
Proactive Energy-Aware System Software Design with SEEP

Timo Hönig, Christopher Eibel, and
Wolfgang Schröder-Preikschat

Friedrich–Alexander University Erlangen–Nuremberg
{thoenig,ceibel,wosch}@cs.fau.de

Björn Cassens and Rüdiger Kapitza

TU Braunschweig
{b.cassens,rkapitza}@tu-bs.de

1 Introduction and Motivation

Designing system software currently optimizes pro-
gram code for correctness and speed. While this is es-
sential for the reliable operation of computer systems,
these two characteristics alone are often not sufficient.
Moreover, it is important to ensure that a third char-
acteristic is being considered during the process of de-
signing system software: energy efficiency.

As optimizing program code for energy efficiency
is a tedious and time-consuming task we are working
on SEEP [1], a project which provides a programming
framework to assist developers at the task of energy-
aware programming. The framework is named after
two of its key components: symbolic execution and
energy profiles. In this position paper, we introduce
the SEEP approach, detail our current work, and dis-
cuss future challenges. We believe that it is essential
to supply software developers and software designers
with the right set of tools in order to ease the process
of energy-aware programming.

We have identified the current modus operandi
to be hindering for energy-efficient software develop-
ment. Today, developers need to analyze program
code for energy hotspots manually. This task is be-
ing performed in a reactive manner. Program code is
first being developed and afterwards being analyzed
for defects with regard to unusually high energy con-
sumption. This manual task is cumbersome for two
reasons. First, the efforts required to analyze program
code for energy efficiency grow exponentially with the
number of program paths of the application. Second,
the amount of energy consumed differs among hetero-
geneous hardware platforms. Developers are required
to evaluate the software on various platforms which
makes the task of identifying and solving energy bugs
even more unappealing.

This work was partly supported by the German Research Foun-
dation (DFG) under grants no. FOR 1508 (subproject TP2) and
SFB/TR 39 (subproject C1).

With SEEP, we provide the tooling infrastructure
required to overcome current limitations. We exploit
symbolic execution techniques [2] for automatic anal-
ysis of program code. Combined with energy models
and platform-specific energy profiles we provide en-
ergy estimates for program code to developers as early
as during the time of software development.

2 Proactive Energy-Aware Program-
ming Using SEEP

The SEEP framework (see Figure 1) is motivated by
instantly providing energy estimates, which have di-
rect influence on the development process. Hence,
commonly required feedback-based code modifica-
tions after deployment can be reduced by turning the
modus operandi into a proactive approach.

One major effort is to offer a high degree of automa-
tion, that is, requiring as little user interaction as pos-
sible. At best, no code annotations or other changes
to the program under test are necessary. With regards
to programming languages, developers are free in their
choice and are not forced to use special energy-aware
programming languages as proposed in [3].

In order to provide precise and exhaustive energy
consumption estimates, program code that is poten-
tially being executed should be incorporated into the
energy estimation process. SEEP uses symbolic exe-
cution, a technique that is effective in exploring pro-
gram paths automatically. This multi-path analysis
ensures that energy estimates cover a program in all
its facets, and as a consequence, increase the chance to
unveil hidden energy hotspots. Beforehand, executa-
bles that correspond to specific code paths (so-called
path entities) need to be concretely executed to ex-
tract runtime characteristics required in subsequent
steps during the analysis phase.

SEEP needs to keep the complexity of the estima-
tion process at an absolute minimum. For this pur-
pose, the framework relies on several different energy
profiles. Besides instruction profiles, which depend on

6 Softwaretechnik-Trends 33:2, Mai 2013



Code AnalysisTooling Persistent Data

Code Path Exploration

Source Code

Energy Estimates

Symbolic Execution

Concrete Execution

Energy Profiles

Trace Database

Figure 1: Overview of the SEEP architecture.

a CPU’s instruction set architecture, this includes en-
ergy profiles for device-specific peripherals (e.g., net-
work or file transfer costs). By means of virtualiza-
tion environments, energy estimates can be calculated
without the need to execute code on target platforms.

This profile-driven approach is extended by further
persistent data, which is populated iteratively with
entries for functions that have been analyzed by the
framework. Such function entries consist, amongst
others, of symbolic expressions, which can be ex-
ploited to interpolate a function’s energy consump-
tion. Thus, whenever the control flow of a consecutive
execution run reaches functions that have been ana-
lyzed previously, symbolic execution can be omitted.
This shortcut saves great amounts of analysis time.

Furthermore, concretely executing path entities to
deduct a target’s runtime behavior can be parallelized
for heterogeneous platforms using virtualization tech-
niques. At this, our approach does not make any re-
strictions as long as target platforms and their pe-
ripheral devices can be measured accurately accord-
ing to a precise energy model. From a CPU’s point of
view, such models must contain both basic and inter-
instruction energy costs which vary in dependence of
a CPU’s capabilities (e.g., instruction pipelining).

3 Development Process Integration
Currently, we explore different possibilities to con-
solidate SEEP with integrated development environ-
ments (IDEs) such as Eclipse. As basis of decision-
making, energy estimates are provided at function
level. These estimates are displayed in the IDE so that
developers can correlate program code (i.e., source
code of a function and input parameters) with energy
consumption estimates.

During the development phase, code changes are
being reported to the backend of the SEEP frame-
work. Functional changes trigger a reevaluation of
affected program paths. To ensure consistency the
trace database is being updated incrementally. When-
ever code changes cause a significant negative impact

on the program code currently in development, the
developer is being notified concerning this matter.
If alternatives for functionally equal implementations
are available (e.g., different libraries implementing the
same algorithm), SEEP proposes to use the more ef-
ficient alternative. This may depend on the target
platform and conditionally needs to be incorporated
into the build infrastructure of the program code.

To adequately represent a multitude of energy con-
sumption estimates (e.g., several distinct input pa-
rameters for a single function) we currently evalu-
ate how to graphically illustrate the energy estimates
within IDEs. This helps developers to easily discover
energy hotspots in the program code.

4 Position Statement and Outlook
Down to the present day, program code is commonly
not optimized for energy-efficiency. As developers im-
prove their program code merely with regards to speed
and correctness, it leads to the situation that sys-
tem software components needlessly waste energy re-
sources. To address this, we are convinced that new
concepts for energy-aware programming need to be es-
tablished. Most of all it is required to provide strong
tooling support for developers to ease the task of in-
creasing the energy-efficiency of software. Such tool-
ing support relieves developers from manually exam-
ining software for energy hotspots by providing a high
degree of automation. This is a challenging endeavor
as the diversification of hardware platforms steadily
increases and analyzing program code asks for high
analysis efforts. In order to propagate energy-aware
programming we propose SEEP, a proactive approach
to address these challenges. By applying the SEEP
approach, we currently increase the energy-efficiency
of the Sloth operating system [4] used in the research
project BATS which is founded by the German Re-
search Foundation (DFG-Forschergruppe 1508).

References
[1] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-

Preikschat. SEEP: Exploiting symbolic execution for en-
ergy-aware programming. In Proc. of the 4th Workshop on
Power-Aware Computing and Systems, pages 17–22, 2011.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In Proc. of the 8th Symp. on Operating
Systems Design and Implementation, pages 209–224, 2008.

[3] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Cor-
ner, and E. Berger. Eon: A language and runtime system
for perpetual systems. In Proc. of the 5th Intl. Conf. on
Embedded Networked Sensor Systems, pages 161–174, 2007.

[4] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-
Preikschat. Sloth: Threads as interrupts. In Proc. of the
30th Real-Time Systems Symp., pages 204–213, 2009.

Softwaretechnik-Trends 33:2, Mai 2013 7


	Proactive Energy-Aware System Software Design with SEEP
	1 Introduction and Motivation
	2 Proactive Energy-Aware ProgrammingUsing SEEP
	3 Development Process Integration
	4 Position Statement and Outlook
	References




