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A coupled multitemporal UAV-based LiDAR and 
multispectral data approach to model dry biomass of maize 
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Abstract: The presented approach attempts to highlight the capabilities of a data fusion approach 
that combines UAV LiDAR (RIEGL – miniVUX-1UAV) and multispectral data (Micasense – 
Altum) to assess the dry above ground biomass (AGB) for maize. The combined acquisition of both 
LiDAR and multispectral data not only supports estimates of AGB when fusing them, but also helps 
to evaluate phenological stage-specific modelling differences on the individual sensor data. A 
multiple linear regression was applied on the multisensorial UAV data from two appointments in 
2021. The resulting R² of 0.87 and RMSE of 14.35 g/plant for AGB was then transferred to AGB in 
dt/ha. 
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1 Introduction 

Due to the technological development and advantages of UAV-based remote sensing 
solutions, new possibilities arise for monitoring agricultural crops while efficiently 
sensing crop biophysical parameters (CBP) in a close-range scenario [Wa21]. The 
approach presented here attempts to highlight the capabilities of a data fusion approach 
that combines UAV LiDAR (RIEGL – miniVUX-1UAV) and multispectral data 
(Micasense – Altum) to assess the dry above ground biomass (AGB) for maize, which is 

 
1 Osnabrück University, Inst. of Computer Sc., Wachsbleiche 27, 49090 Osnabrück, rrettig@uos.de,

https://orcid.org/0000-0002-4632-1286 
2 Osnabrück University, Inst. of Computer Sc., Wachsbleiche 27, 49090 Osnabrück, marcel.storch@uos.de,  

https://orcid.org/0000-0001-5726-6297 
3 Osnabrück University, Inst. of Computer Sc., Wachsbleiche 27, 49090 Osnabrück, lwittstruck@uos.de 

4 Osnabrück University, Inst. of Computer Sc., Wachsbleiche 27, 49090 Osnabrück, cansah@uos.de,
https://orcid.org/0000-0002-7194-4944 

5 University of Applied Science Osnabrück, Fac. of Agric. Sc. and Landscape Architecture, Am Krümpel 31, 

49090 Osnabrück, janis.bald@hs-osnabrueck.de,  https://orcid.org/0000-0002-0512-7735 
6 University of Applied Science Osnabrück, Fac. of Agric. Sc. and Landscape Architecture, Am Krümpel 31, 

49090 Osnabrück, d.richard-guionneau@hs-osnabrueck.de, https://orcid.org/0000-0002-9072-7363 
7 University of Applied Science Osnabrück, Fac. of Agric. Sc. and Landscape Architecture, Am Krümpel 31, 

49090 Osnabrück, d.trautz@hs-osnabrueck.de 

8 Osnabrück University, Inst. of Computer Sc., Wachsbleiche 27, 49090 Osnabrück, tjarmer@uos.de, 
https://orcid.org/0000-0002-4652-1640 



484 Robert Rettig et al. 

 

one of the worldwide most cultivated crops [OF 22]. Due to its canopy structure, it is 
relatively challenging to assess maize plant parameters, especially at later phenological 
stages where the crop canopy is almost closed and usable parts such as cobs are hidden, 
when focussing on non-destructive estimations [Ji20]. The comparison of the individual 
data to the combination of UAV-based LiDAR- [HBK20] and UAV-multispectral [Ni19] 
data not only supports estimating AGB, but also helps to evaluate or potentially neglect 
phenological stage-specific differences [Wa17]. This could help farmers either directly via 
close-range monitoring or indirectly via Earth Observation missions, powered with close-
range UAV-based ground truth models, to improve plant management or crop growth 
models [ACH21].  

2 Study site 

The study site was a 0.7 ha maize field near Osnabrück in Lower Saxony (DE). It was 
managed in close collaboration with a local farmer and agricultural experts of the 
University of Applied Sciences Osnabrück. Various treatment strategies were pursued to 
create heterogeneous properties: with or without application of chemical herbicides, 
different sowing densities (7 or 9 plants/m²) and two varying degrees of fertilizer use. This 
results in eight different possible combinations, so that the study area was divided into a 
total of eight different management zones (see Fig. 1). 

 

 

 

 

Fig. 1: Maize field with management zones and plots, season 2021 
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3 Materials and methods 

The flight with the LiDAR system took place at an altitude of 20 m above ground, resulting 
in an average point spacing of approx. 0.05 m. A flight altitude of 25 m above ground was 
chosen for the multispectral system which resulted in a ground sample distance of approx. 
0.01 m. The UAV data were acquired either at the day of ground truth data collection or a 
few days before (see Tab. 1). The data were taken in plots of approx. 1.5 m² and 
georeferenced by RTK-GPS. The plants for each plot were counted and the dry weight 
was harmonized by plant, summing up to a total of 95 samples of AGB in g/plant (Min = 
91.1 g, Max = 236.4 g, SD = 39.4 g, Mean = 155.0 g). 

Date of 
Ground Truth 

BBCH 
Date of 
flight 

System n 

03.08.2021 67 03.08.2021 LiDAR + MS 47 

01.09.2021 85 
20.08.2021 
30.08.2021 

LiDAR        
MS 

48 

Tab. 1: Data acquired 

The multispectral data was processed with Agisoft Metashape (Vers. 1.7.2.) whereas the 
RIEGL RiPROCESS software was used for the LiDAR data captured. The LiDAR derived 
information were the mean range corrected single return intensity, mean return ratio (the 
number of first returns divided by the number of all returns), and the mean height. An 
additional correction processing chain, which considered cleaning overlapping LiDAR 
data, was developed for the LiDAR data. This reduction of overlapping areas was 
necessary due to the ratio concept: the percentage of first returns in the total number of 
returns decreases as the number of leaf layers increases. Canopy height was calculated as 
the median based on the raster data created with PDAL (Point Data Abstraction Library). 
Subsequently, they were combined with the multispectral bands (B-G-R-RE-NIR-LWIR), 
vegetation indices (NDVI and EVI [Al20]), and textural parameters (see Fig. 2). Multiple 
linear regression was then applied onto the individual and combined independent data 
sources, employing the train function of the caret package (Caret Vers. 6.0-93, R Vers. 
4.2.1, RStudio Vers. 2022.07.2), to predict AGB in g/plant and validating it with the 
Leave-One-Out-Cross-Validation (LOOCV). 
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4 Results 

The highest R² of 0.87 and RMSE of 14.35 for predicting the AGB of maize was achieved 
when both data sources were combined (see Fig. 2). However, the sole use of the LiDAR 
data resulted in an R² of 0.79 and an RMSE of 18.07 while the multispectral data alone 
reached an R² of 0.86 and an RMSE of 14.84. The prediction fit shows a good correlation 
to the ideal 1:1 line resulting in rather low RMSE of 14.4 g/plant, which indicates strong 

model performance. The model slightly overestimated lower AGB, while it 
underestimated highest AGB. Most important variables for the multitemporal prediction 
were textural parameters, including homogeneity, variance and dissimilarity, followed by 
NDVI, the NIR band and the intensity of the LiDAR derived data. Lowest explanation 
power was achieved by single bands (G, R, RE), the height and the EVI.  

In the next step, the prediction of AGB per plant was transferred to the spatial domain by 
deriving AGB on the raster stack. To convert the data into comparable agronomic units, 
the results were multiplied by the assumed number of plants per m² resulting from the 
predefined sowing density (see Fig. 3). 

Fig. 2: Prediction of the MLR model and importance of variables  

y = 0.89x + 16.84 
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5 Discussion and conclusion 

Combining multiple data sources and merging multitemporal ground truth data increased 
the prediction capability comparable to other related research, see e.g. [Wa17]. LOOCV 
was used for validation of the model predictions due to the small sampling amount. We 
gathered ground truth data from two field campaigns with different growth stages and 
respectively, different reflectance patterns. This has to be considered for comparing the 
results of both, multisensorial derived data and the sole use of LiDAR information. The 
explanatory power while adding the LiDAR derived information did not increase the 
prediction accuracy significantly. However, testing the LiDAR data alone proves the 
spectral independence of growth stage-dependent reflection differences. This makes the 
prediction model potentially more robust for later growth stages when biomass is 
accumulated and the plants reach senescence. Ground truth data collected more frequently 
through the entire phenological cycle while matching with multisensorial data, may lead 
to more reliable predictions on a wider range of growth stages. Including the plant density 
(plants/m²) as information for extrapolating the AGB prediction to the field is prone to 
errors since the field emergence is not always optimal or other effects cause differences in 

Fig. 3: Spatial prediction of AGB per plant (upper map), the results are multiplied with the sowing 
density for the spatial prediction of AGB in dt/ha (lower map) 



488 Robert Rettig et al. 

 

the initially planned plant density. This is taken into account and can be improved by 
detecting field emergence with UAV-based LiDAR [Ga22] and/or RGB neural network 
approaches [Pa20]. This research is intended to the serve as a basis for more detailed 
observation. 

Acknowledgement: Data acquisition was done within the framework of the project “Agri-
Gaia”, a project funded by the Federal Ministry for Economic Affairs and Climate Action 
(01MK21004K). 
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