Efficient State Merging in Symbolic Execution
(Extended Abstract)

Volodymyr Kuznetsov! Johannes Kinder!:? ~Stefan Bucur! George Candea®

Ecole Polytechnique Fédérale de Lausanne (EPFL)
{vova.kuznetsov,stefan.bucur,george.candea } @epfl.ch

2Royal Holloway, University of London
johannes.kinder @rhul.ac.uk

Recent tools [CDE08, GLMO08, CKC11] have applied symbolic execution to automated
test case generation and bug finding with impressive results—they demonstrate that sym-
bolic execution brings unique practical advantages. First, such tools perform dynamic
analysis and actually execute a target program, including any external calls; this broadens
their applicability to many real-world programs. Second, like static analysis, these tools
can simultaneously reason about multiple program behaviors. Third, symbolic execution
is fully precise, so it generally does not have false positives.

While recent advances in SMT solving have made symbolic execution tools significantly
faster, they still struggle to achieve scalability due to path explosion: the number of pos-
sible paths in a program is generally exponential in its size. States in symbolic execution
encode the history of branch decisions (the path condition) and precisely characterize the
value of each variable in terms of input values (the symbolic store), so path explosion be-
comes synonymous with state explosion. Alas, the benefit of not having false positives in
bug finding comes at the cost of having to analyze an exponential number of states.

State merging. One way to reduce the number of states is to merge states that correspond
to different paths. Consider, for example, the program if (x<0) {x=0;} else {x=5;} with
input X assigned to x. We denote with (pc, s) a state that is reachable for inputs obeying
path condition pc and in which the symbolic store s = [vg = eg,...,v, = e,] maps
variable v; to expression e;, respectively. In this case, the two states (X < 0, [z = 0])
and (X > 0, [x = 5]), which correspond to the two feasible paths, can be merged into one
state (true, [x = ite(X < 0,0,5)]). Here, ite(c, p, q) denotes the if-then-else operator
that evaluates to p if ¢ is true, and to g otherwise.

State merging effectively decreases the number of paths that have to be explored [God07,
HSS09], but also increases the size of the symbolic expressions describing variables.
Merging introduces disjunctions, which are notoriously difficult for SMT solvers. Merging
also converts differing concrete values into symbolic expressions, as in the example above:
the value of 2 was concrete in the two separate states, but symbolic (ite(X < 0,0,5)) in
the merged state. If x were to appear in branch conditions or array indices later in the exe-
cution, the choice of merging the states may lead to more solver invocations than without
merging. This combination of larger symbolic expressions and extra solver invocations

45

can drown out the benefit of having fewer states to analyze, leading to an actual decrease
in the overall performance of symbolic execution [HSS09].

Furthermore, state merging conflicts with important optimizations in symbolic execution:
search-based symbolic execution engines, like the ones used in test case generators and
bug finding tools, employ search strategies to prioritize searching of “interesting” paths
over “less interesting” ones, e.g., with respect to maximizing line coverage given a fixed
time budget. To maximize the opportunities for state merging, however, the engine would
have to traverse the control flow graph in topological order, which typically contradicts the
strategy’s path prioritization policy.

Our solution. In this work (published as [KKBC12]), we describe a solution to these
two challenges that yields a net benefit in practice. We combine the state space reduction
benefits of merged exploration with the constraint solving benefits of individual explo-
ration, while mitigating the ensuing drawbacks. Our main contributions are the introduc-
tion of query count estimation and dynamic state merging. Query count estimation is
a way to statically approximate the number of times each variable will appear in future
solver queries after a potential merge point. We then selectively merge two states only
when we expect differing variables to appear infrequently in later solver queries. Since
this selective merging merely groups paths instead of pruning them, inaccuracies in the
estimation do not hurt soundness or completeness. Dynamic state merging is a merging
algorithm specifically designed to interact favorably with search strategies. The algorithm
explores paths independently of each other and uses a similarity metric to identify on-the-
fly opportunities for merging, while preserving the search strategy’s privilege of dictating
exploration priorities.

Experiments on all 96 GNU COREUTILS show that employing our approach in a symbolic
execution engine achieves speedups over the state of the art that are exponential in the size
of symbolic input, and can cover up to 11 orders of magnitude more paths. Our code and
experimental data are publicly available at http://cloud9.epfl.ch.

References

[CDEO8] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Proc. 8th USENIX Symp.
Oper. Syst. Design and Implem. (OSDI 2008), pages 209-224. USENIX, 2008.

[CKC11] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-path
analysis of software systems. In Proc. 16th. Int. Conf. Architectural Support for Prog.
Lang. and Oper. Syst. (ASPLOS 2011), pages 265-278. ACM, 2011.

[GLMOS] P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In Proc.
Network and Distributed Syst. Security Symp. (NDSS 2008). The Internet Society, 2008.

[God07] P. Godefroid. Compositional Dynamic Test Generation. In 34th ACM SIGPLAN-
SIGACT Symp. Principles of Prog. Lang. (POPL 2007), pages 47-54. ACM, 2007.

[HSS09] T. Hansen, P. Schachte, and H. Sgndergaard. State Joining and Splitting for the Sym-
bolic Execution of Binaries. In 9th Int. Workshop Runtime Verification (RV 2009), vol-
ume 5779 of LNCS, pages 76-92. Springer, 2009.

[KKBC12] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in sym-
bolic execution. In Proc. ACM SIGPLAN Conf. Prog. Lang. Design and Implem. (PLDI
2012), pages 193-204. ACM, 2012.

46

