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Abstract: TEAGER is a tool suite supporting test automation based on UML state ma-
chines, conforming to the UML semantics definition. For testing, the various sources
of non-determinism in state machines pose major challenges. This article discusses
those challenges and the approach for their solution taken in TEAGER. This includes
probabilistic batch generation of test cases, which include expected observations, test
execution and evaluation, as well as a probabilistic simulator for state machines, which
is useful for model validation.

1 Introduction

One of the benefits of model-based development is the potential to support quality assur-
ance. Models can support quality assurance activities from reviews to testing. In particular,
software models can be a basis for test automation, increasing coverage and cost efficiency
of the test process. The present article introduces TEAGER, Test Execution And Genera-
tion Environment for Reactive Systems, a tool suite automating tests based on UML state
machines [UML04]. As a research prototype designed for easy adaption, TEAGER is par-
ticularly useful for investigating the characteristics of state machines as test specifications.

State machines are a variant of Statecharts [Har87, HN96, PS91] whose semantics has been
adapted to the special requirements of object-oriented systems in general and the UML in
particular. In the modeling process, state machines can be used for different purposes at
different levels of abstraction. TEAGER interprets state machines primarily as behavioral
state machines, which are used to model discrete system behavior.

TEAGER supports three tasks in testing: test case generation, model validation, and test
execution including test result evaluation. The tool provides the following key features.
It implements an interpretation of state machines conforming to the UML semantics defi-
nition [UML04]. It supports non-determinism in models as well as in systems under test
(SUT). The generation of test cases takes place in a batch fashion according to several
probabilistic strategies. Test case execution includes evaluation according to must and
may testing [dNH84]. Finally, it includes a simulator for state machines as system un-
der test, enabling easy validation of state machine models, in particular with respect to
modeling for testability.

Section 2 introduces state machines by way of an example. Particular challenges in testing
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based on state machines and their resolution in TEAGER are the topic of Section 3. The
structure of a test case is discussed in Section 4. Section 5 explains the software architec-
ture of TEAGER. Section 6 and 7 address test case generation and test execution. Section
8 puts the results presented here in the context of other work, and Section 9 summarizes
and points out directions of future research.

2 State Machines – An Example

To provide an intuitive understanding of UML state machines, this section introduces state
machines in general and presents an example state machine modeling a car audio system
in Figure 1.

State machines communicate by exchanging events. The basic reaction of a state machine
to external stimuli, i.e., events, is to perform transitions. While executing, a state machine
generates events which are sent to other objects and receives events generated by other ob-
jects. The latter are stored for further processing within the state machine. Most practical
applications use a FIFO-Queue for storing events, and we assume in the following that
events are processed in a first-in-first-out fashion. Dispatching and processing of events
take place one at a time in a run-to-completion step. Run-to-completion means that an
event can only be processed if the processing of the previous event is fully completed.

When a state machine detects and dispatches an event, several transitions may become
enabled for firing. If no transition is enabled, the event occurrence is discarded and the
current run-to-completion step terminates. If several transitions are enabled they may be
in conflict with each other. Some conflicts can be resolved based on a transition priority.
This priority is defined by the relative position of the source states of the transitions in
the state hierarchy. In a state machine, a transition originating from a substate has priority
over a conflicting transition originating from any of its containing states. The transition
selection algorithm determines which of the enabled transitions actually fires. Taking a
transition comprises exiting the source state and entering the target state after executing
all actions associated to the transition.

The selected set of transitions is one of the largest sets containing only mutually consis-
tent transitions such that there is no transition outside the set which is consistent with all
transitions in the set and with priority over a transition in the set. If there is more than one
set fulfilling these constraints the state machine is non-deterministic.

The remainder of this section illustrates the workings of a state machine by way of the
example in Figure 1. For any formal analysis, however, and for test case generation in
particular, we need a precise semantics of UML state machines [SS06], which we cannot
present in detail here. The semantics definition conforms to the UML 2.0 Superstruc-
ture specification [UML04] and also draws from other work on defining semantics for
object-oriented state machines [BBK+04, LP99, LMM99]. It covers hierarchically and
orthogonally structured state machines including multi-level transitions. It treats signal
events in the trigger part, and sequences of internal and external signal events in the action
part of a transition.
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Figure 1: State Machine Specification of a Car Audio System.

The state machine in Figure 1 models a car audio system which has a minimal user in-
terface to ensure maximal safety for the car driver. The system has three signal sources,
namely a tuner, a tape deck, and a compact disc player.

At any time, the car audio system allows the driver to insert or eject a compact disc or an
audio tape. A power button toggles the system between the on and off mode and, as one
would expect, the system plays one of its sources only if it is in the on mode. If the system
is switched on, a source button allows the driver to choose – in a round robin fashion –
among the different signal sources depending on the audio media which are present in the
system. Based on the source mode, two buttons, next and back, change the channel, spool
the tape forward or backward, or select a track of the compact disc.

The state machine in Figure 1 consists of the root state Car Audio System which is re-
fined into three orthogonal parts, namely CD Player, Tape Deck and Audio Player.
Initially, the system contains neither a compact disc nor an audio tape and is switched off.
The initial states of a state machine are marked by an arrow originating from a filled black
circle.

Inserting a compact disc, i.e., incoming event cd insert occurs, causes the system to
change from state CD Empty to CD Full. Ejecting the compact disc (incoming event
cd eject occurs) causes the system to switch back to the state CD Empty. The two
incoming events tape insert and tape eject have a similar effect on Tape Deck.

If the system is in state On, an incoming event src causes the system to change mode.
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Then the two transitions originating from Tuner Mode, for example, generate the events
cd full? and switch cd or tape full? and switch tape in response to src.
The events cd full? and tape full? are internal events. Because it is possible to
take each of the two – conflicting – transitions, the state machine is non-deterministic and
the transition selection algorithm is free which one to choose.

Taking the transition to switch to CD Mode, the observable event switch cd is sent to
the environment, thus allowing it to react to the change from Tuner Mode to CD Mode.
The internal event cd full? is stored for further processing in the local event queue.

Once the system processes the event cd full?, a self-transition in CD Player fires,
depending on whether a compact disc is inserted or not. By sending the event cd no
or cd yes this sub-automaton signals to the Audio Player whether a compact disc
is available or not. The Audio Player in turn consumes that event and changes to
the CD Mode or Tuner Mode subject to the received event. Again, the environment can
observe this change of mode through the events tuner plays and cd plays. For the
other events, the state machine works in a similar manner.

3 Challenges for Test Automation

There is a well-established theory for generating test cases from finite automata or labeled
transition systems [Tre96, BJK+05], that has been implemented in tools like TorX [Tor05]
(cf. Section 8). The standard theory relies on two assumptions: synchronous commu-
nication and quiescence, which means that after each trigger the system under test will
eventually reach a stable state and the events the system generates up to that state can be
considered the reaction to the immediately preceding trigger.

State machines do not satisfy those assumptions. They communicate asynchronously with
their environment by means of the event queue. For a state machine model, it also is
unrealistic to assume that the environment will wait for the system to become quiescent
before it will trigger the system again.

The fact that events are stored in the event queue makes state machines truly more powerful
than finite automata or labeled transition systems, and many interesting properties of fifo-
automata are undecidable [HCF+02]. The event queue is not directly observable by the
environment and it induces non-deterministic behavior.

Non-deterministic specifications pose a notoriously difficult problem for test automation.
State machines are particularly challenging because their semantics [UML04] contains
three major sources of non-determinism:

1. Several firing transition sets. If transitions are in conflict with each other, i.e., firing
them all would lead to an ill-formed configuration, then the transition selection algo-
rithm produces several consistent firing transition sets. Only one of them is selected
for firing, but the semantics does not prescribe which one.

2. Order of firing transitions. The order of firing transitions from the selected transition

76



set is arbitrary, too. The particular order of firing transitions determines the order
of observable events produced by the actions of those transitions, and therefore it
influences the observable behavior of the state machine.

3. Order of event processing. The actions associated with transitions produce internal
events that can enable transitions in subsequent steps. Those events and the ones in-
coming from the environment are processed asynchronously. They are queued into
the event queue that also stores incoming events. That queue is part of the “state” of
the state machine, but it is not directly observable. Because the order of firing tran-
sitions is chosen non-deterministically and may not be observable, the environment
can only speculate about the state of the event queue. Theoretically valid techniques
to determine the state of a finite automaton from sequences of observations are not
applicable because the event queue is unbounded and it is undecidable whether there
is a bound for a given state machine [HCF+02]. The state of the queue, however,
crucially influences the subsequent behavior of the state machine.

Although the boundedness of the event queue is undecidable, earlier work [SHS04] tried to
reduce state machines to labeled transition systems, considering each different configura-
tion and state of the event queue a different state of the labeled transition system. The idea
was to assume boundedness (for an unknown bound) and reduce the number of states by
exploiting symmetries. It turned out, however, that treating all possible reactions of a state
machine to a sequence of stimuli in a single test case is practically intractable even under
that assumption. Even for (unrealistically) small state machines, the resulting branching
factors are so large that the resulting data objects become huge after only very few in-
coming events. Therefore, TEAGER uses a different approach than the one discussed in
[SHS04]: it linearizes test cases as explained in the following section.

The third source of non-determinism, the ordering of events in the event queue, poses a
severe problem for the evaluation of test results, too. False negative verdicts seem to be
unavoidable, in general. For example, let us stimulate an implementation of the state ma-
chine for the car audio system with the input sequence power · src · power. Which
observations do we expect? The critical event is src. Processing src may yield the in-
ternal event cd full? and, depending on the processing of this event, one of the obser-
vations cd plays or tuner plays. Additionally, the actual observation also depends
on the order in which the events cd full? and power are stored in the event queue.
If cd full? is processed first, we observe one of the two expected observations but if
power is processed before cd full? no observable event will be processed at all, be-
cause the “answer” cd yes or cd no of CD Player will be ignored by Audio Player,
which will be in the state Off.

4 Structure of a Test Case

We put two major requirements on the data structure of test cases. First, we wish to keep
both test execution and evaluation as simple as possible. Therefore, we require test cases
to include the expected observable behavior of the SUT. Second, we need to address the
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Figure 2: Test Cases.

problems discussed in the previous Section 3. Our approach is to require test cases to be
basically linear.

A test case is a linear sequence of input events to the SUT and acceptance graphs for
observations from the SUT. We implement linearity in the acceptance graphs by tracking
only one correct behavior in a test case and marking other correct behaviors as “correct
but not to pursue further” in that test case. We assign those continuations an inconclusive
verdict except for the end of a test case, where we replace the inconclusive verdict with a
pass verdict, because the test case will not take any continuation, anyway. By executing a
test case several times, we try to verify the expected correct behavior (may testing).

The structure of acceptance graphs results from firing several transitions in a step. The
UML does not define in which order these transitions will be fired whereas the order
of associated actions of a transition is fixed. Generally, the implementation is free to
choose one specific order. Therefore, the test case must cover all permitted sequences
of actions associated with the firing transitions. Additionally, if there is more than one
firing transition set, the test case must cover not only the permitted observations (leading
to a pass verdict) but also the permutations of those observations (leading to inconclusive
verdicts).

In general, those sequences of events have common prefixes. They make up a (small) regu-
lar language whose terminal symbols are observable events. Consequently the acceptance
graph is a deterministic acceptor for that language with two accepting states and evalu-
ating the response of the SUT means deciding whether observations form a word of that
language.

The top of Figure 2 shows a test case for the car audio system. Beginning at the start node,
the test case produces two inputs, power and src, to the SUT and expects switch cd
followed by tuner plays as an reaction from the SUT, i.e., as an reaction to src the
system tries to switch to CD Mode but does not succeed because the CD player is empty. If
the SUT produces those observations, the test reaches the termination node Pass indicating
successful execution of the test case. But the state machine is non-deterministic and may
also react with the observation switch tape followed by tuner plays in response
to the input src. Although this response is correct, it is not the behavior that the particular
test case expects and so the test reaches the termination node Inconclusive. Since the dis-
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tinction between inconclusive and pass verdicts is unnecessary here, the verdict assigned
to that branch is Pass.

The bottom of Figure 2 shows the general structure of a test case. Sequences of trigger
events and acceptance graphs alternate until the test case terminates with the verdict Pass
or Inconclusive, where the acceptance graphs, shaded gray in the figure, treat the possible
correct observations. For example, accepting the two observation sets {obs1,obs2} and
{obs1,obs3} generated when firing each of two possible transition sets, respecting any
possible order and treating only the first set as correct behavior we yield the first acceptance
graph in Figure 2.

In summary, a test case considers one particular behavior of the state machine. Alterna-
tive correct responses of the SUT due to non-determinism yield the verdict Inconclusive,
whereas responses that are not consistent with the state machine (including failure of the
system to react at all) make the test case fail.

5 Tool Architecture

TEAGER is a tool set for test case generation, model validation, and test execution includ-
ing test result evaluation. Figure 3 sketches its architecture. TEAGER consists of two main
components: the test case generator and test driver, TCGD, and the state machine execu-
tor, SME. The TCGD has mainly two tasks, to generate test cases from a state machine
and to execute test cases by triggering an SUT and matching the responses of the SUT
with the results the test cases prescribe.

According to that general picture, the TCGD works on two repositories, storing state
machines and test suites. The former also are input to the SME, which simulates a state
machine and acts as an SUT for model validation. The communication between the test
driver (in the TCGD) and the SUT takes place asynchronously over a TCP/IP connection.
It uses two buffers for incoming and outgoing events.

Both components offer graphical user interfaces to edit state machines, generate and ex-
ecute test cases, to simulate a SUT, and to control parameters related to these activities.
The following sections discuss the test case generation and test execution processes in
more detail.
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6 Test Case Generation

The main task of the TCGD is to derive test cases from state machine specifications. It
translates a given state machine into an intermediate format which it uses for stepwise
simulation. The results of this simulation constitute the basis to generate test cases, as
shown in Figure 4.

The first step initializes all required data structures. That includes reading and parsing
the state machine and setting up the initial configuration of the simulation which usually
includes an empty event queue. The overall generation process is controlled by two param-
eters, the number of test cases to be generated (Generation Rounds) and the length
of a test case (Simulation Length). The “length” of a test case is determined by the
number of simulation steps needed to generate it. When the simulation reaches that bound,
TCGD writes out the test case to the test suite.

In each round, there is a choice between two alternatives: to stimulate the SUT with a new
trigger, or to execute the state machine, i.e., to execute the next run-to-completion step.
The first alternative is taken with a certain probability, which is a parameter of TCGD
(Trigger Probability).

This and the following choices in the test case generation process are resolved proba-
bilistically to influence the way test cases are selected. The probability functions model
assumptions about the environment behavior and about the relative speed of the SUT and
the environment. They can derived, e.g., from operational profiles of system usage.

If the SUT is to be triggered, TCGD probabilistically chooses an incoming event1 (trigger
for the SUT) based on one of three possible distributions, namely a uniform, an a priori or
a dependant one (Trigger Distribution). With a uniform distribution all incoming
events have the same probability of being selected. An a priori distribution (a prior), which

1State machines are input enabled by default and hence it is allowed to choose any incoming event as the next
trigger.
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Figure 5: Test View of TCGD.

is annotated in the event declaration part of the specification, assigns fixed but possibly
different probabilities to the input events. A dependant distribution starts with the same
prior. But taking an event a at time tn decreases the probability for a for the next choice
(at time tn+1) and increases the probability for all other events accordingly. Thus TCGD
ensures that the frequency of an event in a test case is its a priori probability multiplied by
the maximal number N of triggers in a test case. In any case, the chosen event is added to
the simulation queue.

If the state machine is to be executed, TCGD dequeues an event from the simulation
queue of the current simulation node and initializes the state machine simulator with the
appropriate configuration. The simulator determines all consistent firing transition sets.
For each such set, TCGD creates a new simulation node and fires all transitions in the
set. The results are new state machine configurations with internal events enqueued to the
simulation queue and observable events added to the list of observations. The internal and
observable events stem from the action parts of firing transitions. In this way, TCGD starts
to generate a new test case for each possible continuation.

7 Test Execution

Figure 5 shows the test view of TCGD for the car audio system after execution of a test
suite. This view allows the user to generate new test suites and to control test execution.
All test cases from a test suite are listed in a table, which also displays triggered and
observed events and test results from the execution rounds. At the top and the bottom of
the test view, information concerning logging, test progress, and the overall result of a test
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are displayed.

Executing a test case consists of traversing it and, depending on the type, triggering the
SUT or comparing observed outputs from the SUT with expected results. A parameter
controls the time TCGD waits for a response by the SUT (Timeout). The input and
output buffers in Figure 3 make up the interface to an SUT. Technically, TCGD initiates
the execution process by accepting connections from an SUT at a specified port (SUT
Port). After the connection is established, the TCGD asks the SUT to initialize itself
and waits until this is acknowledged. That initialization takes place for every test case.

While executing, TCGD sends trigger events with a specified rate (Trigger Rate) and
queries the output buffer of the SUT periodically (Observation Sampling Rate).
If SME acts as the SUT, it simulates real-time properties by sending observations only
after a specified time (Response Time). In this way, the user can control and test the
effects of different timings in the communication.

Each test case is repeated several times (Execution Rounds) to test for unexpected
non-determinism in the SUT or, in the case of a non-deterministic specification, to test
for the expected continuation. The result of each execution is saved and contributes to the
final verdict. Depending on the test evaluation method (Pass Condition) we require
for must testing that all test case execution rounds finish with a pass verdict to yield a pass
for the test case. For may testing, we require at least one test case execution to finish with
a pass verdict.

To validate a state machine using SME, we need to approximate a realistic execution be-
havior. In addition to the response time, which models real time behavior, the SME proba-
bilistically decides whether or not to perform the next execution step (Step Probabi-
lity). Executing a step may yield more than one firing transition set. The selection
which SME takes is also controlled in two different ways (FTS Selection). Either,
SME chooses the transition set probabilistically or it resolves that choice deterministically.

8 Related Tools

TorX is a testing tool for conformance testing of reactive systems developed at the uni-
versity of Twente [Tor05]. Accepted specification languages are LOTOS, PROMELA and
SDL. The internal representation bases on (input/output) labeled transition systems. TorX
supports on the fly test case generation, in contrast to TEAGER, which produces test suites
in a batch fashion.

AsmL 2 by Microsoft provides an executable specification language based on the theory
of Abstract State Machines [Asm05]. The AsmL Test Tool supports parameter generation
and test sequence generation based on interface automata. It is possible to run an AsmL
model in parallel with the SUT in order to check conformance of the SUT to the model.

Conformiq Software Ltd. offers a Test Generator which accepts UML state diagrams as
the model of the system under test for dynamic testing [Con05]. The tool provides on-
line and off-line test execution with test coverage measuring and report generation. Test
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Generator uses “extended UML state charts”. Due to a lack of technical documentation,
the relation to UML state machines is unclear.

Reactis from Reactive Systems Inc. generates test data from Simulink and Stateflow mod-
els [Rea05]. The test generation component focuses on data and uses several coverage
criteria (decision, condition, and MC/DC; Simulink-specific measures such as branch and
subsystem; and Stateflow-specific metrics such as state, condition-action and transition-
action). The Validator uses a test and check approach for verifying models but an explicit
instrumentation of the model is necessary.

An increasing number of CASE Tool manufactures includes components for model based
testing. I-Logix Rhapsody, for example, offers two add-on products, Test Conductor and
Testing and Validation, for testing state machines [Rha05]. Simulink Verification and
Validation generates test cases in Simulink and Stateflow, and measures test coverage for
Statecharts [Mat05].

9 Conclusion

TEAGER conforms to the UML semantics and therefore is particularly useful for investi-
gating test automation strategies based on UML state machines. Designing the tool suite
and experimenting with state machine specifications has already provided insight into the
particular challenges state machines pose for testing.

The non-determinism induced by asynchronous event processing (cf., Section 3) not only
is a theoretical possibility but also a practical problem. Even for a small state machine like
the one in Figure 1, the actual state of the event queue can hardly be inferred from the ob-
servable reactions of the state machine to a (short) sequence of triggers. It is hard to avoid
false negatives when testing against such a state machine specification. Consequently, not
only design for testability but also modeling for testability is an important issue. TEA-
GER helps to evaluate state machines in this respect because it allows testers to execute
test cases generated from a state machine against a simulation of that very state machine.
Executing manually produced test cases against a state machine specification allows for
additional model validation.

It has turned out instrumental for producing interesting test cases to resolve the other forms
of non-determinism probabilistically, and to specify a fixed start sequence for test cases,
which puts the SUT in a desired start configuration for testing.

Further research must address more elaborate test case generation strategies and associated
coverage criteria. For test evaluation, must-testing will rarely be an option. Therefore,
adequate acceptance criteria for may-testing are needed. In this context, generating a test
suite as a batch process has advantages over on-the-fly testing. A stored test suite makes it
easy to implement various repetition strategies for may-testing. It also supports regression
testing well.

TEAGER is a flexible basis to augment theoretical investigations of these issues by practical
experiments.
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