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Abstract: Biometric authentication based on template protection has attracted atten-
tion in the past decade. In the discussion on the security of these systems, however,
the content of biometric information is assumed to be sufficiently large, and real con-
ditions of biometric features have not yet been reflected. This paper focuses on a
biometric cryptosystem using a fuzzy commitment scheme and demonstrates correla-
tion between fingerprint bit strings by using our method for evaluating the content of
biometric information. Additionally, attacks to guess biometric bit strings, which take
advantage of correlation between them, are explained, and the security against these
attacks is theoretically and experimentally discussed.

1 Introduction

Biometric authentication is convenient because users are freed from having to memorise

something or keep hold of physical objects, so it has drawn attention as a method for

implementing highly secure personal authentication for network services. However, bio-

metric systems have specific vulnerabilities, which appear in their various components,

including users, environmental conditions, operational conditions, biometric information,

and biometrics devices. Since information unique to an individual is stored in the systems

as a template and users cannot alter their own biometric characteristics, the privacy issues

associated with information leaks are particularly weighty.

A number of technologies have already been proposed to prevent leakage of templates, and

biometric authentication using these technologies is referred to as biometric authentication

based on template protection. We focus on a biometric cryptosystem using a fuzzy com-

mitment scheme (FCS) in this paper. Biometric cryptosystems incorporate functions that

generate a secret key from auxiliary data only if a genuine user presents his/her biometric
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information. These functions excel at concealing secret keys as well as protecting biomet-

ric templates, which enables these technologies to be applied to network authentication

protocols using cryptographic techniques such as the challenge handshake authentication

protocol (CHAP). On the other hand, in the FCS proposed by Juels and Wattenberg in

1999 [JW99], a commitment is created by binding biometric information with a codeword

using a bitwise XOR operator after the codeword is generated from a secret key using an

error-correcting encoder. This scheme can eliminate fluctuations of biometric informa-

tion using an error-correcting decoder and can easily protect biometric templates, so its

application is expected to be beneficial for biometric cryptosystems.

Additionally, since the FCS deals with quantised biometric information, there have been

many studies on extracting bit strings from biometric samples [TAK+05, CV09]. Biomet-

ric bit strings have to meet the following requirement: Impostor bit strings should be i.i.d.

in order to maximise the efforts to guess genuine ones. However, it is not easy to extract

i.i.d. bit strings because biometric features strongly correlate, and most of those studies

did not clearly state whether quantisers could eliminate the correlation or not.

Moreover, attempts have been made to theoretically analyse the security of the FCS from

the viewpoint of information theory [STP09, WRDI11, KBK+11]. However, the content

of biometric information is assumed to be sufficiently large, and it has not been considered

that genuine bit strings can be easily guessed from compromised commitments due to the

correlation between biometric bit strings.

We therefore discuss the security of the biometric cryptosystem using the FCS while taking

into consideration the correlation between biometric bit strings. Zhou et al. analysed

the correlation between iris bit strings and proposed an algorithm to recover an iris bit

string from a compromised commitment by taking advantage of this correlation [ZKB12].

On the other hand, this paper does not focus on a particular characteristic, while taking

a fingerprint bit string as an example. The rest of this paper is organised as follows.

Sections 2 and 3 introduce the outlines of the biometric cryptosystem using the FCS and a

method for evaluating the content of biometric information using quadratic Renyi entropy

[HOKT10], respectively. Section 4 presents the evaluation of the information content in a

fingerprint bit string using our method. Section 5 explains attacks to guess biometric bit

strings, which take advantage of the correlation between them. Section 6 theoretically and

experimentally discusses the security against these attacks.

2 Biometric cryptosystem using fuzzy commitment scheme

A fuzzy commitment scheme (FCS), proposed by Juels and Wattenberg in 1999 [JW99],

is a type of cryptographic technology based on an error-correcting code. Figure 1 shows a

client/server model of the biometric cryptosystem using the FCS.

Enrolment process

1. A user presents raw data on a biometric characteristic thorough a biometrics sensor,
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Figure 1: Biometric cryptosystem using fuzzy commitment scheme

and a client extracts a bit string, b ∈ B = {0, 1}n, from the raw data. Note that

|B| = 2n, where | · | denotes the number of members of a set.

2. The client generates a codeword, c ∈ C, by passing a secret key, s ∈ {0, 1}k, chosen

at random through an error-correcting encoder, and a commitment, z, is given by

b ⊕ c, where ⊕ denotes a bitwise XOR operator. We assume in this paper that C is

an (n, k, dmin)-linear error-correcting code, where n, k, and dmin correspond to the

codeword length, the number of information symbols, and the minimum distance.

That is, |C| = 2k, and t = (dmin − 1)/2 or less bit errors can be corrected.

3. The client calculates the hash, h(c), of c, and sends h(c) to an authorisation server.

4. The server stores h(c) in it’s storage, and the client stores z in user’s token.

Verification process

1. The client extracts a bit string, b′ ∈ B, from raw data that a user presents as done

with the enrolment process, and takes a stored z from this user’s token.

2. The client obtains c′ by passing c⊕ e = b′ ⊕ z through an error-correcting decoder.

Note that e = b ⊕ b′; here, c′ corresponds to c if ‖ e ‖≤ t, where ‖ · ‖ denotes

Hamming weights.

3. The client calculates the hash, h(c′), of c′, and sends h(c′) to the server.

4. The server compares h(c′) with h(c) to determine whether the user is a genuine user

or an impostor.
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3 Method for evaluating content of biometric information

This section introduces a method for evaluating the content of biometric information using

quadratic Renyi entropy [HOKT10]. To begin with, we will define the quadratic Renyi

entropy of biometric information. Then, we will explain the procedure used to evaluate

the quadratic Renyi entropy through inter-subject comparisons.

3.1 Quadratic Renyi entropy of biometric information

Let B be a discrete random variable whose realisation is biometric information b on possi-

ble values B. We assume in our method that b is represented by biometric features stored

as a template in the system, e.g., an iris codeword [Dau03] or a set of fingerprint minutiae

points.

The content of information obtained by observing a random variable following a certain

probability distribution is often defined as Shannon entropy. The Shannon entropy of B
can be written as follows:

H(B) = −
∑

b∈B

pB(b) log2 pB(b), (1)

where pB(b) is the probability mass function (PMF) of B. However, biometric features

have some complex correlation, which cannot be simply modelled, and consequently it

it difficult to theoretically estimate pB(b). It is also not easy to experimentally estimate

pB(b) because the space of b is generally high dimensional and a huge number of sam-

ples are required. H(B) is thus not appropriate as a measure to evaluate the content of

biometric information.

We therefore define the following quadratic Renyi entropy as a measure to evaluate the

content of biometric information:

H2(B) = − log2
∑

b∈B

pB(b)
2. (2)

H2(B) is the case α = 2 for the following Renyi entropy:

Hα(B) =
1

1− α
log2

∑

b∈B

pB(b)
α, (3)

where α ≥ 0, α 4= 1. H2(B) indicates the possibility that two sets of biometric features

will correspond, i.e., a measure to evaluate collision resistance.

Here, we consider the PMF, pD(d), of a discrete random variable D whose realisation is

the distance d between two sets, b and b′ ∈ B, of biometric features. Let B and B′ be

random variables whose realisations are respectively b and b′, and g be a distance function
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such that g : B × B → R. If it is assumed that B and B′ are i.i.d. on B, pD(d) can be

written as follows:

pD(d) = P (g(B,B′) = d) (4)

=
∑

b,b′∈B,

g(b,b′)=d

P (B = b, B′ = b′) (5)

=
∑

b,b′∈B,

g(b,b′)=d

pB(b)pB(b
′). (6)

According to the identity of indiscernibles such that d(b, b′) = 0 if and only if b = b′,
which is a metric axiom, we obtain the following:

pD(0) =
∑

b,b′∈B,

b=b′

pB(b)pB(b
′) (7)

=
∑

b∈B

pB(b)
2. (8)

From Equation (2), therefore, H2(B) can also be written as follows:

H2(B) = − log2 pD(0). (9)

The space of d will be lower dimensional than that of b, while the amount of samples of d,

which are obtained through inter-subject comparisons, can be quadratic in the number of

samples of b. Accordingly, a sufficiently large number of samples of d can be corrected,

and pD(d) can be more easily estimated as compared to pB(b). If the collection of samples

of b and the comparisons follow the standard method of evaluating biometric accuracy, the

estimation of distribution will be more reliable [MW02]. For this reason, H2(B) can be

evaluated with Equation (9) and is considered to be a practicable measure for evaluating

the content of biometric information.

3.2 Procedure to evaluate quadratic Renyi entropy

The quadratic Renyi entropy, H2(B), of biometric information can be evaluated with the

following procedure:

1. Samples of the distance d are obtained through inter-subject comparisons using a

sufficient number of samples of biometric features b. As mentioned in Subsection

3.1, this step should follow the same procedure as that in the standard method for

evaluating biometric accuracy.
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2. The probability mass function, pD(d), of d is estimated from the samples of d.

Since pD(0), i.e., the probability that two sets of biometric features correspond, is

considered to be an extremely small value, the observed value will be 0. Thus pD(0)
should be calculated from the estimated distribution of pD(d). If the modelling of

pD(d) is well investigated as it was with Daugman’s model of iris authentication

[Dau03], pD(d) is parametrically estimated from the samples of d because it can be

easily calculated. If the shape of pD(d) is not fully known, on the other hand, pD(d)
is estimated using a nonparametric estimator that depends on training data.

3. H2(B) is calculated for the estimated value of pD(0) by using Equation (9).

4 Evaluation of information content in fingerprint bit string

Let us evaluate the information content in a fingerprint bit string on the basis of our method

described in Section 3. To begin with, we will explain the application of our evaluation

method to the biometric cryptosystem using the FCS. Then, we will present the results

from experimentally estimating the information content using a fingerprint image set.

4.1 Quadratic Renyi entropy of biometric bit string

In the biometric cryptosystem using the FCS, biometric information b is represented by

an n-long bit string as described in Section 2, i.e., b ∈ B = {0, 1}n, which allows the

distance d between two bit strings b, b′ ∈ B to be written as follows:

d =
‖ b⊕ b′ ‖

n
. (10)

Given a random variable D whose realisation is d, we assume that the PMF, pD(d), of D
can be modelled as the following binomial distribution Bi(θ, n̂):

pD(d) =
n̂!

(n̂d)!(n̂(1− d))!
θn̂(1−d)(1− θ)n̂d. (11)

This is because the definition of b and d is the same as that in Daugman’s proposed model

of iris authentication using an iris code [Dau03]. If pD(d) can be modelled as Bi(θ, n̂), θ
means the correspondence probability for each bit, and n̂ means the number of usable bits

for discrimination. The expectation, E(D), and the variance, V (D), of D can be written

as follows:

E(D) = 1− θ, (12)

V (D) =
θ(1− θ)

n̂
. (13)
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According to Equation (11), pD(0) = θn̂, and hence the quadratic Renyi entropy of a

random variable B on B can be written as follows:

H2(B) = − log2 θ
n̂. (14)

θ and n̂ therefore need to be estimated from samples of d and Equations (12) and (13) to

calculate H2(B), and the samples of d to be obtained through inter-subject comparisons

using samples of b.

Equation (14) can be considered to be a generalisation of Daugman’s discrimination en-

tropy [Dau03] in terms of quadratic Renyi entropy. Daugman did not refer to a sense of

discrimination entropy for θ 4= 1/2, while Equation (14) enable us to evaluate the corre-

lation between biometric bit strings on the basis of the concept of information content for

an arbitrary value of θ.

4.2 Evaluation results

Taking up the biometric cryptosystem proposed by Tuyls et al. [TAK+05] as an example,

we used 800 images in set A of FVC2002 DB1, in which the images consisted of eight

images of each 100 fingers. Using six fingerprint images of each finger for registration

and the remaining two images for verification, we generated n = 127-long fingerprint

bit strings and performed inter-subject comparisons. The average value of distance scores

between bit strings was 0.499, and the variance value was 0.00684. According to Equa-

tions (12) and (13), the estimated values for the correspondence probability, θ, for each

bit and the number, n̂, of valid bits were 0.501 for the former and 37 for the latter, and

then the quadratic Renyi entropy, H2(B), of a fingerprint bit string was 36 bits by using

Equation (14). If fingerprint bit strings are uniformly distributed on B = {0, 1}127, H2(B)
will ideally be 127 bits, but the experimental value of H2(B) fell much below the ideal

value. Consequently, we can say that fingerprint bit strings were correlated and thus this

correlation will allow an adversary to perform the attacks explained in Section 5.

However, pD(d) cannot be always modelled as a binomial distribution because different

types of correlation would occur according to the kind of biometric characteristic and

extracted features. If the value of H2(B) needs to be more accurately evaluated, the mod-

elling of pD(d) should be more carefully discussed, or nonparametric approaches should

be adopted, as mentioned in Subsection 3.2.

5 Biometric guessing attacks

In this section, we consider practical guessing attacks taking advantage of the correlation

between biometric bit strings, whose objective is that an adversary is incorrectly authen-

ticated. To begin with, we will explain a biometric dictionary attack (BDA) as an attack

in a normally running system where the commitment is not compromised, which only
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takes advantage of the correlation between biometric bit strings. Next, we will explain

an exhaustive codeword search attack (ECSA), which only takes advantage of the size of

codeword space. This is because if the ECSA has a higher probability of success than the

BDA, adversaries will carry out the ECSA when the system is running normally. Last,

we propose a decodable biometric dictionary attack (DBDA) taking advantage of both the

correlation between biometric bit strings and the size of codeword space.

5.1 Biometric dictionary attack (BDA)

The BDA is carried out with the following procedure:

1. An adversary prepares a number of samples, DB = {b1, . . . , bN}, of the bit string

on the biometric characteristic a targeted authentication system uses, which are ob-

tained from real people, and then chooses a bit string b∗ at random from DB.

2. In step 1 of the verification process explained in Section 2, the adversary inputs b∗

as a genuine user.

3. If the authorisation server accepts the adversary in step 4 of the verification process,

the attack is completed.

5.2 Exhaustive codeword search attack (ECSA)

If it is assumed that an adversary knows the system parameters that concern the error-

correcting code and the generator polynomial, the ECSA is performed with the following

procedure:

1. An adversary chooses a codeword c∗ at random from an error-correcting code C
whose cardinality is 2k.

2. In step 3 of the verification process, the adversary inputs c∗ to the client as a genuine

user.

3. If the authorisation server accepts the adversary in step 4 of the verification process,

the attack is completed.

5.3 Decodable biometric dictionary attack (DBDA)

When a commitment, z = b⊕c, of a certain user is compromised, the DBDA is conducted

with the following procedure:

1. As with the first step of the BDA, an adversary prepares a number of samples, DB =
{b1, . . . , bN}, of the biometric bit string a targeted system uses.
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2. The adversary passes bi ⊕ z through an error-correcting decoder, where bi ∈ DB.

Then, bi ⊕ z can be transformed into one of the codewords, or no codeword will be

output due to the failure to decode.

3. In the second step above, if a codeword is obtained, the adversary adds bi to a new

set DB. The second and third steps are performed for every bi.

4. The adversary chooses a bit string b∗ at random from DB, and inputs b∗ as the

user whose z is compromised in the first step of the verification process. If the

authorisation server accepts the adversary in step 4 of the verification process, the

attack is completed.

Note that it is assumed that commitments are not revoked or reissued when they are com-

promised and the hash, h(c), of c is not leaked from the corresponding user’s token.

Additionally, Simoens and Kelkboom both analysed a similar decodability attack based

on cross-matching as the DBDA in terms of indistinguishability [STP09, KBK+11], and

further Kelkboom proposed a countermeasure to the decodability attack by implementing

a bit-permutation on the bit string. However, we note that this countermeasure cannot

prevent the DBDA when the matrix for bit-permutation is public.

6 Security analysis

This section discusses the theoretical security for each attack explained in Section 5 and

presents the results from experimentally evaluating the security. In the theoretical discus-

sion, however, we consider a special case where correlation is caused by members with an

extremely low probability of occurrence in the space of biometric bit strings.

6.1 Successful attack probability in normally running system

The successful attack probability of the BDA corresponds to the false accept rate (FAR),

which is a standard measure for assessing biometric accuracy. Let a subspace, B̄, of the

space, B = {0, 1}n, of biometric bit strings be given by B̄ = {b|pB(b) > 0, b ∈ B}, using

the PMF, pB(b), of a random variable B on B. A random variable on B̄ is assumed to

follow a uniform distribution. The value of |B̄| will be less than that of |B| when informa-

tion content in a biometric bit string falls below an ideal value due to some correlation, as

described in Section 4. Given a word x chosen from {0, 1}n at random and the probability

P (x ∈ B̄) that the x is a member of B̄, FAR can be written as follows:

FAR =
|B̄t(b)|

2n · P (x ∈ B̄)
(15)

=
|B̄t(b)|

|B̄|
, (16)
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where B̄t(b) denotes a set of bit strings in the hypersphere with centre b ∈ B̄ and radius t,
i.e., B̄t(b) = {b′| ‖ b⊕ b′ ‖≤ t, b′ ∈ B̄}.

Then, given the space, C, of codewords, the successful attack probability, PECSA, of the

ECSA can be written as follows:

PECSA =
1

2n · P (x ∈ C)
(17)

=
1

|C|
=

1

2k
. (18)

The successful attack probability (SAP ) in a normally running system can therefore be

written as follows:

SAP = max{FAR,PECSA}. (19)

Function max returns the maximum value of all values.

6.2 Successful attack probability in system compromising commitment

When the commitment, z, of a certain user is compromised, the successful attack proba-

bility, SAP , of the DBDA can be written as follows:

SAP =
|B̄t(b)|

2n · P (x⊕ z ∈
⋃

c∈C
Ct(c), x ∈ B̄)

(20)

≈
|B̄t(b)|

2n · P (x ∈
⋃

c∈C
Ct(c) ∩ B̄)

(21)

≈
|B̄t(b)|

2n · P (x ∈
⋃

c∈C
Ct(c))P (x ∈ B̄)

(22)

=
|B̄t(b)|

2n · |Ct(c)| · P (x ∈ C)P (x ∈ B̄)
, (23)

where Ct(c) denotes a set of words that can be transformed into a certain codeword c ∈ C
by an error-collecting decoder, i.e., Ct(c) = {w| ‖ c ⊕ w ‖≤ t, w ∈ {0, 1}n}. Due

to the properties of linear codes, we supposed in Equation (21) that the proportion of

the words that can be transformed into codewords by an error-correcting decoder in B̄
nearly equals that of these words in the space such that B̄ is translated by z [WRDI11].

Additionally, Equation (22) follows from the assumption that the proportion of members

of B̄ in
⋃

c∈C
Ct(c) nearly equals that of these members in {0, 1}n. If |B̄t(b)| = |Ct(c)| is

assumed, Equations (15) and (17) allow SAP to be written as follows:

SAP ≈ FAR ·
1

|Ct(c)| · P (x ∈ C)
(24)

≈ PECSA ·
1

P (x ∈ B̄)
. (25)
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Table 1: Successful attack probability

(n, k, dmin) (127,8,57) (127,15,55) (127,22,47)

FRR 0.0214 0.0267 0.0481

FAR 0.00264 0.00232 0.00124

PECSA 0.00391 3.05× 10−5 2.38× 10−7

SAP 0.00391 0.00232 0.00124

SAP 0.228 0.216 0.135

Therefore, SAP ≥ SAP , which means that security of a system compromising a com-

mitment is lower than that of a normally running system.

6.3 Evaluation results

As with the experiments explained in Subsection 4.2, we adopted the biometric cryptosys-

tem using fingerprint bit strings proposed by Tuyls et al. [TAK+05]. We used a BCH code

as a (n, k, dmin)-linear code.

Table 1 lists the false reject rate (FRR), FAR, PECSA, SAP , and SAP for different

BCH codes. If we take (n, k, dmin) = (127, 22, 47) as an example, if fingerprint bit

strings do not correlate and the PMF of a fingerprint bit string can be modelled as a uni-

form distribution, FAR =
∑23

i=0 127Ci/2
127 = 8.48 × 10−14, according to Equation

(16). However, if we take the value of FAR when (n, k, dmin) = (127, 22, 47) in Table

1, the value is very different from the above ideal value, which means security deterio-

rates greatly due to the correlation between fingerprint bit strings. Moreover, in all BCH

codes, the value of SAP is much greater than that of SAP , and the computational time

for preparing a new set DB in steps 2 and 3 of the DBDA explained in Subsection 5.3

was negligibly small. We hence observed that the security of a system compromising a

commitment is much lower than that of a normally running system.

7 Conclusion

This paper focused on a biometric cryptosystem using a fuzzy commitment scheme (FCS)

and demonstrated the correlation between fingerprint bit strings by experimentally eval-

uating the information content in a fingerprint bit string. The security against attacks to

guess biometric bit strings, which take advantage of this correlation, were theoretically dis-

cussed, and the results from quantifying the security in accordance with an experimental

evaluation were presented. Consequently, we now know that the security of a system com-

promising a commitment is lower than that of a normally running system. In Subsections

6.1 and 6.2, however, since some ideal assumptions were used to develop successful attack

probabilities, we will discuss the security of the FCS without these assumptions. We will

also analyse theoretically and experimentally the security against a decodable biometric

291



dictionary attack (DBDA) in cases where not linear codes but other error-correcting codes

are applied to the FCS.
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