deploy due to high power consump-

tion and chip area; or as 3) digital signal processor (DSP): traditional DSPs do not offer

much parallelism, while state-of-the-art microprocessors have a rather high overhead for

runtime parallelization of sequential code.
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Synchronous transfer architecture (STA) is an architectural framework designed for trad-

ing off among the three extremes described above. It allows a fine-grained tradeoff be-

tween cost of development and deployment on the one hand, and performance and power

consumption on the other. Additionally, and more importantly, STA relies on statically

determined parallelism which can considerably save hardware resources, and facilitates

simulation and verification.

STA is a collection of DSP components such as arithmetic logic unit (ALU), floating point

units, register files and memories, which are dynamically reconfigured. This reconfigura-

tion process can be regarded as a highly parallel assembly program that is read from an

instruction memory. All the components of an STA system operate synchronously and

in parallel. The assembly language facilitates the dispatch of simultaneous commands to

each of these units. Thus, the pipelining policy is exposed at the instruction set architec-

ture. As a result, the highly parallel STA programs may be difficult to understand for a

human reviewer. Thus, rigorous verification is essential as in the case of FPGA and ASIC.

On the other hand, due to the relatively high abstraction level of assembly language, com-

pared to register transfer language (RTL), rigorous verification is considerably easier than

for those.

This paper substantiates the claim that STA facilitates formal verification by providing a

formal semantic model of STA and using this model to give a formal functional verification

of an industrial-strength implementation of Fast Fourier Transform (FFT).

This paper considers a low-power hardware accelerator with a floating point adder and a

floating point multiplier. These two functional units operate in parallel with several integer

units (e.g. ALU) that maintain indices and loop counters and with the memories. Thus, it

serves as an example about how to deal with a high level of parallelism in such systems.

The FFT implementation considered in this paper completes in 5844 clock cycles. This

means near-optimal utilization of the employed floating point processing units. It is the

same level of performance that might be expected from a super-scalar microprocessor.

However, the STA system does not consume hardware resources for dynamic scheduling,

branch prediction, and so on. The STA system is a relatively frugal architecture that con-

sumes about the same area and power as a traditional 32-bit RISC micro-controller, with

higher performance. At the same time, the lack of dynamic scheduling makes the architec-

ture strictly deterministic, and thus much more favorable for safety-critical applications.

After describing more details about the STA framework, this paper will present a formal

semantic model of STA. This model takes the form of a mathematical function mapping a

configuration and its initial memory to its final memory contents. An implementation of

this function in a functional programming language (i.e. OCAML) renders it executable.

Besides providing a simulator of the STA, this function can be evaluated semantically us-

ing symbolic arithmetic expressions, rather than actual values. This allows us to compute

the result of the FFT in the form of a vector of symbolic arithmetic expressions.

These expressions can be proven to be indeed equal to the mathematical specification of

the FFT by employing automated symbolic algebra.
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2 Related work

Related work can be categorized into two different areas: formal equivalence checking of

hardware at different levels of abstraction, and formal verification of pipeline implemen-

tations.

2.1 Formal Equivalence Checking

Formal equivalence checking is based on hardware models that are represented as finite

state machines (FSM). These finite state machines can either be implemented on the ab-

straction levels of silicon geometry, netlists of register transfer level (RTL). The purpose

of formal verification is mainly to prove the equivalence of the different models at various

abstraction levels.

Formal equivalence checking is also widespread in the EDA (electronic design automa-

tion) community. Almost every EDA vendor offers tools to establish formal equivalence

at different abstraction levels [SY, ADK08].

Formal equivalence checking can be performed either by binary decision diagrams (BDDs)

[Bry86, BD94] or by Boolean satisfiability (SAT) solvers [BCCZ99]. [BD02] uses integer

linear programming (ILP) to verify hardware design. This is an alternative to SAT solvers.

The system is described on register transfer level (RTL) as combinational logic that is

interpreted as a function that operates on bit vectors.

Bluespec [Arv03, AN08] presents a new hardware description approach based on func-

tional programming. This enables the methodology present in these logic programming

languages to be applied to hardware systems. Like in our approach, Bjesse chooses the

implementation of an FFT algorithm [Bje99]. However, his target architecture is FPGA,

while this paper explores STA.

Furthermore, this paper relies on the assumption that the FFT algorithm itself is function-

ally correctly specified (as given in [Cap01, Gam02]), and that the numerical stability is

provided (as given in [AT04]). These implementation-independent properties of the FFT

algorithm have been described in literature previously.

A very common implementation of such FSMs are sequential synchronous circuits (SSC).

As it will be explained below, synchronous transfer architectures (STA) are a special case

of such SSCs. Consequently, the methodology to ensure correctness of the lower abstrac-

tion layers of their implementation can be applied to STAs right away. In fact, an important

basis for the verification of STAs is the assumption that their correct implementation is ver-

ified using formal equivalence checks. In other words, formal verification of STAs relies

on the availability of the methods in this related work to be carried out thoroughly.

As noted, once formal reasoning on FSMs is taking place, it is obvious to also verify

certain analytical properties of them. This leads us to the second large area for formal

verification: the verification of pipeline processors, as described in the following sub-

section.
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2.2 Pipeline Verification

A large class of system implementations are parallel processors. These are implemented

using pipelining and super-scalar scheduling. The conceptual model of these machines is

very simple: an ordered sequence of instructions that are supposed to be carried out one

after each other. On the other hand, their actual implementation in hardware is a different

story.

Intelligent hardware units take a sequential instruction stream, figure out at run-time which

parts of it can be carried out in parallel, and carry them out such that this parallelism

remains virtually invisible.

This is a huge challenge for hardware implementation. Besides consuming large amounts

of resources (die area, electrical power), these systems are very complex and consequently

error-prone and hard to verify. Consequently, formal verification has become essential in

order to ensure their correctness.

Here are some examples of this approach:

The most recent relevant work has been done by teams at IBM [MBP+04, Cam97], DEC

[BBJR97], and Intel [KSKH04]. Industrial strength work in formal verification of micro-

processor designs have been performed at Intel [KGN+09], and Centaur [SDSJ11].

Verification of a scalar pipelined RISC processor with the PVS theorem prover is described

in [Cyr94]. The processor used is relatively simple as it does not have the sophisticated

control of a super-scalar design. Verification of such processors with a focus on the control

part and using binary decision diagrams (BDDs) is described in [BD94].

[SJ] describes a framework for verifying a pipelined microprocessor whose implementa-

tion contains precise exceptions, external interrupts, and speculative execution using the

ACL2 theorem prover. The use of Isabelle by Hewlett-Packard in the design of the HP

9000 line of servers’ Runway bus lead to the discovery of a number of bugs uncaught by

previous testing and simulation [Cam97].

[Bey07] describes formal verification of a cache memory and its integration into an ARM

compatible microprocessor called VAMP. It includes an instruction set architecture (ISA)

model down to gate-level verification, and the Cambridge ARM model [Fox03] for for-

malization of this ISA.

[BBM+07] describes full formal verification of the Infineon Tricore processor. It does

not only check the correctness of specific properties of the design. It also checks for

completeness, i.e. whether all possible input scenarios are covered.

3 Synchronous Transfer Architecture (STA)

The Synchronous Transfer Architecture (STA) [Cic04, CRS+04b] is an architectural frame-

work that enables the design of high-performance, low-power reconfigurable hardware

systems. STA aims to shift the effort for the execution of parallel operations from hard-
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ware to software.

STA is focused on simplicity and aimed to avoid implementation bottlenecks of super-

scalar processors and is thus efficient in hardware. It requires neither local queues for

collecting operands, nor a controller that determines when exactly an operation is to be

started. In a predictable execution environment, the STA approach triggers the execution

of operations explicitly by supplying control signals from its configuration. In contrast to

traditional FPGAs, the configuration can change on a per-cycle basis, thus enabling more

effective resource sharing.

(a) Modules (b) Machine Description (UML)

Figure 1: Synchronous Transfer Architecture (STA)

Figure 1(a) shows the architectural framework of STA. The processor is split into an arbi-

trary number of modules, each with arbitrary input and output ports. To facilitate hardware

synthesis and timing analysis, it is required that all output ports be buffered. Each input

port is connected to a design-dependent set of output ports, as shown in Figure 2(a). For

each computational resource, its STA configuration contains the control signals (opcode)

for the functional unit and the multiplexer controls the sources of all input ports and asso-

ciated immediate fields. (A multiplexer is an electronic device that selects one of several

input signals, which one is dependent on a control signal, and forwards it to its output

signal.)

Figure 1(b) shows an UML diagram of a STA architecture. A STA core consists of a set of

modules. Each module can be either a functional unit performing some computation, or it

can be a state module, i.e. a register file or memory. This subdivision enables one to target

STA systems with compilers [Cic04, CRS+04a].

In [Cic04], it is demonstrated how arbitrary hardware architectures can be reformulated as

STA. This is performed by subdividing the existing hardware modules into their functional

and state-specific portion. Figure 2(a) shows all input multiplexers together forming the

interconnection matrix between the output and input ports. This system constitutes the

synchronous data flow network. The switching matrix may implement arbitrary connec-

tions depending on the application, performance, and power-saving requirements.

In the example shown in Figure 2(a), it can also be seen that this interconnection matrix

does not need to be fully populated. For example, the input ports of the functional units
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only have connections to one read port of the register file, not to all three of them.

(a) STA: Interconnection Network (b) Block Diagram

Figure 2: Raccoon

The connection from each output of any functional unit to a write port of a register file

is mandatory. While there is a connection from the output of the multiplier to the input

of the adder, there is no direct connection from the output of the adder to the input of the

multiplier. Operands that need to go this path needs to be routed through the register file.

By this reduced inter-connectivity, the complexity of the interconnection network can be

reduced from O
(

n2
)

to a lower complexity class, in case of highly parallel architectures

with a large number of functional units.

4 Raccoon Arithmetic Accelerator

The FFT algorithm that is formally verified in this paper is implemented on a specific

STA implementation: the Raccoon Arithmetic’s Accelerator. Figure 2(b) shows a block

diagram of the architecture.

It is a small example design, architected to match the die area and power consumption of

simple RISC 32-bit embedded micro-controllers, while offering a higher performance.

Raccoon is a simple floating point accelerator with one floating point adder and one float-

ing point multiplier. Around these, there are additional modules that are designed to sup-

port the computational resources running at maximum throughput. These resources are:

integer arithmetic (ALU, multiplier, barrel shifter, conditional unit), logical unit, register

files at word and bit level, data memory, instruction memory.

262



5 Case Study: Optimized FFT

This section describes the optimized FFT configuration for which functional verification

will be provided. It is highly optimized and designed to achieve the best performance

and lowest power consumption on the given hardware resources. The hardware resources

(“functional units”) are a floating point adder and a floating point multiplier. Around

these, there are additional supporting hardware resources; in particular, a register file and

an integer ALU.

The configuration presented in this paper implements the standard radix-4 FFT as de-

scribed in [PM96]. In general, Fast Fourier Transform (FFT) is an efficient implementa-

tion of the Discrete Fourier Transform (DFT). DFT is a function mapping a vector z of N
complex numbers to an equally dimensioned result Z. It is defined by

Definition 1 (DFT) Zk =
∑N−1

n=0 zne
−

2πikn

N , where 0 ≤ k ≤ N − 1.

FFT is a recursive divide-and-conquer algorithm that evaluates the Zk in O(N logN) time

as opposed to the O(N2) gotten from the definition. The subdivision can be performed

using various radices, among which radix-4 has the most favorable performance charac-

teristics. In the radix-4 version of FFT, each problem instance of size N is recursively

subdivided into four sub-problems of size N/4. Figure 3 shows the mathematical refer-

ence, in which d-dimensional vectors are represented as (complex-valued) functions from

{0, . . . , d− 1}.

FFT4(N,n, Mz) =
/* N ≥ n, both n,N powers of 4; Mz a complex vector of size n. Returns the DFT of Mz. */

if n = 1 then λk.z0 else

for i = 0, 1, 2, 3 let MZ(i) = FFT4(N,n/4, λj.Mz(4j + i)) in

λk.let p = ⌊ k
n/4⌋; q = k mod n/4 in

dragonfly(N,n, λi.Z(i)(q), qN/n, 2qN/n, 3qN/n)(p)

Figure 3: Radix-4 FFT, decimation-in-time

The auxiliary function dragonfly(N,n, MZ, u, v, w) computes the following 4-vector in

an optimized fashion.

(

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

)(

1 0 0 0
0 Wu −0 0
0 0 Wv 0
0 0 0 Ww

)

MZ

The values W0, . . . ,WN are the precomputed twiddle factors, Wk = e−
2πik

N .

By induction on N one shows easily that the recursive radix-4 algorithm given in Figure 3

is arithmetically equivalent to the definition of the DFT in Definition 1.

The FFT program that is being verified in this paper is an iterative bottom-up version

that employs a number of optimizations, such as strength reduction, handling of “twiddle
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factors”, parallelizing memory access and arithmetic operations. The program overwrites

the input values (zj)j with the result values (Zk)k and operates entirely in-place. How-

ever, the value Zk will be written into the position bitrev(k) where bitrev is the

permutation of {0, . . . , 256} which in base 4 is given by reading from left to right (“bit

reverse”). E.g. bitrev(17) = bitrev(01014) = 10104 = 68 or bitrev(140) =
bitrev(20304) = 03024 = 50.

The total numbers of operations is shown in Table 1. The entire program takes 5844

cycles to complete. It can be seen that the execution speed is limited by the floating-point

adder (FP add) hardware resource. During the execution of the algorithm, this resource is

almost 100% utilized. This means that hardware performance is optimal with respect to

the expended resources.

operation count utilization

FP add 5152 88%

FP mul 3733 64%

ALU 2264 39%

MEM load 1273 22%

MEM store 1024 18%

Table 1: Total number of operations

Even though the Raccoon hardware design has only the hardware resources of a scalar

RISC processor (i.e. one functional unit of each kind), it achieves a rate of instructions

per cycle (IPC) of 2.3. This IPC rate is comparable to that of super-scalar processors

[CSS97]. At the same time, Raccoon has a strictly deterministic execution behavior for

safety-critical applications and avoids the overhead for dynamic hardware dispatching and

multiple functional units. Therefore, Raccoon consumes only a fraction of the hardware

resources (silicon area, power consumption) than a super-scalar or VLIW processor. Also,

the total latency of the FFT computation with 19.46µs @300 MHz is favorable. A highly

parallel implementation with 17 floating-point units requires 8.5µs [SCM+05]. GPUs

achieve much higher total throughput, but only if they perform a large number of FFTs

simultaneously (for latency hiding).

6 Formal semantics

The formal semantics presented in this paper models the dynamic behavior of an STA sys-

tem as a discrete evolution of states each of which maps locations (memory cells, registers,

ports) to values. Commands are abstracted from units by allowing them to access arbitrary

ports. Pipelines are specified abstractly by providing their reading and (later) writing times

for each command; register bypasses are abstracted by treating register writes as instanta-

neous.

An STA design comprises several components as detailed subsequently; in particular it has
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sets of locations, values, and commands, as detailed below in Specifications 1, 2, 3 below.

These have been called specifications rather than definitions since they specify a format

rather than a mathematical object.

Specification 1 (Locations) The set of ports is written as port. It comprises output

ports of STA units, such as memories, ALUs, floating point units, register files, etc. Ports

are volatile in that values written to them are readable only in the same time slot they are

written. A special port pc represents the program counter and another port done helps

detecting program termination. The set of registers is denoted by reg, while the set of

(data) memory addresses is denoted by addr. All these sets are assumed to be pairwise

disjoint and define the set of locations by loc = port ∪ reg ∪ addr.

Specification 2 (Values) The set of values is written as value, comprising bits, integers,

memory addresses (addr), program locations, floating point values, etc. value is lifted

and thus contains a special value ⊥ representing undefinedness. For example, all ports

and registers contain ⊥ at the beginning of execution.

The choice of these sets of course depends on the particular STA design to be modeled as

do the operations to be defined later on.

Definition 2 (States) A state is a function σ : loc → value representing the contents

of all locations, i.e., memory cells, registers and ports.

Specification 3 (Commands) command denotes the set of commands which comprise the

following four kinds:

• Operations are quintuples written oper(srcs,dest,rdts,wrt,opn), where

srcs ⊆ port and dest : loc and rdts : srcs → N (reading times) and

wrt ∈ N (writing time) and opn : (srcs → value) → value (execution func-

tion). It is required that wrt > rdts(p) for all p ∈ srcs. The idea is that if this

command is issued at time t0 then each port s ∈ srcs is read at time t0+rdts(s)
yielding value vs. Then, at time t0 + wrt the result opn(λs.vs) is written into

dest.

• Register Writes are pairs written regwr(src,dest) where src ∈ port and

dest ∈ reg; when such a command is issued then the value of src is instantly

written into the register dest. In practice, the value can be written only one step

later, but bypasses ensure that the effect is the same.

• Memory loads are written load(src,dest, t1, t2, t3) where src,dest ∈ port

and t1, t2 < t3. When the load command is issued at time t0, the following activities

take place on the ports: At time t0 + t1 a value v is read from the port src; at time

t0 + t2 a value v′ is read from memory address v and written at time t0 + t3 to port

dest.
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• Memory stores are written store(src,dest, t1, t2, t3) where src,dest ∈ port

and t1, t2 < t3. The command is assumed to be issued at time t0. At time t0 + t1 a

value v is read from the port src; at time t0 + t2 a value v′ is read from port dest

and then v is written into memory address v′ at time t0 + t3.

In any of these commands attempting to look up an undefined value will result in an un-

defined overall result. In a particular STA design only a small subset of the possible com-

mands will be available. (This semantics includes all mathematical functions on values.

Not all of these are actually realized in a concrete STA design.)

Example 1 (Integer Addition) For example the integer addition statement

salu.add sreg.r1 decoder.imm

that adds the contents of sreg.r1 and decoder.imm and places the result into salu.x

is represented as

oper( {sreg.r1,decoder.imm},salu.x,
[sreg.r1 /→ 0,decoder.imm /→ 0], 1,op)

where op(f) = f(sreg.r1) ⊕ f(decoder.imm) and ⊕ is 32 bit integer addition.

(f is a function from srcs (here sreg.r1, decoder.imm) to values according to the

definition ”Commands”, which will be given later.) To be precise, this statement is being

modeled as several operations; the one just given and the other ones setting appropriate

flags. As Chapter 5 of [COR+95] explains, this a common way for modeling machine

instructions as arbitrary functions.

Definition 3 (Histories) A history h is a function from negative integer numbers (-1,-2,-

3,. . . ) to states. It represents the previous few states that are relevant for the evaluation of

a command. Most states (and in particular all but finitely many) of the states in a history

will be everywhere undefined. Attempting to access an undefined value will as usual result

in an error. The set of histories is written as hist.

Definition 4 (Updates) An update is a finite partial function loc → value∪loc. The

set of updates is written as update. u ⊕ u′ denotes the union of two updates if it is a

partial function again; otherwise u ⊕ u′ is undefined. An update u with ℑ(u) ⊆ value

is normal.

Lemma 1 The partial function resolve : update → update normalizes an update

by resolving all indirections recursively by:

resolve(u) =

{

u, if u is normal;

resolve(u′)⊕ [l /→ resolve(u′)(l)], if u = [l /→ l′]⊕ u′

Proof 1 This function is undefined if any of the lookups resolve(u′)(l) or if the recur-

sion does not terminate. resolve can be efficiently implemented by checking the graph

spanned by the l /→ l′ mappings for acyclicity.
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Definition 5 (Semantics of commands) The semantics of a command c is now given as

a function "c! from histories to updates as follows:

"oper(srcs,dest,rdts,wrt,opn)!(h)
= {[dest /→ opn(λs.h(rdts(s)− wrt)(s)]}

Thus, the values of each source s ∈ srcs can be found at position rdts(s)−wrt in the

history.

Example 2 For example, if s is read at time 5 (after issuing the command) and the des-

tination is written at time 7 (after issuing the command) then at the time the destination

is written the value of the source 2 time steps earlier is relevant, hence position -2 in

the history. This latency is always fixed and STA cannot handle operations with variable

latency.

The remaining semantic definitions are now self-explanatory. We put

"regwr(src,dest)!(h) = [src /→ dest]

and

"load(src,dest, t1, t2, t3)!(h) = [dest /→ v]

where v = h(t2 − t3)(a) and a = h(t1 − t3)(src). Finally,

"store(src,dest, t1, t2, t3)!(h) = [l /→ v]

where v = h(t1 − t3)(src) and l = h(t2 − t3)(dest).

Definition 6 (Programs) A program is a function P : {1, . . . , N} → P(command)
where N is some integer, the length of the program. The idea is that when pc (pro-

gram counter) has value n then the commands in P (n) are simultaneously issued ∆fetch

time-steps later and—at their writing times they attempt to write into their respective desti-

nations. ∆fetch is a fixed parameter modeling the delay involved in fetching and decoding

commands.

Example 3 In the Raccoon architecture, there is ∆fetch = 2.

If another command attempts to write the same location no matter when it was issued then

this constitutes a conflict and leads to an error.

Definition 7 This is being modeled by using queues containing pairs (c, i) with c a com-

mand and i ∈ N modeling the number of time-steps until c writes into its destination

(“fires”). The function adv : queue → P(command)× queue splits off all commands

in a queue whose i value is zero and decrements the i-values of the remaining ones.

A reasonable program will contain at each group of commands one command that alters

the program counter (typically by incrementing it). In practical assembly level programs

only the non-incrementing pc-operations, e.g. jumps are explicitly written.
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Step function. Our aim is to define a function step which takes a program P , a time

t, a function Σ : {0, . . . , t − 1} → store and a queue q. It returns an updated queue q′

and a store σ representing the contents of locations at time t.

Advance We begin by advancing the current queue, thus write (cs, q1) = adv(q). So

cs are the commands that fire now. With cs’ = P (Σ(t− 1)(pc)), the updated queue is

being formed as q′ = q1 ∪ {(c, i) | c ∈ cs’, i = ∆fetch + tc}. Here, tc is the time when

command c fires, e.g., tc = 1 for salu.add. The tc are parameters of the architecture

being modeled.

Update Given cs and Σ we can compute the updates that will take place as

u = resolve(
⊕

c∈cs

"c!(λiλl.Σ(t+ i)(l))

Note that there is the possibility of errors due to conflict. Also note that i is a negative

number here.

Finally—if no error has occurred so far—the update is being applied to form σ(l) = v if

l /→ v ∈ u. If l is a memory address or a register, σ(l) = Σ(t−1)(l) retains the previously

stored values. Otherwise, σ(l) = ⊥ makes the result undefined.

Summarizing, we have

step(P, t,Σ, q) = (q′, λl.











u(l) l ∈ domu

Σ(t− 1)(l) t > 0, l a memory address or register

⊥ else

)

where q′ and u are defined as above.

Complete evaluation. Now, given an initial store σ0, a sequence of stores is defined

by σt and queues qt by q0 = {} and (σt, qt) = step(P, i, λt′.σt′ , qt−1) for t > 0.

σ = eval(P, σ0) designates the complete evaluation up to σ = σt where t is the earliest

time when σt(done) = true. If no such t exists or errors have occurred anywhere on

the way then eval(P, σ0) is undefined.

This concludes the description of our semantics; it comprises thirteen specifications and

definitions. The semantics has been validated by implementing it in OCAML and com-

paring its outcomes on several example programs with the outputs produced by real STA

hardware as well as the outputs produced by an existing System C simulation of STA. The

next section gives the announced application of the semantics to the formal verification of

the FFT implementation.
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7 Functional verification of an FFT implementation

The formal semantics of the Raccoon design has been implemented as a functional pro-

gram written in OCAML programming language. This program displays a top-level func-

tion which from a given instruction memory and initial data memory computes the global

state as a function of time.

Since the flow of control in the specific FFT-program does not depend on concrete val-

ues of floating point numbers (but only on integer values in loop counters) and because

the scheduling of parallelism is completely static due to the STA methodology it is then

possible to replace in the functional implementation the actual floating point numbers by

symbolic values representing arithmetic expressions. To this end, the following OCAML

algebraic data-type

type flr = Add of flr * flr | Sub of flr * flr

| Mul of flr * flr | Lit of string

is being used to evaluate the semantics of the STA design for FFT on the initial memory

given by i /→ (Lit si, Lit ti) when i < 4096 and i% 8 = 0 and where

s8k =

{

Re(z k), if k < 256
cos(-2*Pi*k/256), if k ≥ 256

t8k =

{

Im(z k), if k < 256
sin(-2*Pi*k/256), if k ≥ 256

Note that the si, tj are strings representing arithmetic expressions and not real valued

functions or similar.

In this representation, the flexibility of OCAML syntax is useful: Lit is a constructor of

type string for a data-type representing symbolic values. Thus, any symbolic expression

can be represented as a string value, for example Lit ‘‘Im(z44)’’.

The resulting output then contains arithmetic expressions in the real- and imaginary parts

of the 256 input variables and the real- and imaginary parts of the twiddle factors. The

symbolic execution takes less than three minutes to complete on a PC (Intel Dual Core 1.6

GHz processor and 2GB RAM).

Our approach then compares these expressions with the recursive reference implemen-

tation of the underlying FFT algorithm FFT4 (see Figure 3). These expressions were

checked for symbolic identity, not merely arithmetical equivalence, with the reference.

This then implies not only the functional correctness of our STA implementation but also

that its behavior on actual floating point numbers including numerical stability is the same

as the reference and thus well-understood [Ram70].

Theorem 1 The result expressions of the symbolic evaluation are identical to the vector

of expressions FFT4(N, k, Mz).

Proof 2 By direct comparison.
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Interestingly, the symbolic evaluation revealed a bug in an earlier version of the STA de-

sign for FFT that could not be found by testing alone. In fact the buggy version read an

output port one cycle too late. But this did not lead to an observable error since the actual

hardware is currently such that result values remain readable at output ports until they are

explicitly overwritten.

8 Conclusion and Future Work

This paper presents the first formal semantic model of the STA architectural framework.

By applying this framework on a specific architecture, we have performed formal verifica-

tion of a computationally intensive and highly parallel algorithm, the FFT, using symbolic

evaluation. We have also shown that the presented semantic model is suitable as simulator

for the architecture; a simulator that is specified in a functional language.

This verification approach is one important contribution to enable shifting effort of schedul-

ing and parallelizing execution for computationally intensive accelerators from run-time

into design-time. This shift contributes to better performance, lower power-consumption

and better safety of run-time systems. This gain is performed at the expense of higher

effort at design-time.

We have chosen a case study with an algorithm that is computationally intensive and does

not have a data-dependent control flow. As a next step, we will consider applications with

a data-dependent control flow. For example a dot product with variable vector length. This

non-trivial control flow will require to reason about a loop invariants and a fix-point in the

semantic model.

As the feasibility of our approach has been shown, we plan to apply it on STA systems

with an even higher degree of parallelism in the future. This will be systems with a greater

number of functional units, like several floating point units of each kind. This will be both

independently operating units, like they are used on an FPGA or wide VLIW processor,

and uniformously operating units, like a SIMD system.

The semantics defined in this paper has a rather operational flavor; it is supposed to be

fairly close to the actual architecture and thus is not further validated here. It would be

possible to prove it sound against even more low level semantic models that represent

pipelines, wires, the decoding process, etc. This can be achieved using the formal equiva-

lence checking approach that is being discussed in the related-work section.

Having said that, we can use our semantics to rigorously justify more high level seman-

tics that might be more useful for reasoning by invariants: A fix-point semantics will be

specified by a continuous operator "P ! on the domain of functions N → store. This

"P !(Σ) extracts all commands at all times simultaneously and fires them all at once at

the right times and locations. In this way, queues are not needed and it should be easier

to establish properties of programs with data-dependent control flow using invariants. We

plan to justify such fix-point semantics and its application to reasoning.

Proofs about fix-point semantics might be supported by using a computer-aided theorem-
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prover, like PVS, Coq, Isabelle, and the like. For a specific class of programs, a SMT

solver might be the best choice because of its guaranteed determinism.
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