
cbe

Herausgeber et al. (Hrsg.): SKILL,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Community Detection in Complex Networks using Genetic
Algorithms

Simon Lehnerer1

Abstract: Detecting the community structure is of great interest when analyzing the topology of
a network, however it is not a trivial problem. In this article a genetic algorithm is proposed which
finds the community structure of a network based on the maximization of a quality function called
modularity. Tests using several sample networks show that it reliably finds the community structure.
However it does not resolve sufficiently small communities as intuitively expected due to an effect
known as resolution limit.

Keywords: complex networks; community detection; genetic algorithm

1 Introduction

Broadly speaking, the community structure of a network is the division of the network into
groups of nodes called communities, which are internally densely connected and loosely
connected to nodes from other communities. There is no unique formalized definition of the
term community (structure) [Fo10]. In fact, many different approaches to define and detect
communities in a network have been developed in the past [FH16; Fo10; Sc07]. We will give
a few examples in the following: A simple method to find communities is to divide the nodes
of a network in g groups of predefined size such that the total number of edges connecting
different groups in minimized [Po97]. For networks with a known hierarchical structure,
e.g. often found in social networks, hierarchical clustering algorithms have been developed.
Based on a distance measure between nodes they either start by considering the whole
network as one single community and then iteratively divide the community into smaller
communities (top-down), or they start by considering each node as a single community
and iteratively merge them into larger communities (bottom-up) [HTF09]. Another popular
ansatz is to determine communities using the eigenvalues of the Laplacian matrix of the
network [Lu07]. Methods based on statistical inference like the stochastic block model, a
generative model for random graphs, are also often used to study the community structure of
a network [KN11]. Several information theoretic approaches try to uncover the community
structure by investigating the trace of random walkers on a network and utilize the fact that
the walkers are “trapped” inside communities [RB08]. Because the community problem is
ill-defined there is no superior approach. It rather depends on the specific network that is
1 ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland, lehsimon@ethz.ch

https://creativecommons.org/licenses/by-nc/3.0/
lehsimon@ethz.ch


2 Simon Lehnerer

to be studied and the notion of community that is used by a specific method. For certain
networks some approaches might be more useful than others [FH16].

In this work we will focus on a quality function called modularity [FC12]. The modularity
of a community partition is a measure that is the higher the “better” a partition indicates
the community structure of the network. Thus the community structure is given by the
community partition with maximal modularity.

20 40 60 80 100
101

1058

10115

Size of network

N
um

be
ro

fp
ar

tit
io

ns

Fig. 1: Number of possible partitions (blue) compared with exponential curve (red). For a
network consisting of twelve nodes there already exist more than one million possible community
partitions.

There is no method known that can determine this community partition in a simple and
straightforward way. That is why modularity based approaches are in fact optimization
approaches that try to maximize modularity [FH16]. The number of possible community
partitions of a network with n nodes is given by the Bell number Bn, which has factorial
growth (see fig. 1). A “brute-force” approach to find the community structure by comparing
all possible partitions clearly becomes impractical for larger networks. In addition to that,
the modularity function features a high degeneracy which makes it difficult to find its
global maximum [Ba16]. For that reason we need an algorithm that can find the community
partition with maximal modularity both efficiently and effectively. For this purpose a genetic
algorithm (see fig. 2) is proposed in the following.

2 The algorithm

The algorithm [Le18] described here is aimed at finding the community structure of an
undirected, unweighted network. A chromosome represents a possible community partition
of the network. Technically it is a list where the i-th entry contains the community label ci
of node i (see fig. 3). Thus two nodes i and j are in the same community iff ci = cj . The
chromosomes of the initial population are generated randomly.



Community Detection in Complex Networks using Genetic Algorithms 3

Initial population

Evaluate Fitness

Termination?End

Selection

Cross–Over

Mutation

Genetic operators
no

new generation

yes

Fig. 2: Schematic of a genetic algorithm
Genetic algorithms, inspired by processes of evolution, are stochastic optimization methods used
to find an optimal solution in a large solution space. They use a population of individuals where
each chromosome of an individual represents a possible solution. A fitness value reflects the
quality of the solution of an individual and is used to stochastically perform selection, crossover
and mutation operations to form a new generation of individuals (also called children). Ideally,
the quality of the solutions improves with every new generation. The process is repeated until a
reasonable solution is found.

1 2 3 4 5 6 7 8 9 10

2 1 1 3 1 4 3 3 3 2

Array length equals size of network

Indices: node

Values: community

Fig. 3: Example of a chromosome for a network of size 10. It represents a possible community
partition of the network (the communities are color-coded so that two nodes are in the same
community iff their color is the same).



4 Simon Lehnerer

The fitness is calculated from the modularity of the community partition, which is a global
measure of the network and given by

Q =
1

2m

∑
i, j

(
Ai j −

didj

2m

)
δ(ci, cj) ∈ [−0.5, 1]

Here m is the number of total links, Ai j is the adjacency matrix (which is 1 if there is
a connection between nodes i and j, otherwise 0), dk is the degree of node k, ck = l if
node k is in community l, and δ(ci, cj) = 1 if ci = cj , otherwise 0 [Ne06]. The formula
compares the number of internal links in a community with the expected number of links of
a randomized graph and therefore implies a definition of the term community: A community
is a group of nodes that is more tightly connected than expected at random [FC12].

Fig. 4: The figure shows two possible community partitions of a network. While the upper
partition has a low modularity of about −0.08, the partition below it has a modularity of about
0.22 which is maximal among all possible partitions and thus shows the community structure of
the network.

The algorithm provides two methods of selection. The first, in the following called Elitism,
only keeps the fittest individual. All children are unaltered copies of this single individual.
The second method, in the following called Mating, retains a certain fraction of the fittest
individuals (parents), and performs cross-over operations to create new children (see figure 5
for a detailed description). Both methods are indeed a variant of elitism, where only the fittest
individuals are preserved. Important to note is that the community partition is a relational
property, meaning that the labeling of the communities is ambiguous. Two individuals could
actually refer to the same community but use different community labels. This is considered
by the algorithm by “translating” the community label when doing cross-over operations.

The mutation process consists of two independent parts and is applied to each child by
a certain chance. The first mutation process randomly alters parts of the chromosome
(see fig. 6a). In the second mutation process a random sample of nodes will inherit the
community that is most dominant in their respective neighborhood (the nodes they are
directly connected with).



Community Detection in Complex Networks using Genetic Algorithms 5

2 3 1 3 1 4 3 3 3 2

2 3 1 3 1 4 3 3 3 2

2 3 1 3 1 4 3 3 3 2

2 3 1 3 1 4 3 3 3 2

1 1 3 2 3 1 4 4 1 2

1 1 3 2 3 1 2 4 2 2

randomly select communities

select fraction of nodes

parent 1

parent 1

parent 2

child

=

+

Fig. 5: Cross-over process
The aim of the cross-over process is to combine the chromosomes of two individuals (called
parents) in order to create a new chromosome (called child). This is done in the following
way: At first a number of communities of parent 1 are randomly selected. From the selected
communities only a certain fraction of the nodes are then chosen. These nodes are then transferred
to parent 2, i.e. for those nodes we replace their respective community label of parent 2 by the
respective community label of parent 1. Since the community labelling is a relational property,
we “translate” the community label of parent 1. For each community to be transferred it uses the
corresponding community label of the first node in parent 2 as community label (indicated by
the arrows which all lead to the first node of the community). The resulting chromosome gives
the chromosome of the child.



6 Simon Lehnerer

mutation

Fig. 6a: First mutation process
A random sample of nodes is assigned to random communities (e.g. the community of the
red node in the above network is changed from red to green). Through this stochastic process
we sample the solution space in an effective way. For example it enables the creation of new
communities.

mutation

Fig. 6b: Second mutation process
A random sample of nodes inherits the most dominant community in its respective neighborhood
(e.g. the red node in the above network inherits the purple community since three out of four
neighbors are in the purple community). This improves the speed of convergence since it is
likely that neighbors belong to the same community.



Community Detection in Complex Networks using Genetic Algorithms 7

Finally the algorithm removes communities that consist of only one single node, because a
proper community must contain at least two nodes. The whole process is repeated until a
certain number of generations have been created. The algorithm then stops and returns the
best found solution.

3 Experimental results

Since the algorithm finds solutions stochastically, its outcome might differ on every execution.
To test the effectiveness of our algorithm two networks consisting of two respectively five
communities were used (see fig. 7 and 8). For each trial the algorithm was run 100 times
with the same parameters and the number of times where the algorithm found the correct
community partition was counted.

We used a population size of 20 and, for each child, a 75% probability for the first mutation
process and a 50% probability for the second mutation process. The algorithm was set to
terminate after 5 generations for the first network and after 50 generations for the second
network. For the Mating-method the 15% fittest were selected and all nodes from the
selected communities were transferred (see fig. 5).

Results of the testing are shown in table 1. The two communities of the first network were
correctly detected in all 100 runs within two generations on average. The communities of
the second network were detected correctly in 95% of all cases for the Elitism-method and
99% for the Mating-method within eight respectively seven generations on average. In most
of the failed cases the algorithm merged two communities into one single community.

The results show that our algorithm detects the community structure efficiently, as the
average number of generations used to find the community structure was low. It also is
effective, because the failure rate was very low as well (0% for the first network, 5%
respectively 1% for the second network).

Fig. 7: First tested network consisting of 16 nodes, 49 edges and two communities. Number of
possible community partitions ≈ 1 · 1010

Also, the algorithm was tested using a large network with unknown community structure
and its result were compared with different methods of Mathematica’s built-in function
FindGraphCommunities. For our algorithm we used the Mating-method, the same parameters
as for the other two networks and set it to terminate after 100 generations. In order to estimate



8 Simon Lehnerer

method fails avg. gen. max. gen.

Elitism 0% 2.13 ± 0.34 3
Mating 0% 2.19 ± 0.39 3

(a) Results for first network

method fails avg. gen. max. gen.

Elitism 5% 8.56 ± 5.43 30
Mating 1% 7.08 ± 2.53 27

(b) Results for second network

Tab. 1: Results of the testing
The columns show the used selection method, the number of runs where the algorithm did not
find the correct community partition, and the average and maximum number of generations
needed to find the best community partition.

Fig. 8: Second tested network consisting of 125 nodes, 390 edges and five communities. Number
of possible community partitions ≈ 2.5 · 10153.



Community Detection in Complex Networks using Genetic Algorithms 9

how far Mathematica’s results and the result of our algorithm were apart we calculated the
partition distance, i. e. the number of nodes that were classified into different communities
(this was transformed into an assignment problem and solved using Mathematica’s built-in
function FindIndependentEdgeSet). Our algorithm detected 38 communities (see fig. 9).
The community structure differs only slightly from the ones obtained by Mathematica’s
Centrality and Hierarchical methods (see table 2).

The results of our algorithm yielded a higher modularity value than all different methods
of Mathematica’s built-in function FindGraphCommunities. We are therefore tempted to
claim that our algorithm is more effective. However, the outcome and hence effectiveness
of our algorithm does not only strongly depend on the used parameters of our algorithm,
but also the investigated network itself. Whether our algorithm outperforms Mathematica’s
methods can hence not answered with certainty. In terms of speed our implementation of
the algorithm can not compete with Mathematica’s function. Our implementation is almost
103 times slower (time-wise) and therefore not suited for networks consisting of millions of
nodes.

Fig. 9: Large network consisting of 1293 nodes and 4145 edges showing the community structure
detected by our algorithm. About 6.7 · 102609 possible community partitions.



10 Simon Lehnerer

method communities modularity partition distance

Centrality 38 0.907235 3
Hierarchical 38 0.904835 8
Modularity 35 0.900042 83

Spectral 43 0.817467 143

Our algorithm 38 0.907236 -

Tab. 2: Comparison of the results of Mathematica’s built-in function FindGraphCommunities
with the result of our algoritm. The columns show the method used by Mathematica’s built-in
function, the number of detected communities, the modularity of the partition and the partition
distance.

4 Analysis of the algorithm

Due to its stochastic way of finding solutions the algorithm does not always find the best
solution, which is supported by the high degeneracy of the modularity function with a lot of
local maxima close to the global maximum. However our simulations showed that it usually
finds a solution that is at least close to the best solution.

Yet there might be a principal problem of the algorithm. Imagine n identical complete
graphs Km with m nodes each, which are arranged on a ring lattice and connected via a
single link. Intuitively we would say that each complete graph forms a community since all
nodes within a complete graph are densely (in fact maximally) connected and share only
two links to nodes from other communities. However it was proved that for a sufficiently
large number of graphs n modularity maximization will lead to a partition that merges pairs
of communities into one single community [FB07]. Therefore modularity maximization
can lead to a partition which seems counter-intuitive as it “neglects” small community
structures, which is however the consequence of the implicit definition of a community
using modularity (see fig. 10). In general, communities smaller than a certain threshold,
which depends on the network size, will always be merged, which is known as resolution
limit. A possible way to solve this problem is to check every community whether it is a
merging of smaller communities.

5 Conclusion

In this article we proposed a genetic algorithm aimed at detecting the community structure
of a network by maximization of a measure called modularity. The algorithm consists
of different genetic operators, namely a selection process, a cross-over process and a
mutation process. It provides two different methods for the selection process. Tests using
several sample networks of known community structure showed that our algorithm detects
communities both efficiently and effectively. For the investigated network with unknown



Community Detection in Complex Networks using Genetic Algorithms 11

Fig. 10: Resolution Limit
Example network consisting of 10 complete graphs with three nodes each. For the left, intuitively
expected community partition the modularity is 0.65, whereas in the right partition, where each
time two communities are merged, the modularity is 0.675, which is higher than for the expected
partition. Modularity maximization will therefore lead to a community partition that might be
counter-intuitive.

community structure the algorithm even seems to outperform Mathematica’s built-in
methods for finding communities. Hence we can conclude that our algorithm shows a very
good performance in detecting the communities of complex networks and is suited for cases
where a community partition close to the best community partition is required. However,
our algorithm can fail to resolve sufficiently small communities as intuitively expected
due to a problem known as resolution limit. From the investigation of the fitness function
modularity the question arises if one could improve the definition of modularity such that it
also resolves sufficiently small communities as intuitively expected.

References

[Ba16] Barabási, A.-L.: Network Science. Cambridge University Press, 2016.
[FB07] Fortunato, S.; Barthélemy, M.: Resolution limit in community detection. PNAS

volume 104 no. 1/, pp. 36–41, 2007.
[FC12] Fortunato, S.; Castellano, C.: Community structure in graphs. Springer New York

Computational Complexity: Theory, Techniques, and Applications/, pp. 490–
512, 2012.

[FH16] Fortunato, S.; Hric, D.: Community detection in networks: A user guide. Physics
Reports 659/, Community detection in networks: A user guide, pp. 1–44, 2016.



12 Simon Lehnerer

[Fo10] Fortunato, S.: Community detection in graphs. Physics Reports 486/3, pp. 75–
174, 2010.

[HTF09] Hastie, T.; Tibshirani, R.; Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer New York,
2009.

[KN11] Karrer, B.; Newman, M. E. J.: Stochastic blockmodels and community structure
in networks. Phys. Rev. E 83/, p. 016107, Jan. 2011.

[Le18] Lehnerer, S.: SimonNick/genetic-algorithm-community-detection: Initial release,
2018, url: https://zenodo.org/badge/latestdoi/139072714.

[Lu07] Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing 17/4,
pp. 395–416, Dec. 2007.

[Ne06] Newman, M. E. J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103/23, pp. 8577–8582, 2006.

[Po97] Pothen, A.: Graph Partitioning Algorithms with Applications to Scientific
Computing. In (Keyes, D. E.; Sameh, A.; Venkatakrishnan, V., eds.): Parallel
Numerical Algorithms. Springer Netherlands, Dordrecht, pp. 323–368, 1997.

[RB08] Rosvall, M.; Bergstrom, C. T.: Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences
105/4, pp. 1118–1123, 2008.

[Sc07] Schaeffer, S. E.: Survey: Graph Clustering. Comput. Sci. Rev. 1/1, pp. 27–64,
Aug. 2007.

https://zenodo.org/badge/latestdoi/139072714

	Introduction
	The algorithm
	Experimental results
	Analysis of the algorithm
	Conclusion

