

Markus Gödker, Markus Dresel, Thomas Franke

Institute for Multimedia and Interactive Systems, Engineering Psychology and Cognitive Ergonomics, University of Lübeck

Energy Dynamics Awareness (EDA)

• In resource dependent systems (house, electric vehicle, ships) users' behavior is an important factor for actual energy efficiency [1].

- Even energy-literate [5] people show inefficient behavior in dynamic energy situations [2]. Here, individual predispositions alone are insufficient to explain energy efficient behavior.
- Situation awareness (SA) [6] could help to better understand user-energy interactions – more precisely, a context specific SA we call energy dynamics awareness (EDA).
- User-centered HMIs providing energy feedback can support EDA [4].

Possible relationships to EDA in energy efficient behavior in dynamic situations.

Research Gap

To develop HMIs supporting EDA, an assessment methodology is mandatory but non-existent.

EDA Scale

Developed by a focus group consisting of 4 researchers (including 2 of the authors) with a psychological background following this procedure:

- **Introduction** to SA, energy efficient behavior and energy feedback HMIs.
- Brainwriting task to generate possible items.
- Editing, selection and exclusion of items (e.g. redundancy, precision).

	How do you rate the display ?	<u>></u> (e	<u></u>	a)			(e \
	Please indicate your level of agreement with the following statements.	complet disagree	largely disagree	slightly disagree	slightly agree	largely agree	complet
i1	The display gives me a very good overview of the energy dynamics of the system.						
i2	This display allows me to precisely estimate the influence of various factors on energy consumption.						
i3	This display allows me to correctly predict energy consumption in future situations.						
i4	The display tells me when energy is lost unnecessarily.						
i5	The information on the display is designed so that I know exactly how to increase energy efficiency.						
i6	By using this display, it is comprehensible for me by which actions I can influence the energy dynamics.						
i7	With this display, I feel that I am better able to influence the energy dynamics in new situations according to my will.						

Items i1 – i4 pertain to the *comprehension* aspect and items i5 - i7 to the *control* aspect.

Conclusions + Next Steps

- Based on these preliminary results, the energy dynamics awareness (EDA) scale can be expected to be a reliable method to assess the EDA support of energy feedback HMIs.
- This study suggests a **single-factor structure**. A **two-factor structure** with a comprehension and a control aspect might be possible and should be further examined.
- In this study, the two HMIs where **rather similar** and did not include a systematic variation to manipulate EDA. In future studies, explicit manipulation of EDA should be tested in order to examine how well the scale discriminates between interface variants.
- Further examinations of the criterion and construct validity are necessary.

First Scale Evaluation

First scale evaluation as part of a study on range interfaces for electric vehicles.

EDA Scale – Assessing Awareness for Energy Dynamics

N = 40 bus drivers (2 female) Self-reported electric bus **experience**: M = 26.0 h (SD = 21.8 h)

Procedure:

- 1. Thematic Introduction
- 2. 1st HMI presentation and EDA Scale questionnaire (among others)
- 2nd HMI presentation and EDA Scale questionnaire (among others)
- 4. General Questions and Demographics

The study was conducted in German.

"Traffic Lights"

The Range Indication HMIs

Two range HMIs indicating the **range buffer** by comparing the **remaining** distance and the state of charge in order to support a **heuristic range** evaluation.

See the **videos** from the study here: kurzelinks.de/trafficlights

kurzelinks.de/rangerace

Scale Analysis

Mean difference not significant: t(39) = 1.55, p = .129, d = 0.25

Scale Statistics

	Traffic Lights HMI	Range Race HMI		
Cronbach's α	.92	.93		
Range $lpha$ if item dropped	.89 (i5) – .92 (i1)	.91 (i2) – .93 (i6, i7)		
Range item-rest correlation	.58 (i1) – .89 (i5)	.71 (i7) − .90 (i2)		

Exploratory Factor Analysis

Both parallel analyses [7] and scree-plots indicated a single factor structure.

	Traff	Traffic Lights HMI			Range Race HMI				
	PAF1	PAF2			PAF1	PAF2			
	1	1	2		1	1	2		
% expl. Var.	61.8	31.0	38.9		67.8	40.3	37.6		
i1	.61	.83			.75	.98			
i2	.87	.77			.93	.57	.44		
i3	.68	.64			.92	.56	.44		
i4	.76	.32	.49		.82	.84			
i5	.93		.70		.85	.33	.61		
i6	.80		.94		.74		.96		
i7	.81		.88		.72		.72		

Factor loadings below 0.3 are not displayed; PAF1 = Factor loadings in the principal axis factoring (PAF) [3] with one factor; PAF2 = Factor loadings in a PAF with two fixed factors (oblimin rotated).

Acknowledgments

https://doi.org/10.4324/9781315087924

This research is funded by the EKSH GmbH as project "NuR.E" (project no. 8/12-31). We would like to thank the project partner Stadtverkehr Lübeck GmbH for the support.

[1] Chris Bingham, Chris Walsh, and Steve Carroll. 2012. Impact of driving characteristics on electric vehicle energy consumption and range. IET Intelligent Transport Systems 6, 1 (2012), 29-35. https://doi.org/10.1049/iet-its.2010.0137 [2] Dirk Brounen, Nils Kok, and John M. Quigley. 2013. Energy literacy, awareness, and conservation behavior of residential households.

Energy Economics 38 (2013), 42–50. https://doi.org/10.1016/j.eneco.2013.02.008 [3] Anna B. Costello and Jason W. Osborne. 2005. Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation 10 (2005). Issue 7. http://pareonline.net/getvn.asp?v=10&n=7 [4] Sarah Darby. 2006. The effectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing

and direct Displays 486, 2006 (2006), 26. [5] Jan E. De Waters and Susan E. Powers. 2011. Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior. Energy policy 39, 3 (2011), 1699–1710. https://doi.org/10.1016/j.enpol.2010.12.049 [6] Mica R. Endsley. 1995. Toward a theory of situation awareness in dynamic systems. Human factors 37, 1 (1995), 32–64.

[7] John L. Horn. 1965. A rationale and test for the number of factors in factor analysis. *Psychometrika* 30, 2 (1965), 179–185. https://doi.org/10.1007/BF02289447

Poster as PDF