
M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 217

Software Security Requirements in Building Automation

Friedrich Praus1, Wolfgang Kastner2, Peter Palensky3

Abstract: With today’s ongoing integration of heterogeneous building automation systems, in-
creased comfort, energy efficiency, improved building management, sustainability as well as ad-
vanced applications such as active & assisted living scenarios become possible.

Obviously, the demands – especially regarding security – increase: Secure communication becomes
equally important as secure software being executed on the devices. While the former has been
addressed by standardization committees and manufacturers, until recently no scientific research is
available, that targets the problem of secure control applications in this domain. No attack model has
been defined, no security measures have been recommended, existing measures from other domains
are either too expensive or time intensive to deploy, cannot be trivially applied to or do not cover
specific demands and constraints of the building automation domain.

This paper provides an extensive survey of the security requirements for distributed control appli-
cations and analyzes software protection methods. An architecture tackling the problem on how
to secure software running on different device classes and preventing attacks on smart homes and
buildings is briefly introduced at the end.

Keywords: Secure Software, Security Process, Secure Control Applications, Smart Homes, Secu-

rity, Building Automation

1 Introduction and Motivation

In order to provide secure Building Automation Systems (BASs), comprehensive measures

need to cover communication as well as device security. Mechanisms tailored to the use

in Building Automation Networks (BANs) that counteract communication and network

attacks are presented in [Gr10]. An overall device security needs to deal with software,

side-channel, and physical attacks. An extensive survey on the latter two and a short dis-

cussion of countermeasures can be found in [KS04]. Until recently, no scientific research

is available that extensively targets security requirements and software attacks in the BAS

domain.

Figure 1 briefly describes the life cycle of a BAS and involved stakeholders over the build-

ing lifetime. A building owner defines the requirements and instructs a planner to plan the

building. The system integrator selects and commissions the devices and an installer de-

ploys them in the building. The facility manager finally maintains the building. Basically,

security is essential in all steps, for all stakeholders and during the complete lifetime. To

1 University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Wien, praus@technikum-wien.at,

This work was partly funded by the City of Vienna, under grant number MA23-Projekt 15-03.
2 TU Wien, Automation Systems Group, Treitlstr. 1-3/4, 1040 Wien, k@auto.tuwien.ac.at
3 TU Delft, Intelligent Electrical Power Grids, Mekelweg 4, 2628 CD Delft, P.Palensky@tudelft.nl



218 Friedrich Praus et al.

focus on secure Control Applications (CAs), the following use cases are identified as being

security critical (blue and bold-italic markings in Figure 1): Starting from secure CA devel-

opment, committees need support in standardizing mechanisms, frameworks and generic

policies, while CA manufacturers need support in creating CAs. System integrators and

facility managers need support in adapting security policies during CA operation.

CA manufacturer

Facility manager

Building owner

System integrator

Installer

Standardization committee

Develop CAs

De!ne

requirements

Standardize CAs

Plan building

Operate

building

Select and

commission devices

Install devices

De!ne generic

policy

Adapt security

policy

Planner

Fig. 1: Life Cycle of a Building Automation System and Involved Stakeholders

Today’s software for smart home and building devices lacks adequate security mecha-

nisms. Irrespective of the used technology, no sound protection against software attacks

is deployed, thus enabling adversaries to successfully attack those devices. Existing pro-

tection techniques from other domains (e.g. the Information Technology (IT) domain) are

insufficient and not applicable to BASs due to different functional and non-functional re-

quirements. Thus, a secure architecture being adaptable to all common BAS standards

needs to be established. This architecture needs to cover BAS specific constraints, pro-

vide a security policy and a secure software environment. Besides, mechanisms for attack

detection are needed [Pr15].

The paper is structured as follows. Section 2 analyzes domain constraints in distributed

CAs and the structure of modern BASs and their devices. Based on a short analysis of CA

security in current building automation standards and technologies and a software security

threat and risk analysis, security requirements are identified (cf. Section 3). Existing soft-

ware protection techniques are briefly investigated and evaluated for BASs with respect to

their applicability and implied security gain (cf. Section 4). Then, a first concept for se-

cure and distributed CAs, describing how to fulfill the demands for security-critical smart

homes and buildings is presented (cf. Section 5). Finally, an outlook on the evaluation and

future work is described in Section 6.

2 Control Applications in Building Automation Systems

Today’s BAS are implemented following a two-tier architecture (cf. Fig. 2a). It consists of

a control network and a common backbone which together form the BAN. Sensor Actuator

and Controllers (SACs) are located at the control level. Representatives of this device class

interact directly with the physical environment and are responsible for data acquisition and



Software Security Requirements in Building Automation 219

for controlling the behavior of the environment. InterConnection Devices (ICDs) provide

an interconnection between network segments or remote access to foreign networks. Man-

agement Devices (MDs) are used to configure and maintain a BAS.

Control

networks

Backbone network

Management

devices (MDs)

Backbone level

Control level

WAN

Sensors, actuators

and controllers

(SACs)

Interconnection

devices (ICDs)

(a) Building Automation Network

[GPK10]

E/A

L_STA L_SET

Actuate light (switching)

LightLight
L_MAN L_SET

Light control

Light

Time

Time

PAR_OND

PAR_OFFD

Light actuator

Light

PAR_POFF

PAR_PON

L_SET L_STA

L

Light

Light

(b) Use Case
⊗

: Distributed Control Application:

VDI 3813-3: D-1-2 Lighting Control Manual with

Time-Controlled Switching Off (Stairwell Light)

Fig. 2: Control Applications in Building Automation Systems

While the functionality of system components (i.e. ICDs and MDs) is usually fixed, SACs

are highly customizable and manifold. Thus, in the BAS domain typically the approach

exists to customize generic “template” network nodes with application specific hardware.

Universally designed base platforms consisting of MicroController Units (MCUs) and

network interfaces are used in conjunction with application specific components (e.g.

switches, temperature sensors) to form a particular system. Similarly, the software is split

into a generic Operating System (OS) or system software providing basic functionality

and a customizable CA dealing with the specific hardware. While the former is usually

fixed and non replaceable, the latter is implemented by the device manufacturer and may

be downloaded by the system integrator, even after installation of the device. Thus, a CA is

a configurable software being executed on a SAC with the purpose to control a process at

the control level. Distributed CAs communicate via the BAN and implement a particular

function of a BAS.

A common way to model distributed CAs and their application models is with the help

of Function Blocks (FBs). Sensor functions convert physical quantities to output informa-

tion which in turn serves as input to application or actuator functions. Actuator functions

convert input information obtained through the BAN to physical quantities. Application

functions represent the functionality to be achieved by means of automation and control.

To be able to describe the security concept presented in this paper in a better way, the

following use case
⊗

is defined according to VDI 3813-3 and will be used throughout

the remaining sections. Figure 2b shows a minimalistic light actuator with delayed on/off

behavior being used for a stairwell light.

Use case
⊗

Stairwell light: When pressing the “on” button E of the light sensor, the at-

tached light control immediately triggers the light actuator to switch on lamp L. Upon

pressing the “off” button E of the light sensor, the attached light control waits the time

configured with the off delay parameter PAR OFFD and then triggers the light actuator to

switch off the lamp L. The output L STA of the light actuator is used as feedback to the

actuate light sensor, to be able to display the current status using output A.



220 Friedrich Praus et al.

Today’s open BAS technologies (i.e. BACnet, EnOcean, KNX, LonWorks and ZigBee)

achieve interoperability each by standardizing their own CA model. As shown in [Pr15],

these application models differ significantly even for simple use cases such as a stairwell

light or an individual room control. A transparent (i.e. translation/gateway-free) communi-

cation across technology borders is likewise impossible, as common security mechanisms

are missing. The actual functionality of a BAS, however, is always similar and most of

the traditional functions can likewise be realized by any of these technologies. An overall

software security in smart homes and buildings can only be established, if the required

measures are applicable to all common standards and technologies. Therefore, to be able

to develop a secure CA architecture being adaptable to all different standards and tech-

nologies, a consistent application model is required. Security can then be investigated for

this model and appropriate measures can be derived and developed for the different tech-

nologies and standards.

3 Control Application Security

The ultimate goal of an adversary is to gain unauthorized access to control level functions

by manipulating the software being executed on BAS devices. A possible attack scenario

is an adversary trying to hack a door switch to illegally access a building or to neutralize

a light actuator by crashing its CA. Such attacks can either be performed remotely via

the network or locally, exploiting threats in a device’s interface. First, an adversary may

directly access SACs to manipulate the behavior of the hosted CAs by changing configu-

ration parameters (e.g. setpoint), the control logic (e.g. algorithm), or the control data (e.g.

output value). Second, an adversary may attack the application running on the ICD to get

access to the data passing through the ICD. As ICDs may also provide an interconnection

to foreign public networks (e.g. the Internet), an ICD can also be misused as access point to

launch further attacks via the BAN. Finally, an adversary may attack a MD by manipulat-

ing the operator software and also impersonate a MD. The privileges of the compromised

device can then be misused to gain management access to SACs or ICDs.

3.1 An Overview of Security in BAS

To identify the security threat in current installations, recent research [Pr15] targeted the

question, whether and how many BASs based on BACnet and KNX are openly connected

to the Internet and what security measures are currently implemented. A worldwide IPv4

address range scan for BACnet/IP and KNXnet/IP services has been carried out in 2014 by

the author. A total of 17.259 vulnerable BAS installations have been detected (cf. Table 3a).

BACnet is being widely used in the US and Canada whereas KNX is very popular in

Europe. The installations ranged from business parks and towers, high schools, shopping

plazas, water pollution control stations, fire stations, churches to smart homes with control

of private saunas.

To be able to provide secure CAs in BASs, it is first necessary to identify the threats to

CA software and analyze possible vulnerabilities. The Open Web Application Security



Software Security Requirements in Building Automation 221

Country BACnet Country KNX

US 8989 Germany 627

Canada 2296 Netherlands 522

Finland 282 Spain 332

Australia 271 France 244

Spain 231 Austria 220

Total 13964 Total 3295

(a) Vulnerable BACnet and KNX Installations

16,67%

16,67%

22,22%

5,56%

16,67%

12,90%

3,23%

3,23%

3,23%

54,84%

6,82%

6,82%

4,55%

3,41%

49,43%

2,93%

7,98%

9,84%

1,06%

51,33%

0% 10% 20% 30% 40% 50% 60%

Authentication Vulnerability

Authorization Vulnerability

Code Quality Vulnerability

General Logic Error Vulnerability

Input Validation Vulnerability

2010!03!01 2009

2008 2007

(b) Vulnerabilities Breakdown 2010-03 – 2007

Fig. 3: Control Application Security (Top 5 Countries and Categories)

Project Top 103 provides such an analysis covering over 500,000 vulnerabilities tailored

to web application security. Although being slightly different from the security of CAs,

a categorization can nevertheless be derived, if it is assumed similar security flaws are

present. Based on this categorization, an analysis of the commonness of vulnerability types

can be performed. Figure 3b shows a breakdown of the top 5 vulnerabilities being openly

available at the US-CERT Vulnerability Notes Database4. All entries of the years 2007 to

March 2010 (632 in total) have been analyzed, categorized and counted [Pr15]. Although

being rather outdated, the numbers still give an adequate overview of the commonness of

vulnerability types.

As shown in this section, security awareness in the BAS domain is missing and today’s

CAs need to be considered as insecure. Thousands of installations are being directly con-

nected to the Internet, allowing an adversary to attack them.

3.2 Security Requirements

Due to the extreme broadness of threats and vulnerabilities to CAs, the software attack

model is defined as follows: Any (malicious) CA, irrelevant whether it originates from

trusted or non-trusted sources, being run on BAS devices may exploit weaknesses in se-

curity schemes and system implementations, intentionally or unintentionally. Accidental

programming flaws in CAs may be present just like software being intentionally infected

by trojans. Adversaries may use these manifold possibilities to access control level func-

tions they usually are not allowed to.

Based on this attack model, security requirements dedicated to CAs are formulated. They

are derived out of security research in e.g. industrial communication systems [Dz05], em-

bedded systems [Ra04] or cyber-physical systems.

3 http://www.owasp.org/, Last access: 2016/02/02
4 http://www.kb.cert.org/vuls, Last access: 2010/04/03



222 Friedrich Praus et al.

Functional Requirements (FRs) are directly related to the security considerations for CAs.

The utmost requirement is to prevent software attacks on CAs and, if not possible, at least

detect those attacks. The following FRs can be derived to achieve this goal:

FR–memory access: Considering the execution of a CA on a SAC, the memory access

must be controlled. On the one hand, a CA must not be allowed to access arbitrary mem-

ory locations to e.g. prohibit, that a malicious CA subverts any security mechanism. On the

other hand, a secure storage of protected data must be possible. To put it differently, infor-

mation such as configuration parameters or cryptographic keys invisible and unaccessible

to the CA need to be stored on the SAC to provide the basis for a secure system. Vulnera-

bilities (e.g. memory corruption via buffer and format string overflows or code injection)

caused by side effects have to be prevented.

FR–low level functionality access: The same way it must be possible to limit the actions

and allowed operations (e.g. access to low-level function calls) a CA can perform with

respect to

• Access rights: Is a CA allowed to call a particular function or not? Note, that of-

ten a generic system software is deployed on SACs with far more capabilities and

functions than a simple CA may need. Hence, it is desirable to limit the allowed

operations for a SAC.

• Parameters: Likewise the parameters of a function call need to be limited so that e.g.

the present value of a Datapoint (DP) does not exceed a critical value.

• Execution time: The point in time when a function is called is an additional con-

straint to monitor. Not only the actual instance, but also the invoking frequency is

critical for some applications.

• Domain constraints: Dependencies between function calls, which can be seen as

domain constraints, are a further critical issue. Consider e.g. an Heating, cooling,

Ventilation, and Air Conditioning (HVAC) application, where it is not desirable to

simultaneously switch on the heating and the cooling function.

FR–protection of environment: CAs must neither destruct the hardware or waste resources

intentionally nor due to programming flaws (e.g. wear out of a flash memory or exhaust

battery power).

FR–communication relationship: CAs have a defined (static) communication relation-

ship. Being readily configured, it is known which CAs need to communicate and which

CAs do not need to communicate. A simple light switch, for instance, must not be hacked

and abused to open a security door. This communication relationship needs to be consid-

ered in security mechanisms.

FR–availability: Availability needs to be guaranteed. Denial of Service (DoS) attacks

need to be prevented or detected.

Organizational Requirements (ORs) cover the special environmental conditions required

for developing secure CAs in BAS.

OR–limited resources: Due to cost efficiency and form factor, SACs are normally em-

bedded devices with limited system resources (e.g. memory, processing power) that rely

on either bus or battery power. Security mechanisms are computationally intensive and

must not exceed the available device’s processing resources (processing gap) and power



Software Security Requirements in Building Automation 223

resources (battery gap) [Ra04]. The overhead imposed by these mechanisms needs to be

reasonably small. Therefore, a suitable balance between a required level of security and

available resources has to be found (”good enough security”).

OR–development: CA development has to be simple and secure by design so that even

security unaware developers are able to design secure CAs. This is especially important

for the BAS domain, since engineers are experts in the field of automation but not in the

field of security. Therefore, a two level concept with a dedicated system software and a

CA, as already present in KNX or LonWorks, needs to be supported.

OR–high level language support: High-level programming languages (e.g. Java) need to

be supported such that the desired control logic and behavior can be obtained more easily.

CA development is also simplified, since the application programmer does not have to cope

with details such as a hardware specific system software or the communication protocol.

OR–long lifetime: BASs have to be kept operable for years or even decades. Due to this

long lifetime, such systems obviously have to undergo maintenance during runtime in

order to keep them operable. With the complexity of the CA software increasing, it also

must be assumed that not all implementation flaws can be detected in the development

phase. Since these may result in security vulnerabilities, a secure update mechanism is

beneficial. Such a mechanism should allow the distribution of system software patches

and secure download and replacement of CAs in an easy and secure manner.

OR–scalability: Since BASs can consist of hundreds or even thousands of devices, ap-

propriate scalability of security mechanisms is essential. For instance, key distribution

schemes which routinely require physical access to the individual devices are not feasible

in large networks. Therefore, services must be provided which assist in performing these

tasks.

OR–network technology: Security mechanisms need to be geared towards the different

requirements in BANs regarding the used network technology. While in the IT world

Internet Protocol (IP) based network protocols are dominant, the use of IP networks in

BANs is reserved to the backbone level. At the field level, predominantly non-IP fieldbus

are used. Besides, control data typically transmitted in BANs have a small volume (in the

order of bytes) with perhaps soft real time requirements (e.g. reaction time in a lighting

system).

OR–compatibility: The integration of a security extension into an established BAS is

preferable to create an entirely new system. Such an approach allows to leverage the ex-

isting base of available components for parts of the system where security is not (yet)

a requirement. This allows a smooth transition until devices supporting the security ex-

tension become widely available. It also offers an economical upgrade path for existing

installations.

OR–physical access: In BANs, devices often operate in untrusted environments where

physical access (e.g. an intrusion alarm in a public building or a wireless sensor network

[GH09]) is given. Therefore, it has to be assumed that a short time physical access to

devices and networks cannot be avoided. Such attacks have to be detected by a security

system.

OR–usability: Usability of security measures has to be provided, when these systems are

installed. On the one hand, this implies that it has to be possible to deploy them as easily

as possible. In the best case, users do not even notice, that a security measure is enabled.



224 Friedrich Praus et al.

At least, education and guidelines (e.g. secure password guidelines) need to be provided

for support. On the other hand, this requirement also covers protection against social en-

gineering attacks.

As shown in this section manifold requirements need to be considered to be able to provide

secure CAs.

4 Software Protection Techniques

Attack

prevention

Attack

detection

Attack

recovery

Tamper

evidence
Attack

Detection

latency

Recovery latency

Time

(a) Attack Model

Software protection

techniques

Software assisted Hardware assisted Human assisted

Static Dynamic

(b) Software Protection Techniques

Fig. 4: Software Protection Techniques [Pr15]

The ideal software protection technique allows to fully prevent vulnerabilities and hinders

attacks to SACs, ICDs and MDs, no matter whether the attack pattern is already known or

not. To minimize performance overhead, it is applied only during compile time, or at least

does not have any performance overhead during runtime. Besides, it does not require up-

dates and scales well. Considering today’s available methods, it is however hardly possible

to fulfill all these requirements at the same time due to e.g. limited system resources.

This section focuses on methods trying to prevent or at least detect attacks within a rea-

sonable detection latency (cf. Figure 4a). Possible software protection techniques (cf. Fig-

ure 4b) are briefly discussed with respect to the security requirements formulated in the

previous section and applicability to the device classes in BAS.

Software assisted protection techniques can be split into static and dynamic methods.

Static methods are applied during compile or development time, respectively. Hence, they

can prevent attacks at a point in time, where appropriate countermeasures or bug fixes

can be applied without interfering with running software. However, they cannot detect

all possible vulnerabilities without actually executing a piece of software. Besides, Static

Code Analysis (SCA), Code-Signing (CS) and Proof-Carrying Code (PCC) have to be

performed on every code change. Nevertheless, they are assumed to be easily applicable

with respect to resources of the target system because they are only used at compile time.

CS can be quite effective to prevent the installation of arbitrary CAs by simply refusing

to execute unsigned or not properly signed code. Watermarking (WM) applied to software

protects against illegitimate modifications and tampering by its users. The universal ap-

plicability of PCC to BAS is questionable since the generation and encoding of proofs

for complex security policies are nontrivial tasks and have to be performed on every code

change.



Software Security Requirements in Building Automation 225

−: not applicable, ∼: applicable with restrictions, p: prevent—d: detect—+: applicable

m
et

h
o

d
o

r
B

A
S

F
R

–
m

em
o

ry
a

cc
es

s

F
R

–
lo

w
le

ve
l

fu
n

ct
io

n
a

li
ty

a
cc

es
s

F
R

–
p

ro
te

ct
io

n
o

f
en

vi
ro

n
m

en
t

F
R

–
co

m
m

u
n

ic
a

ti
o

n
re

la
ti

o
n

sh
ip

F
R

–
a

va
il

a
b

il
it

y

O
R

–
li

m
it

ed
re

so
u

rc
es

O
R

–
d

ev
el

o
p

m
en

t

O
R

–
h

ig
h

le
ve

l
la

n
g

u
a
g
e

su
p

p
o

rt

O
R

–
lo

n
g

li
fe

ti
m

e

O
R

–
sc

a
la

b
il

it
y

O
R

–
n

et
w

o
rk

te
ch

n
o

lo
g

y

O
R

–
co

m
p

a
ti

b
il

it
y

O
R

–
p

h
ys

ic
a

l
a

cc
es

s

O
R

–
u

sa
b

il
it

y

S
A

C

IC
D

M
D

static SCA − − ∼ − − + ∼ + − − + ∼ − − ∼ + −

software CS − − − − − + ∼ + + + + ∼ − − + + +

methods WM − − − − − + − + − + + ∼ − − + + +

PCC − − ∼ − − + − + + − + ∼ − − − ∼ ∼

SIDS − − d d − ∼ ∼ + − − + + − − + + ∼

AIDS − − d d d − + + + + + + + ∼ + + ∼

dynamic SMT − − ∼ − − ∼ − + − − + ∼ − − ∼ + −

software SB p p p p − ∼ + + + + + ∼ − + + ∼ +

methods SCC − − − − − ∼ − + − − ∼ ∼ − − − + −

ASC − − − − − ∼ − + − − + ∼ − ∼ ∼ + +

OS p p p p − − + + + + + ∼ − + − − +

CP − ∼ − ∼ − + − + − − + ∼ + − − − +

hardware PP p p − − − + + + − − + ∼ + − − − +

supported HA − − − − − + + + − + + ∼ − + + + +

CPUEX − − − − − + + − − + + ∼ − + + + +

human IAC ∼ − p − − + − + − − + ∼ − − − ∼ −

FV − − p − − + − + − − + ∼ − − − ∼ −

Tab. 1: Comparison of Software Protection Techniques with Respect to Security Requirements and

Applicability to Sensors, Actuators and Controller Devices, Interconnection Devices, and Manage-

ment Devices

Dynamic methods implicate a larger performance overhead than static ones, since addi-

tional processing has to be performed during runtime. In addition, special care has to be

taken, that they are not bypassed by an adversary. Signature based Intrusion Detection

Systems (SIDSs) offer a high attack detection accuracy. They, however, cannot detect new

attacks and are vulnerable to attack variations such as worms, that alter their own code

base on succeeding executions. SIDSs are not well suited as they depend on a usually

large database and require constant updates, which would be difficult in case of SACs and

ICDs. Anomaly based Intrusion Detection Systems (AIDSs) in contrast also allow to de-

tect novel intrusions, which are not yet present in the database of an Intrusion Detection

System (IDS). They are, however, not able to distinguish between natural changes of the

monitored system and attacks. AIDS, Software Monitoring Techniques (SMT) as well as

Self Checking Code (SCC) may be efficiently implemented and could therefore be quite

appropriate. SMT at least requires hardware support for context switches. Attack Specific

Countermeasures (ASCs) can also work well in many cases, but might not be applicable

due to differing processor and memory architectures on SACs and ICDs. The applicabil-



226 Friedrich Praus et al.

ity of Sandboxes (SBes) strongly depends on the overhead imposed by their feature sets.

While a reduced and lightweight SB could easily be deployed to SACs, an architecture

like the full Java Virtual Machine (JVM) with its vast execution and security mechanisms

imposes a big overhead. While in the IT world and thus also for MDs OSs typically limit

what an application is allowed to do, the targeted MCUs being deployed to SACs and ICDs

do not provide the necessary hardware support (e.g. lack of memory management units to

separate the address spaces of different processes).

Hardware assisted methods use dedicated hardware for security checks (e.g. Co-Processor

(CP), Physical Partitioning (PP), Harvard Architecture (HA), CPU EXtension (CPUEX))

and allow to lower the imposed performance overhead in contrast to pure software based

methods. However, hardware supported methods requiring additional components cannot

be cost effectively deployed to SACs and recent research also demonstrates that these

methods may also be bypassed [Ro12]

Human assisted methods rely on human expertise during CA development. Inspection

And Certification (IAC) performed by humans may eliminate a lot of possible attacks,

but requires extensive knowledge by the auditing person, is time consuming, expensive

and error-prone. Thus, it does not scale at all and may limit flexibility, since it is only

feasible to be applied to code, which does not change frequently. Formal Verification (FV)

is the most tenable method for providing security constraints. If security attributes can be

represented in a formal way, provers can guarantee that these attributes are met. However,

applying FV to real life software or even an OS is a very hard task and only two approaches

are known for now that allow Common Criteria EAL6+ certification [SAIC08, Kl09].

Hybrid methods try to combine the advantages of different software protection techniques.

Thus, they can provide more powerful protection and overcome limitations of the software,

hardware and human assisted methods mentioned before. Until now however, no reliable

and secure approach for BASs is available. It is not clear, which combinations of software

protection techniques seem reasonable and fulfill the security requirements.

5 Secure Control Application Architecture

A secure architecture being adaptable to all common BAS standards needs to cover BAS

specific constraints and be capable of detecting possible attacks. Thus, only hybrid soft-

ware protection mechanisms can provide an overall CA security.

The resulting secure CA architecture (cf. Figure 5a) consists of four parts: First, a generic

application model is defined, being required to develop a secure system being used for

the different BASs. It separates generic information of BASs from an installation depen-

dent one. This is achieved by the definition of the abstract model (e.g. the abstract BAS

device description) and concrete instances therefrom (e.g. a BAS device instance repre-

senting a particular technology with specific parameters). Additionally, protocol-specific

and domain-specific knowledge (e.g. BAS specific vocabulary, security attributes) are part

of the model. All configuration and management tasks and definition of a security pol-

icy can now be performed directly on the abstracted representation and be automatically

distributed to the different underlying technologies.



Software Security Requirements in Building Automation 227

SAC

Enhanced application layer

Management

device

Security measures

Static code analysis

Harvard architecture

Inspection and certification

Formal verificationConfiguration

Binary

Control network

Sandboxing

System software

Sandbox

Control application

User APIManagement API

Application

objects
Policy

Hardware abstraction

Data point

mapping

Network pluginsNetwork pluginsNetwork plugins System ComponentsSystem ComponentsSystem components

Network interface Process interface

Application model

Intrusion detection

(a) Architecture of Sensor Actuator and Controllers

Process

L
ig
h
tin
g
D
o
m
a
in

SAC actuator

Control Application Light

actuator

SAC switch

Control Application

Actuate light

Communication Network

FB Actuate

light

has

Output

FB Light

actuator

FB Light

control

has

Parameter

PAR_OFFD

has

Input
L_SET

has

Output

has

Input

L_MAN

Security Attribute

(b) Application Model and Security Pol-

icy for Use Case
⊗

Fig. 5: Secure Control Application Architecture

Second, a security policy based on security attributes allows a formal way to formulate

security requirements. This global policy states, whether the condition of a BAS is security

critical and violates some defined constraints or not. For executing this policy it can be split

down to involved present values of DPs, where security requirements for the conditions

derived from the policy can be defined, formulated and finally evaluated. An instance of the

application model and an example security policy with security attributes for use case
⊗

is shown in Figure 5b.

Third, a software environment to securely execute CAs and enforce the security policy is

needed. As outlined in Figure 5a, it consists of three major components, each imposing an

additional security barrier to the overall security and limiting possible security threats: A

system software provides controlled access to system resources. It encapsulates hardware

specific details, the network protocol stack, the process interface as well as any further

system components and offers clean interfaces for the enhanced application layer. An en-

hanced application layer stores the application objects, their DP mappings as well as the

security policy for the CA. A Sandbox executes the CA in a controlled way and is also de-

signed to support its rapid development. It interfaces the system software via the enhanced

application layer and provides a clear abstraction of the underlying hardware and software

by providing an object-oriented access (using e.g. the Java programming language). The

application designer can thus focus on the application development. Finally, methods to

detect possible attacks (e.g. DoS) and violations of the security policy are needed.

6 Summary and Future Work

To summarize, the following hybrid software protection mechanisms are deployed to pro-

vide security of the presented architecture SCA, IAC and code reviews are performed on

the system software, which provides an abstraction and layering to ease CA development.

A combination of an AIDS and a SIDS based upon a security policy and a generic ap-

plication model are used to detect and prevent attacks. Uncircumventable sandboxing of



228 Friedrich Praus et al.

CAs is performed to protect the system outside of the SB from attacks. WM could also be

deployed to only execute signed CAs, if desired.

Details on the proposed architecture and a validation of its feasibility have recently been

shown in [Pr15]. They will be published in future work: First, the process of how to imple-

ment secure CAs will be described and it will be shown, how the generic architecture can

be instantiated, i.e. how the CA can be modeled and how the policies can be adapted. On

the basis of use case
⊗

, prototypes will be implemented for the different device classes

to evaluate and test the stability with respect to memory consumption, performance, and

security. To further evaluate the presented concept, a discussion on how it can be used to

enable security in today’s already existing BASs will follow. Attack detection and pre-

vention become possible, if appropriate devices are installed. Concluding, an exhaustive

discussion will evaluate, that all functional requirements are fulfilled by means of the con-

cept. Some organizational requirements still need to be considered, when implementing

real live installations. Thus, it will be proven, that the developed secure CA architecture

can be implemented on the devices typically found in BAS. Besides, it fulfills the require-

ments for secure CAs and is able to prevent or at least detect attacks.

References

[Dz05] Dzung, D.; Naedele, M.; Von Hoff, T.P.; Crevatin, M.: Security for Industrial Communi-
cation Systems. 93(6):1152–1177, 2005.

[GH09] Gungor, V.; Hancke, G.: Industrial Wireless Sensor Networks: Challenges, Design Prin-
ciples, and Technical Approaches. 56(10):4258–4265, 2009.

[GPK10] Granzer, Wolfgang; Praus, Friedrich; Kastner, Wolfgang: Security in Building Automa-
tion Systems. IEEE Transactions on Industrial Electronics, 57(11):3622–3630, Nov.’10.

[Gr10] Granzer, Wolfgang: Secure Communication in Home and Building Automation Systems.
PhD thesis, Vienna University of Technology, February 2010.

[Kl09] Klein et al.: seL4: Formal Verification of an OS Kernel. In: SOSP ’09: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM, New York,
NY, USA, pp. 207–220, 2009.

[KS04] Koeune, François; Standaert, François-Xavier: A Tutorial on Physical Security and
Side-Channel Attacks. In: Foundations of Security Analysis and Design III, FOSAD
2004/2005 Tutorial Lectures. pp. 78–108, 2004.

[Pr15] Praus, Friedrich: Secure Control Applications in Smart Homes and Buildings. PhD thesis,
Technische Universität Wien, November 2015.

[Ra04] Ravi, Srivaths; Raghunathan, Anand; Kocher, Paul; Hattangady, Sunil: Security in Em-
bedded Systems: Design Challenges. Transactions on Embedded Computing Systems,
3(3):461–491, 2004.

[Ro12] Roemer, Ryan; Buchanan, Erik; Shacham, Hovav; Savage, Stefan: Return-Oriented Pro-
gramming: Systems, Languages, and Applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1–2:34, March 2012.

[SAIC08] Science Applications International Corporation, Common Criteria Testing Laboratory: ,
INTEGRITY-178B Separation Kernel Security Target Version 1.0, 2008.


