True Lies: Lazy Contracts for Lazy Languages

Faithfulness is Better than Laziness

Markus Degen Peter Thiemann Stefan Wehr
{degen,thiema_nn,wehr}@informat ik.uni-freiburg.de

Abstract: Contracts are a proven tool in software development. They provide spec-
ifications for operations that may be statically verified or dynamically validated by
contract monitoring.

Contract monitoring for lazy programming languages does not have a generally
accepted basis. This paper discusses three approaches, eager, semi-eager, and lazy
monitoring, all of which are flawed. The first two may change program behavior,
while the last two may lead to silent contract violations.

1 Introduction

Design by contract [Mey97] is a methodology for constructing correct software. It attaches
a contract to each operation. Such a contract consists of a precondition and a postcondition:
All input must fulfill the precondition and then the output is also obliged to meet the
postcondition. Thus, a contract provides a (partial) specification of an operation and an
implementation of the operation must fulfill that contract.

While contracts can be verified statically, in practice, they are mostly checked dynamically
using contract monitoring (cf. Eiffel [Mey92b, Mey92a], Scheme [PLTO05], Java [AKO3,
Kra98], or Haskell [HJLO6]): Each operation checks the precondition before performing
its computation and checks the postcondition before returning to its caller. On violation
of the precondition the operation raises an exception blaming its caller. Conversely, on
violation of the postcondition the operation blames itself.

The semantics of contract monitoring is intricate, and its correct and complete implemen-
tation is non-trivial [FFO1] (see Section 6 for further discussion on related work). From a
practical point of view, contract monitoring should guarantee meaning reflection (MR) and
meaning preservation (MP), report contract violations faithfully (F), and behave idempo-
tently (IP):

MR If running a program P with contract monitoring terminates and delivers a result v,
then running P without contract monitoring also terminates and delivers the same
result v. The MR property ensures that developers may enable contract monitoring
for a test version of their software and safely disable contract monitoring for the
release version, without running the risk that the test and the release version behave
differently.

MP If running a program P without contract monitoring terminates and delivers a result
v, then running P with contract monitoring also terminates and delivers the same
result v or it signals a contract violation. The MP property ensures that contracts
may be added to an existing program incrementally, without running the risk of
changing its behavior.

F If running a program terminates and delivers a result v after progressing through in-
termediate states &;[!C; e;] (a contract C; applied to some expression e; in some
context &;), then the predicates involved in !C; e; are all true. The F property en-
sures that programmer can rely on the truth of the predicates contained in a contract.

IP If enforcing contract C' on expression e yields result ¢/, then enforcing C' twice on e
also yields ¢’. The IP property ensures a meaningful notion for contract composi-
tion.

In the context of call-by-value evaluation, there is only one useful and sensible mode
of contract monitoring, which we call eager monitoring. This mode corresponds to the
implementation of monitoring in Eiffel, Java, and Scheme as outlined in the second para-
graph. The four properties MR, MP, F, and IP hold for eager contract monitoring under
call-by-value evaluation, provided contract predicates are side-effect free.

For lazy languages, it turns out that there are in principle three conceivable modes of
monitoring:

e FEager monitoring evaluates all predicates of non-function contracts as soon as the
contract is enforced. For function contracts, eager monitoring enforces the precon-
dition of a function argument before evaluating the body. Similarly, it enforces the
postcondition before returning the result.

e Semi-eager monitoring implements contract enforcement for non-function contracts
by evaluating only those predicates of a contract that correspond to expressions de-
manded by the program. For function contracts, semi-eager monitoring does not
enforce the precondition unless the function demands the argument (e.g., unless it
is strict). Similarly, enforcement of the postcondition is driven by evaluation of the
function’s result. This mode of monitoring is roughly what Hinze et al. propose
[HILO6].

e Lazy monitoring coincides with semi-eager monitoring with respect to function con-
tracts. For non-function contracts, however, lazy monitoring evaluates a predicate
of a contract only if all values on which the predicate depends are already evaluated.
That is, lazy monitoring only proceeds as far as the user code itself can observe. Vi-
olations that the user code cannot observe, yet, are considered to be invisible. Chitil
and Huch’s pattern logic [CHO7b] approximates lazy monitoring for non-function
contracts.

Contributions. We have identified a taxonomy of three different approaches to contract
monitoring in lazy languages, thus arriving at a clearly defined design space for this prob-

ex=cla|()|recf(z)=clee| (ee)| caseeof (z1,22) : €
|in;e | caseeof injz :e;ingx e |!Ce
C:=%P|H CC|H,CC|H CC|H,CC
P::=e|CASEEOF (£,&): P|CASESQF INy & : P;INo ¢ : P
c€Const, x,f€Var, &€ BVarC Var

Figure 1: A language with contracts

lem. We provide implementations for the novel notion of eager monitoring as well as for
lazy monitoring, using a novel implementation strategy.

We measure the effectiveness and usefulness of the approaches in our taxonomy along
five dimensions: meaning reflection, meaning preservation, faithfulness, idempotence, and
implementability. The central insight is that contract monitoring in a lazy language cannot
be faithful and meaning preserving at the same time.

Overview. Section 2 introduces a lambda calculus notation enriched with contract prim-
itives. This syntax is the basis for our subsequent discussion of the taxonomy in Section 3.
This discussion is structured in Subsections 3.1 (eager monitoring), 3.2 (Semi-eager mon-
itoring), and 3.3 (lazy monitoring). Each of these sections illustrates problems with one or
several of the dimensions through examples. Section 4 considers ways of implementing
the three approaches. Section 5 summarizes the problems of the approaches, puts them in
perspective, and recommends that contracts should be faithful. The paper concludes with
a review of related work (Section 6) and a conclusion (Section 7).

2 A Language with Contracts

To provide a common syntactic basis for our investigation, we define a small lambda
calculus-based language, \”*, with contracts and the standard provisions for sums, prod-
ucts, and recursive functions. Figure 1 defines its syntax. Expressions e are mostly stan-
dard. Contract enforcement, |C e, asserts that the result of e fulfills contract C. We use
¢ to range over box variables. For eager and semi-eager monitoring, box variables are
equivalent to regular variables. For lazy monitoring, however, box variables have a special
status (see Sections 3.3 and 4.3).

There are five forms of contracts. A predicate contract 7€.P binds & to a value v and
enforces the pattern predicate P on v. The value of the contract enforcement is v if P
evaluates true. Otherwise, it aborts execution and signals a contract violation. A function
contract H_, C7 C5 confines a function value to have precondition C'; and postcondition
Cy. A pair contract H, Cy Co (sum contract H, Cy Cs) restricts the components of a
pair (sum) according to Cy and Cy. Finally, Hy, C; C denotes the conjunction of C'; and
Cs.

A pattern predicate P is either one of the special elimination constructs that decompose a

ordered = 76.CASEEQF (&1,8): & <&
arg-is-zero H_, (7€.£ =0) (?&.true)
first-zero-and-ordered H, (H, (7. =0) (?¢.true)) ordered

Figure 2: Example contracts.

pair or a sum, or a boolean expression. The boolean expression must not contain further
(standard) elimination constructs. For eager and semi-eager monitoring, the special elim-
ination constructs behave like the standard elimination constructs. For lazy monitoring,
they behave differently (e.g., lazily).

The dynamic semantics of the expression language (except contract enforcement !C'e) is
based on the principle of lazy evaluation as prescribed, e.g., by Launchbury’s operational
semantics [Lau93]. We explain the semantics of the various strategies for evaluating !C' e
in their dedicated sections.

Notation. We write \z.e instead of rec f(x) = e if f is not free in e and let = indicate
syntactic equality. We set true = in; () and false = ins () to define the conditional:
ifethene; else ey = caseeof ing x1 : e1;ing To : e Where x1, 15 are fresh.

Examples. Figure 2 defines a few example contracts that serve as running examples to
illustrate the problems occurring with eager, semi-eager, and lazy contract monitoring.

1. The contract ordered asserts that the first component of a pair is smaller than the
second.

2. The contract arg-is-zero asserts that the argument of the function is zero, leaving
the result unrestricted

3. The contract first-zero-and-ordered ensures that the first component of a pair is
zero and that the second component is greater than the first.

3 Three Styles of Contract Monitoring

This section considers each of the identified styles of contract monitoring in turn. Each
subsection introduces one style, explains how it works, and evaluates the four dimensions
meaning reflection, meaning preservation, faithfulness, and idempotence. Section 4 con-
siders implementation matters.

3.1 Eager Contract Monitoring

Eager contract monitoring evaluates all predicates of non-function contracts as soon as the
contract is enforced. For function contracts, eager monitoring enforces the precondition
of a function argument before evaluating the body. Similarly, it enforces the postcondition
before returning the result.

Fully evaluating contract predicates ensures faithfulness and idempotence. Moreover, the
MR property holds because our language A*' has no side-effects except non-termination.
However, eager contract monitoring may violate the MP property. Here is an example that
reveals the problem:!

(larg-is-zero (Az.1)) L (1)

This expression diverges with contract enforcement because the predicate of the contract
arg-is-zero forces the argument L. With contract monitoring disabled, this expression is
equivalent to (Az.1) L, which evaluates to 1. Hence, MP is violated.

3.2 Semi-eager Contract Monitoring

Semi-eager contract monitoring implements contract enforcement for non-function con-
tracts by evaluating only those predicates of a contract that correspond to expressions
demanded by the program. For function contracts, semi-eager monitoring does not en-
force the precondition unless the function demands the argument (e.g., unless it is strict).
Similarly, enforcement of the postcondition is driven by evaluation of the function’s result.

With the same argument as for eager monitoring, the MR property also holds for semi-
eager contracts monitoring. Showing that MP does not hold requires a slightly more elab-
orate program than in Example (1):

case (lordered (5, 1)) of (z1,%2) : 21 2)

This expression diverges because the case expression forces ordered’s predicate to be
evaluated, which in turn forces evaluation of the second pair component _L. Removing the
contract yields case (5, L) of (x1,z2) : 1 which evaluates to 5.

Semi-eager contract monitoring also violates the faithfulness property F. As Meyer advo-
cates [Mey92a], it is considered bad coding style to defensively check the parameter at
the beginning of the function. Consider a constant function that relies on the arg-is-zero
contract to restrict its domain.

my-const = larg-is-zero (\z.42) 3)

The programmer decides to rely on contracts and implements the function without check-
ing the domain again. Still, executing (my-const 5) yields 42. This undesired behavior
is a direct consequence of semi-eager monitoring, which only checks the precondition of

! | stands for a non-terminating expression.

a function if the function demands its argument. As this constant function never evaluates
its argument, semi-eager contract monitoring never checks the precondition arg-is-zero.
This behavior may lead to subtle bugs in programs whenever the programmer trusts the
contract system to check the provided preconditions.

As pointed out by Hinze et al. [HJL06], contract conjunction is—in general—not idempo-
tent under semi-eager contract monitoring. As an example, consider the expression

case lfirst-zero-and-ordered (1, 2) of (x1, z5) : false

Hinze et al. implement contract conjunction through contract composition; that is, for
checking Hy, C Cs they first check Cy and then C;. Thus, the expression above evaluates
to false because the context never demands the erroneous pair component 1. However, if a
program enforces first-zero-and-ordered twice, then the second enforcement of ordered
demands this component of the pair. Hence, the expression

case !first-zero-and-ordered (!first-zero-and-ordered (1, 2)) of (z1, z2) : false (4)

causes a contract violation.

3.3 Lazy Contract Monitoring

Lazy contract monitoring coincides with semi-eager monitoring with respect to function
contracts. For non-function contracts, however, lazy monitoring evaluates a predicate of a
contract only if all values on which the predicate depends are already evaluated. That is,
lazy monitoring only proceeds as far as the user code itself can observe. Violations that
the user code cannot observe, yet, are considered to be invisible.

To allow for lazy contract monitoring, contracts do no longer access expressions under
observation directly but through special reference cells called boxes. A box is empty as
long as its expression has not been reduced to a value, otherwise it carries the value. If
contract enforcement finds a box empty, it delays evaluation of the contract until this box is
filled. This magic is hidden by accessing boxes only through special box variables, ranged
over by &. The patterns

CASEEOF (€1,&5):... and CASEEOFIN; & :...;INg&y:...

operate on boxes. The evaluation of either pattern is blocked until the box & becomes full.
As soon as € is full, £; and &5 are bound to boxes for the components of the value in .

Like the two other forms of contract monitoring, lazy monitoring guarantees the MR prop-
erty. Lazy monitoring also ensures the MP and the IP properties because it never forces
any extra evaluation beyond that required by the program’s execution. Consequently, Ex-
amples (1), (2), and (4) terminate and yield 1, 5, and false, respectively.

For the same reason as with semi-eager contract monitoring, Example (3) still yields 42
for all inputs. Thus, lazy contract monitoring violates the faithfulness property F.

data Contract :: * -> x where

Prop :: (a -> Bool) -> Contract a

Pair :: Contract a -> Contract b -> Contract (a, b)

Fun :: Contract a -> Contract b -> Contract (a -> b)
assert :: Contract a -> a -> a

assert ¢ = \ a -> let (b, a’) = assert’ ¢ a in a’

assert’ :: Contract a -> a -> (Bool, a)
assert’ (Prop p) =
\ a ->let b =pain (b, if b then a else error "assert failed")
assert’ (Pair cl c2) =
\ (x1, x2) -> let (b1l’, x1’) = assert’ cl x1
(b2’, x2’) = assert’ c2 x2
r = if not bl’ then x1’ ‘seq‘ error "never used" else
if not b2’ then x2’ ‘seq‘ error "never used" else
(x1’, x2°)
in (b1’ && b2’, r)
assert’ (Fun cl c2) =
\ f > (True, \ x -> let (b’, x’) = assert’ cl1 x in

if b’ then
snd (assert’ c2 (f x’))
else

x’ ‘seq error "mever used")

Figure 3: Haskell implementation of eager monitoring.

4 Implementation

This considers the implementation of the discussed forms of contract monitoring. Two of
them, eager and semi-eager monitoring, are readily implementable as user-level libraries,
whereas lazy monitoring runs into some non-trivial implementation problems. For con-
creteness, we display snippets of Haskell code where appropriate. The implementations
presented here can be found on our webpage?, including the previously used examples.

4.1 Eager Monitoring

Let us briefly recap the philosophy of eager monitoring: Asserting a contract for an ex-
pression should evaluate the expression as far as there are non-trivial contracts to check.
The function contract imposes a (precondition) contract on the argument that must be as-
serted before entering the function’s body. Likewise, the result of the function should not
be returned before the postcondition contract has been checked on it.

Figure 3 shows an implementation of eager monitoring in Haskell. It is derived from

*http://proglang.informatik.uni-freiburg.de/projects/contracts/true-lies

Hinze et al’s implementation of semi-eager monitoring [HJIL06], which relies on GADTs
to guarantee type correct handling of the contracts and to enable type indexed program-
ming. As in their implementation, Contract a is the type of contracts for values of type
a. The constructor Prop (\ x -> e) corresponds to our predicate contract ?z.e, (Pair
cl ¢2) corresponds to H, C' Cy, and (Fun c1 c¢2) to H_, C; Ch.

The code is surprisingly tricky to get right. It must neither be too lazy nor too strict. The
predicate contract is straightforward to handle. It just checks the predicate and returns the
argument if the predicate is True.

The trouble starts with the pair contract (Pair c1 c2). The definition of eager monitor-
ing implies that a pair (x1, x2) must not be accepted by a pair contract if a subcontract
fails on a component of the pair. Hence, asserting a pair contract requires first asserting
its component contracts. However, it is not sufficient to string these computations together
using Haskell’s seq operator® as in

let x1° assert cl x1
x2’ = assert c2 x2
in x1’ ‘seq‘ x2’ ‘seq‘ (x1’, x27)

This code would be too strict as evidenced by the contract
Pair (Pred (const True)) (Pred (const True))

This contract should be assertable to any pair including (L, L), but the pure seq im-
plementation rejects that pair. The actual implementation in Figure 3 avoids this over-
strictness by introducing assert’ which returns the boolean result of the predicate paired
along with the value. This separation makes it possible to have a non-strict predicate in a
component avoid the evaluation of the component. A component is only evaluated if its
predicate is False, in which case the evaluation yields the error message associated with
the first failing predicate. The error "never used" avoids the type conflict between the
components x17, x2°, and the pair(x1’, x2’).

A similar problem arises with the function contract. The eager interpretation of monitoring
requires evaluation of the precondition, but not necessarily evaluation of the argument (if
the precondition is non-strict). The solution of the problem works similarly to the one for
pairs. Checking of the postcondition is left implicit because the result of a function call is
always evaluated (otherwise the function would not have been invoked in the first place).

4.2 Semi-Eager Monitoring

Figure 4 shows the essence of semi-eager monitoring as extracted from Hinze et al’s paper
[HJLO6]. It is essentially a transcription of Findler and Felleisen’s higher-order contracts
from Scheme to Haskell [FFO2]. The assertion of a property Prop p works as before. A

3seq :: a -> b —-> b forces the evaluation of its first argument and then returns its second argument.

assert :: Contract a -> a -> a

assert (Prop p) = \ a -> if p a then a else error "assertion failed"
assert (Pair cl1 c2) = \ (x1, x2) -> (assert cl1 x1, assert c2 x2)
assert (Fun c1 c2) = \ f -> assert c2 . f . assert cil

Figure 4: Haskell implementation of semi-eager monitoring.

data Contract :: * -> x where

Prop :: (Box a -> P a) -> Contract a

Function :: Contract a -> (Box a -> Contract b) -> Contract (a -> b)
data P :: *x -> * where

Pred :: CM Bool -> P a

CasePair :: Box (a,b) -> ((Box a, Box b) -> P ¢) -> P (a,b)

data Box a —-- abstract

data CM a —-- abstract, instance of Monad
demand :: Box a -> CM a

assert :: Contract a -> a -> a

Figure 5: Interface of the Haskell implementation of lazy contract monitoring.

pair contract now returns a pair whose components may contain nested (hidden) contract
violations. Such contract violations may go undetected as already discussed. Similarly, a
function contract for a non-strict function never forces the assertion of its precondition (or
parts of it).

The problems with semi-eager monitoring are not solved by making the pair contract strict
(e.g., forcing it to evaluate its components) or by making the function strict. Both measures
just change the semantics of the pair (function), but do not lead to more contracts being
checked.

4.3 Lazy Monitoring

The idea of lazy monitoring is to leave the semantics of a program unchanged, but throw
an exception as soon as the program can observe a contract violation. That is, the program
is evaluated lazily and the assert operation attaches contract predicates as observers to
its argument expressions. Then the contract predicates are evaluated in a dataflow manner,
based on the availability of their inputs.

We have developed a Haskell implementation of lazy monitoring (see Figure 5) again
loosely based on the interface of Hinze et al [HJL06].* The intention of the type Contract
a is still the same, but the details are quite different. To enable the observability of evalu-
ation, the implementation introduces a type Box a. A box is an observer of the evaluation

4We simplified the interface for the sake of presentation. The real implementation supports blame assignment
and additional contract forms.

of an expression of type a. The box is empty as long as the expression is unevaluated; it be-
comes full upon evaluation. Filling of such a box is done by wrapping an observer around
the expression under contract, similar as in the HOOD debugger [Gil00]. The observer is
notified of the evaluation and fills the box with the value. The demand operation reads the
box. If the value of the box is available, demand returns this value in the CM monad and
raises an exception otherwise. The contract checker then catches this exception and delays
evaluation of the predicate until the value is available.

With this setup, a predicate contract Prop is no longer constructed from a function of type
a —-> Bool but from a function of type Box a -> P a. A value of type P a is a pattern
that scrutinizes values of type a. The Pred constructor takes a value of the monadic
type CM Bool because predicates must use the function demand to read box values. The
demand function is the only operation of the CM monad. A Function contract consists
of a precondition contract and a function that takes a box with the function argument and
delivers the postcondition contract.

A pattern is either a predicate computed from values demanded from the open boxes or it
is a CasePair. The latter specifies lazy pattern matching on a box variable. It creates two
new (empty) boxes for the components of the pattern and leaves those for the rest of the
contract to process.

We refrain from going into more detail of the implementation but refer the reader to the
webpage’ that contains the full code.

There is one confession to make about our implementation of lazy contract monitoring. It
cannot be implemented at the user level in an accurate and satisfactory manner. Here is
why.

Ideally, lazy contract monitoring should evaluate a predicate if the expression it refers to
turns into a value. This requirement is not entirely unrealistic because this information
is known to a typical implementation [Pey92]. However, this information is not readily
accessible to a user-level library. Consider the contract H, (?z.x > 0) (?y.y > 0) taken
as precondition for the function Az.case z of (21, 22) : z1. With our implementation, this
function (with the precondition) can be applied to (1,2 — 2) without a contract violation,
even though the context of the function application may later evaluate 2 — 2 to 0, so that
the contract violation becomes observable to the program.

Hence, we conclude that lazy contract monitoring can only be implemented satisfactorily
as an extension to the run-time system. We leave it to the reader to decide if that is a
worthwhile project.

5 Discussion

Table 1 summarizes the characteristics of the three contract monitoring strategies for lazy
languages. Unfortunately, no strategy fulfills all our requirements:

Shttp://proglang.informatik.uni-freiburg.de/projects/contracts/true-lies

MR MP F IP Implementability

Eager| v ¢ see (1) v v v
Semi-eager| v/ ¢ see (2) ¢ see (3) ¢ see (4) v
Lazy| v/ v Z see (3) v W)

Table 1: Characteristics of different contract monitoring strategies

e Eager contract monitoring may change the meaning of a program.

e Semi-eager contract monitoring may also change the meaning of a program, but in
addition, semi-eager monitoring may not be faithful. Furthermore, there are con-
tracts which are not idempotent with this monitoring strategy.

e Lazy contract monitoring may not be faithful. Moreover, a fully correct implemen-
tation requires either a whole-program transformation or changes to the underlying
runtime system. Implementing lazy contract monitoring as a library only yields an
under-approximation of the monitoring strategy that discovers fewer violation than
ideally detectable.

The question is now: Should we abandon contract monitoring for lazy languages at all, or
is there a monitoring strategy that performs sufficiently well in practice? Our answer to this
question rests on the fundamental principle that contracts should not lie. If a non-function
contract does not signal a contract violation, then all predicates of the contract should be
true, as the programmer may and should rely on this fact. Example (3) in Section 3.2
demonstrates that violating this principle may lead to subtle bugs. Even worse, unfaith-
ful contracts force programmers to insert extra, often redundant checks to ensure that all
preconditions really hold. But this contradicts the initial purpose of contracts [Mey92a]!

Hence, eager contract monitoring is preferable over semi-eager and lazy monitoring be-
cause it is the only faithful strategy presented. Its only disadvantage is that adding con-
tracts to a program may increase the degree of strictness of a program. However, defensive
programming—where the programmer checks all assertions explicitly—has exactly the
same effect. These observations strongly suggest that eager contract monitoring should be
used in practice.

6 Related Work

Contracts for strict functional languages. Researchers initially investigated contracts
for functional languages in a strict setting. Our work, however, considers contracts for lazy
functional languages.

Findler and Felleisen [FFO1] give a semantic account of contract monitoring in an object-
oriented language. Most of the difficulties with contracts in object-oriented languages
arise from subtyping, which our language does not have.

A follow-up article [FF02] provides a contract system for higher-order functions. Their
contract calculus A“°N extends the A-calculus with contracts, similar to our language \"'.
In addition to the features of \”', their calculus AC°N includes first-class contracts and
blame assignment. These extensions should be orthogonal to the aspects discussed in this
paper. Blume and McAllester [BM04] prove soundness and completeness for a system
that is equivalent to the system of Findler and Felleisen.

Findler and Blume [FB06] model contracts by pairs of domain projections. They provide
an ordering relation on contracts and give further insights on the most permissive contract.
In addition, they address the problem of proper blame assignment. Like our work, their
model is also driven by the central properties of meaning preservation and idempotence.

Contracts for lazy functional languages. Chitil et al. [CMRO04] argue that an assertion
should not force extra evaluation in a lazy language like Haskell and define and imple-
ment a language of lazy assertions. Essentially, this corresponds to an approximation of
what we call lazy contract monitoring for non-function contracts. Our implementation of
lazy monitoring is novel and significantly different from theirs, for instance, they rely on
threads to evaluate contracts. Hence, their system defers evaluation of assertions until the
assertion checking thread runs, whereas our implementation guarantees that contracts are
enforced as soon as all values involved are available.

Inspired by this work, Chitil and Huch [CHO7b] define a pattern logic for specifying lazy
assertions. Their strategy for evaluating assertions also approximates lazy contract mon-
itoring. Chitil and Huch’s pattern language can express richer assertions than our system
with lazy contract monitoring. For example, they are able to express assertions on re-
cursively defined data structures. In subsequent work [CHO7a], the authors refine their
interface to a monadic one and make the assertions prompt, in the sense that they signal
failure as soon as a data structure is sufficiently evaluated to make an assertion fail. The
style of monitoring advocated by these authors is very close to lazy monitoring. While it
has the undesirable properties that we pinpoint in this work, there may be valid uses of this
techniques unless the assertions used exhibit the pathological behavior of our examples.

Hinze et al. [HJL06] introduce a DSL for contracts in Haskell. Their strategy for contract
monitoring roughly corresponds to the semi-eager approach discussed in this paper. Our
implementations of eager and lazy contract monitoring are based on their DSL.

In recent work, Xu et al. [XPC09] present a static contract system for Haskell. Although
their system is statically checked at compile time, their contracts nevertheless exhibit very
similar properties to the eager monitoring style that we advocate in this paper. Hence, their
specification of contracts would be suitable for dynamic (eager) monitoring, too.

Another article by the present authors [DTWO09] discusses differences of contract mon-
itoring under call-by-name and call-by-value evaluation strategies. That article studies
restrictions that may be imposed on contracts to guarantee the MP and IP properties using
a translation into a monadic meta-language.

7 Conclusion

We have established a taxonomy for approaches to contract monitoring in lazy languages.
We have assessed each approach along the dimensions of meaning reflection, meaning
preservation, faithfulness, idempotence, and implementability. The result is that there is
no silver bullet for contract monitoring in lazy languages because there is no approach that
fulfills all five requirements.

However, we have presented evidence that the eager monitoring approach is best in line
with established theory and practice of the design by contract methodology. Although
it does not preserve the semantics, it turns out to be the only approach that guarantees
faithfulness. As faithfulness means that—at the end of a program run—all contract pred-
icates are true, this approach has our strong support. Thus, contract monitoring for lazy
languages should be taken to implement the slogan:

Faithfulness is better than laziness.

References

[AKO3] Parker Abercrombie and Murat Karaorman. jContractor: Design by Contract for Java.
http://jcontractor.sourceforge.net/, 2003.

[BM0O4] Matthias Blume and David McAllester. A sound (and complete) model of contracts. In
Kathleen Fisher, editor, Proc. ICFP 2004, pages 189-200, Snowbird, Utah, USA, Septem-
ber 2004. ACM Press, New York.

[CHO7a] Olaf Chitil and Frank Huch. Monadic Prompt Lazy Assertions in Haskell. In Zhong
Shao, editor, Programming Languages and Systems, Sth Asian Symposium, APLAS 2007,
number 4807 in LNCS, pages 38-53. Springer, November 2007.

[CHO7b] Olaf Chitil and Frank Huch. A Pattern Logic for Prompt Lazy Assertions. In Implemen-
tation and Application of Functional Languages, 18th International Workshop, IFL 2006,
number 4449 in LNCS, April 2007.

[CMRO4] Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy Assertions. In Phil Trinder, Greg
Michaelson, and Ricardo Pena, editors, Implementation of Functional Languages: 15th
International Workshop, IFL 2003, number 3145 in LNCS. Springer, November 2004.

[DTWO09] Markus Degen, Peter Thiemann, and Stefan Wehr. Eager and Delayed Contract Monitor-
ing for Call-by-value and Call-by-name Evaluation, 2009. Submitted.

[FBO6] Robert Bruce Findler and Matthias Blume. Contracts as Pairs of Projections. In
Proc. Eighth International Symposium on Functional and Logic Programming FLOPS
2006, Fuji Susono, Japan, April 2006. Springer.

[FFO1] Robert Bruce Findler and Matthias Felleisen. Contract Soundness for object-oriented lan-
guages. In Proc. 16th ACM Conf. OOPSLA, pages 1-15, Tampa Bay, FL, USA, 2001.
ACM Press, New York.

[FFO2] Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-Order Functions. In
Simon Peyton-Jones, editor, Proc. ICFP 2002, pages 48-59, Pittsburgh, PA, USA, October
2002. ACM Press, New York.

[GilOO] Andrew Gill. Debugging Haskell by Observing Intermediate Data Structures. In
Haskell2000, 2000.

[HILO6] Ralf Hinze, Johan Jeuring, and Andres Loh. Typed Contracts for Functional Programming.
In Proc. Eighth International Symposium on Functional and Logic Programming FLOPS
2006, Fuji Susono, Japan, April 2006. Springer.

[Kra98] Reto Kramer. iContract — the Java design by contract tool. In TOOLS 26: Technology of
Object-Oriented Languages and Systems, pages 295— 307, Los Alamitos, CA, USA, 1998.

[Lau93] John Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. 1993 ACM Symp.
POPL, pages 144—154, Charleston, South Carolina, January 1993. ACM Press.

[Mey92a] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40-51, October
1992.

[Mey92b] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition,
1997.

[Pey92] Simon L Peyton Jones. Implementing Lazy Functional Languages on Stock Hardware: the
Spineless Tagless G-machine. J. Funct. Program., 2(2):127-202, April 1992.

[PLTO5] PLT Group. PLT MzLib: Libraries Manual. Rice University, University of Utah, Decem-
ber 2005. Version 300.

[XPCO09] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static Contract Checking for
Haskell. In Benjamin Pierce, editor, Proc. 36th ACM Symp. POPL, Savannah, GA, USA,
January 2009. ACM Press.

