Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2015

Static Value Range Analysis for Matlab/Simulink-Models

Christian Dernehl! Norman Hansen! Thomas Gerlitz! Stefan Kowalewski!

Abstract: In this paper we present a static value range analysis of signals within function block
diagrams developed with Matlab/Simulink. We analyse signals with respect to their data type and
compute an approximation of the possible value range of each signal represented by a set of intervals.
In addition the analysis reports potential problems within the model, like occurrences of NaN (Not-
a-Number) and divisions by zero or infinity. We show the applicability of our analysis on a viscosity
model from Matlab Central and a model from the set of automotive example models that is contained
within Matlab/Simulink.

Keywords: Automotive software engineering, static analysis, Matlab/Simulink

1 Introduction

Model-based software development is used extensively within the automotive domain with
one of the tools used being Matlab/Simulink. Simulink allows the creation of control mod-
els in the form of functional block diagrams, in which the data flow is expressed as a se-
quence of blocks connected by lines. In functional block diagrams, blocks model a func-
tion between several inputs to multiple outputs. The combination of simple functions, such
as standard arithmetic, allows the modeling of complex systems as a composition of blocks
from a basic block set. This design is supported by building hierarchies, to allow the reuse
of existing systems and, at the same time, abstract from simple blocks. After modeling the
control model, code can directly be generated from it, which is then compiled and loaded
onto the target platform.

During the modeling process of a control model, errors might occur, which might even-
tually result in a total failure of the control system. To prevent such errors, models are
tested and simulated exhaustively against a design specification. Especially in the context
of safety critical systems, the behavior of a control system has to be verified to operate
within specified design ranges to conform standards like the ISO26262 [IS11]. Neverthe-
less testing might, depending on the specification, not detect all errors and flaws within a
model. Applying formal analysis in early development stages is a possible extension of the
established verification process.

In this paper we present an analysis which computes an approximation of the state space
of a control system modeled with Matlab/Simulink by abstracting the state space into
interval sets, which are propagated along the path from inputs to outputs within the control
model. Using this technique, the developer specifies sets of input intervals, as required by
the 1S0O26262, and gets a safe approximation set of potential output intervals, which can

'RWTH Aachen, Informatik 11 - Embedded Software, surname @embedded.rwth-aachen.de

1649

Dernehl et al.

be used to verify the previously specified design ranges. The specification with intervals
provides a simple and formal way to express the input constraints. For instance, consider
an external input from an accelerometer, whose input ranges by specification are [—4g,4g]|,
which can be read in most cases of the data sheet. Next to the resulting proposals for design
ranges of each subsystem, as denoted in the ISO 26262, our analysis provides proof of the
absence of values becoming NaN, division by zero/infinity and over- and underflows of
signals.

Unlike abstract interpretation of the resulting C code, our analysis interprets the model. In
many cases, the code generated from the model includes checks for array out of bounds
and overflows, which cannot be detected by a code analysis, because the generated code
handles these cases implicitly. Consider a vector, from which an element is selected using
the Selector block®, which allows to specify the index externally. In this case, code gener-
ators may include a check for the index and if the index is out of bounds, zero is returned.
This mechanism proves hard to detect for static code analysis, since the array index is ac-
tually never out of bound. However, an activation of the safety procedure is hidden to the
engineer.

The paper is structured as follows. In the next Section, related work in the field of value-
range approximation of functional block diagrams and other domains is presented. Sec-
tion 3 contains the methodology of our approach, which covers the used abstraction do-
main of interval sets, the set of supported functions by the analysis and how loops are
approximated. The analysis is evaluated in Section 4 using a model of an open-loop and a
closed-loop system. Finally, potential extensions of the approach are shown and the paper
is concluded in Section 5.

2 Related Work

Thinking of the automatic verification methods for software systems, various approaches
have been developed for different domains. Value set analysis, which provides a value set
for each signal or variable in the program can be used to identify potential errors such
as division by zero, underflows and overflows of the program variables and dead code in
the program. An analysis of the resulting code from the model has been carried out to
prove the absence of such errors [Si08]. Opposed to an analysis on the generated code,
the Design Verifier® operates directly on the model by using the polyspace static analysis
engine.

Depending on the configurations, the generated code of the Simulink model might be
catching division by zero errors, which are still occurring in the production code, while
the tester is unaware of them. Consider the case, where there is an automatic check if the
divisor is zero and then the result of the function would be just 0, which is better than a
runtime exception, but hides the problem. Instead our approach uses the semantics of the
complete Simulink model and interprets each block individually.

5 See http://mathworks.com/help/simulink/slref/selector.html .
6 The Design Verifier is a Tool for Simulink which allows similar analysis of the model as the presented approach.
http://www.mathworks.com/products/sldesignverifier/index.html?s_tid=gn_loc_drop

1650

Static Value Range Analysis for Matlab/Simulink-Models

Further approaches to verify such block diagrams are performed by transforming them
into an intermediate representation which is easier to analyze. For instance, converting
the discrete part of Simulink to Lustre allows the utilization of existing analysis tools
for synchronous languages [Tr05, Ca03]. In [CDO06] a subset of the available block set
within the modeling tool Simulink is transformed into an equivalent representation of the
timed interval calculus, which can be used to prove formal requirements and estimate the
expected value ranges of specific signals. A similar approach is presented in [CM09] where
an abstract interpretation of Simulink models is presented to compute potential rounding
errors when using float calculations, by computing an over approximation using Taylor
series.

More exhaustive approaches include property provers in their analysis to prove the absence
of bugs. In their work [RG14], Reicherdt and Glesner convert Simulink models to Boogie,
which uses the Microsoft Z3 sat modulo theory (SMT) prover to prove constraints. These
constraints are generated from the blocks and types in the Simulink model. Similar work
has previously been done by Bauch et. al [BHB 14], where models are converted to boolean
formulas, using the bit vector representation.

All of the presented solutions do either an analysis of the generated code, which is very
useful to check if the generated code has now flaws, or, as the latter approaches, focus on
an exhaustive analysis and precise or rather numerical related computations. Therefore,
different transformations into other formal representation formats are used. A general dif-
ference of our work compared to those approaches concerns the set of blocks and func-
tionality which is supported by the described transformations and the consecutive analy-
ses. For instance, there are limitations regarding the support of multi dimensional signals
[RG14] and blocks for structural operations on such [CD06, RG14], restricting the sup-
proted blocks to per definition safe blocks [CDO06] or relating to the scalability of the
approach for potentially very large models [BHB14].

3 Fault Detection Methods for Control Models

After having given an overview of related approaches, the focus is on our proposal. Since
our analysis is based on value sets, intervals are used to represents those sets. By using
sets of intervals, a more precise representation of values can be given. For each block
in the model, we define a semantic with respect to finite interval sets with intervals for
floating point valued signals. A finite interval set S; = {lo, ..., I, } contains a finite number
of non-overlapping intervals /;,0 < i < n, where the interval might be either open, half-
open or closed. First we define interval sets and the underlying types we use. Afterwards,
the semantic for a selection of blocks, which are supported by our analysis, is presented.

3.1 Intervals and Interval Sets

Interval arithmetic is well known and widely used in different application areas [Jal2],
[HIVEO1], [BKS12]. However, compared to the common usage of interval arithmetic,

1651

Dernehl et al.

we check additionally faults for the IEEE 754 float. This is because many application
scenarios are based on a hardware floating point unit, which eases the development pro-
cess, because conversions to fixed point calculations is not required. Therefore, the sym-
bols —oo, o and nan are also possible values in the considered interval domain. The
arithmetic for intervals containing these symbols has already been implemented and de-
fined [Wa98]. Assume the set of valid IEEE 754 floats to be R/ZEE | then, the following
holds x+ c0 = oo (for x # —o0), x — 00 = —oo (for x # 00), x 00 = oo (for x # 0), xonan = nan
(for o € {4, —,*,=+}). Note, that [nan,nan] is the interval representation of the IEEE-
symbol nan, [] represents the empty interval and [—eo, 0] is a valid non-empty interval.

Interval Set Arithmetic Consider an interval set S; and any well-defined function f :
R — R?, as in [NJC99], mapping » input intervals to an output interval. For interval

sets So, ... Sy, we define f5(So,...,S,) as the union of the output interval sets, where f is
applied to each combination of the input intervals.
fs(So.-- S = U - U flo...- 1) (1)
I()ES() 1,€S,

For functions with n arguments and interval sets of cardinality m the resulting set may
have m" elements. However, the cardinality could shrink when applying functions to an
interval set S, because two regions might overlap or have a common border. For instance,
{[2;2],[4;4]} + {[- 15 1]} = {[1;5]}. Nevertheless, our analysis limits the size of intervals
of an interval set to 20, merging intervals together when the limit is exceeded, since the
consecutive operations and over-/underflows might increase the number of intervals expo-
nentially. Still, that limit is not reached in our applications. This limit can be configured
to arbitrary positive integer values in case larger or smaller interval sets, leading to poten-
tially smaller or bigger overapproximations, are desired by the user. Since the function f,
serves in most cases as an operator, we call the process of applying f or fs respectively an
operation.

Typing We extend the concept of interval sets to typed interval sets by associating a
datatype to every interval set. The currently supported datatypes are signed integer (int8,
intl6, int32), unsigned integer (uint8, uint16, uint32), floating point (float, double) and
logical (boolean) types.

The datatype of an interval set is a property which restricts the set of values representable
by an interval set. This means that an interval set of type int8 can only represent signed
integer values which can be stored within 8 bits. To assure that every interval set S; of
datatype A € {boolean,int8,int 16, int32,uint8,uint16,uint32, float,double} always com-
plies with its datatype restrictions, a type-restriction procedure py is applied after every
operation on the interval set. The restriction operations ps can be categorized into three
categories BOOL = {pboolean}’ FLOAT = {pf'loampdouble} and INT = {pintSapin1167pint327
Puint8; Puint165 puint32}~

The boolean nature of an interval set is created by applying Ppoosean(Si) Which yields an
interval set containing O (false) in case 0 € S; and 1 (true) in case v € S;,v # 0, while

1652

Static Value Range Analysis for Matlab/Simulink-Models

the restriction methods of the category FLOAT restrict the values of the interval set to
single precision (float) or, respectively, to double precision (double) floating point val-
ues according to the IEEE 754 standard. In contrast to operations of categories BOOL
and FLOAT, all operations p;,; € INT have to restrict the value range of integer values
with potential under- and overflows. Due to the use of interval sets, under- and over-
flows can be represented without overapproximations. For instance, for interval sets yields
Pines ({[100;128]}) = {[—128; —128], [100; 127]}, whereas pj,s([100; 128]) = [—128; 127]
yields a large overapproximation for intervals.

Both interval sets have to be of the same datatype, so that binary operations can be applied.
This is no restriction compared to operations performed in Simulink or other programming
languages since those perform implicit type-castings. To be able to perform these casts ex-
plicitly we provide correspondent operations for all supported datatypes which correspond
to the application of the restriction method psargerrype- Since the interval sets are internally
represented using the most expressive type, most casts can be performed using the type
system of the underlying architecture. However, the cast from floating to integer types can
be performed using different rounding modes. We focus on those rounding modes from
[IEO8] which are supported (but named differently) by Simulink, too:

e round up: Rounds towards —+oo.

o round half to even: Rounds to the nearest representable number. If these is ambigu-
ous, rounds to the nearest even number.

o round down: Round towards —oo.

e round half up: Rounds to the nearest representable number. If these is ambiguous,
applies round up mode.

e round half away from zero: Rounds to the nearest representable number. If these is
ambiguous, rounds positive values as round up and negative values as round down.

e truncate: Round towards 0.

Dimensions Signals in Simulink models can be of arbitrary dimension. Accordingly our
domain of interval sets is extended to multidimensional matrices of interval sets where
each matrix element is an interval set. Thus, operations on signals are operations on ma-
trices of interval sets in our domain. Matrix operations in Simulink are either structural
operations, e.g. concatenation along a dimension, or can be mapped to operations on the
interval sets. For instance, the matrix multiplication of two matrices can be written as
multiple expressions consisting of multiplications and additions. For simplicity of the ex-
planations, we describe directly the operations on interval sets which is identical to the
correspondent operation on matrices of exactly one element.

3.2 Operations

The following list represents a subset of function blocks, which are supported by our tool.
We do not describe in this paper the standard arithmetic for intervals and the continuous

1653

Dernehl et al.

non-linear math operations, which are supported, since those have already been defined
for intervals and can be mapped to interval sets as described.

e Standard arithmetic: 4, —, *, /

e Continuous non-linear math: exp,log, trigonometry

e Relational Operators: >,>, <, <,=,#

Logical Operators: =1, A, V

Decisions, Switches

Interpolation/Lookup Tables

Relational Operators First we describe, how relations are applied to interval sets. Note,
that the result of a relational operator on intervals is generally not binary, but a three valued
logic {0,1, L}, where L represents that the result is unknown. For instance, the outcome
of the relational operation [0, 5] > [—5,3] is unknown. With interval sets, L can be defined
as {[0,0],[1,1]}. Let S4 and Sg be interval sets and >, € {>,>,<,<,=,#} be a relation.
Following the definition of Equation (1) S4 >, Sp is defined as Uy, es, Urgesg Ia =1 Ip. In
this case, the union operator might merge [0, 0] with [1, 1], representing an unknown result,
although each interval relation > | yields a defined result. For example {[—1,—1],[1,1]} >
[0,2] yields for each element of the left hand side a known result, while the union of all
is unknown. Nevertheless, the use of interval sets provides a more precise representation
when casting boolean expressions to floating point values, e.g. as a multiplier, so that it is
clear that 0.5 is not in the set.

Logical Operators For the logical operators fp : B" — B, we define a new function
Sfs(uo #0,...,u, #0) for real valued input interval sets uy, . . ., u,, where 0 means {[0,0]}
in this case. Note, that # has been previously defined on interval sets. This inequality
check to zero corresponds to the standard C casting operations. The resulting output is
generally calculated by applying Equation (1) on the interval sets, where the corresponding
f for n inputs, and, thus, n intervals must be specified. Nevertheless, since the domain is
limited to true and false, the algorithm can terminate to compute the output if two valid
X0 € ug,...,x, € u, are found, making fp become true and false.

Decisions Some blocks, like the switch block, pass a certain input through them depend-
ing on a condition c, i.e. input a is passed through if condition c is valid, otherwise input
b goes through, denoted as ite(c,a,b). The condition receives one parameter in form of a
value computed by the model which is used to formulate the actual condition ¢ as an rela-
tion containing the parameter value, where the result of the logical relation is an interval set
as described before. If the result of the relation is {[0,0]} or {[1, 1]}, then a or respectively
b is passed through the block. Additionally, a warning is issued to the user, indicating that
there is a dead path in his model. However, if the result of the relation is {[0,0],[1,1]},
aUb is the result, since the condition cannot be uniquely evaluated. Remember, due to the
use of NaN values, the entire path of the condition has to be evaluated, and a shortcut by

1654

Static Value Range Analysis for Matlab/Simulink-Models

evaluating for example sin(u) > 1 without thinking of # cannot be made, since # might be
NaN.

Lookup Tables Often the behavior of specific parts in control models can be estimated
with measurements, which are then fed into the model during the development process.
These measurement points then realize a new function within the model. Thus, for n > 2
points xo, . ..,x, € R with x; < x; for (i < j) and yy,...,y, € R measurements, a function
LT (x;) = y; is defined in the model. Hence, the x; and y; are predefined and during execu-
tion another input x is provided, so that the output y is set to y; if x = x;. If x is in between
two values x;,x;+1, then the result is either interpolated or clipped to the last y;, which is
specified by the engineer. Defining the associated interval set function for lookup tables is
a two step process, in which firstly helper functions LT¢ and LT are defined, where LT¢
represents the selection of interpolation or clipping by the engineer and LT is a special
expression handling inputs that are out of bounds, i.e. x < xp or x > x,,. Secondly using the
ite operator, the lookup can be recursively defined. With regard to linear interpolation, the
function LT¢ (1, y;,yi+1) becomes

X

. X
LTe(L,yiyie1) = |min ———(yis1 — i), max ———(yis1 — i) @)
x€ly Xjp1 — Xi xely Xip1 —X;

where I, = [x,X] is an interval with x; < x and x;;| < X is a linear interpolation, which is
extended to intervals. Regarding a flat behavior, the function becomes constant

LTc (L, yi,yiv1) = [yi,yi]. With respect to LTp, this function checks if the lower bound is
reached and uses otherwise the upper bound LT3(1,) = ite(x < xo,¥0,yr). In the next step,
ite is applied to check whether the input is between x; and x;4 for all valid i. If x > x;,, y,
is returned, yielding the following expression

LTs(x) = |J < O ite xi<LAL<xip LTc(Ix,yi,ym)) LTs(L) ()
I.eX 0<i<n—1

where o is the function application and X is the input interval set. Using currying, the
bounded recursive application of the ite operator specifies a piecewise function, represent-
ing the behavior of the lookup table. For example, if n = 3, then the expression becomes

LTS'(X) = U ite()C() SX/\X <x1>)’0,ite(x1 SX/\X <x27y17ite(x <x0,y0,)7n))) (4)
IreX

where the last stacked ite becomes LTp(Ix) = ite(x < xo,y0,yn). Note that LT only returns
Yn in case x > x, since all other cases are covered by the previous ites.

3.3 Loops and Widening

In the previous section, we described how different functional blocks can be interpreted
with interval sets. Considering open-loop systems whose outputs do not depend on a state

1655

Dernehl et al.

of the system, this approach is sufficient because for each block on the path the output
intervals can be estimated. For closed-loop systems with hierarchical or nested loops, an
approximation has to be performed, to compute the result set in finite time. Since the
model is executed using a fixed step time A¢, the output interval sets of the model can be
calculated for a fixed time horizon T within TAs~! steps. However, the analysis targets
not only the consideration of a given time horizon, as done by simulations, but that the
system runs indefinitely. For Simulink models with loops corresponds the computation of
a time step to the computation of a loop iteration for all loops in the model. For instance,
the computation of all signal values for time step 0 corresponds to the computation of the
first iteration of every loop in the model.

Widening is a well known abstraction procedure of values and time to analyze value ranges
of variables in combination with loops. Therefore, during the analysis of the loop, a widen-
ing operator on the abstract domain overapproximates the computed reachable values
[CC77]. Applying the widening operator, if chosen properly, will finally ensure that the
analysis reaches a fixed-point regarding the reachable values of the loop and finally the
entire system. When representing loops as a function f(u,y), a fixed-point is a point y,
for which f(u,y) = y holds. This means, that further considered loop iterations (applica-
tions of f(u,y)) will not change the already computed reachable values y. We apply the
widening approach as presented in [CC77] for the static value range analysis of program
code to Simulink models. This has the particularity that a model might contain implicit
loops introduced by Simulink-blocks of specific types. We call these loops implicit, since
they are no loops which can be seen by looking on the connections between blocks in
Simulink. Implicit loops are introduced by blocks which generate a non-constant outgo-
ing signal based on no or constant input signals, e.g. Integrator-, Ramp- or Step-blocks.
Figure 1 shows a simple example for a system with an implicit loop. Although, it is an
open-loop system, we apply widening for the output of the integrator to ensure a correct
overapproximation of the reachable values and the existence of a fixed-point for the model
on the analysis domain. In case widening would not be used, the output of the Integrator-
block would change for any considered timestep, a fixed-point would never be reached and
the analysis would not terminate.

. .1

1 - -

. 1
Out1

Constant Integrator

Fig. 1: Open loop system with implicit Simulink loop

A second particularity regarding widening and the associated detection of a fixed-point
for Simulink models is the ”‘delay along paths™ (DAP). Assume a system containing a
loop with a Delay-block. Such a block delays its incoming signal for some timesteps.
The model shown in Figure 2, for instance, matches this description. The delay block
delays the incoming signal for three timesteps, which means that its outgoing signal is
by default zero for those timesteps. If widening is directly applied for the second loop
iteration (second timestep), no overapproximation would be made and a fixpoint detected,
because a further loop iteration does not change any computed reachable values. However,
considering further iteration, the delay changes its outgoing values. Such fixpoint detection
problems are avoided by calculating the maximal DAP, which is the maximal number of

1656

Static Value Range Analysis for Matlab/Simulink-Models

timesteps (respectively loop iterations) a signal value needs to influence the value at the end
of the path in the model, and apply widening on the abstract domain only in case enough
timesteps have been considered. Because of the manifold ways to create dependencies
between loops in Simulink models, we compute the maximal delay of the entire model as
overapproximation of the DAP for single paths and use this value instead. Moreover, we
take the maximal delay of the model into account for fixed-point detection to ensure, that
no further iteration of any loop may change the computed reachable values. In case of the
model from Figure 2, the maximal delay of the model is three and equal to the maximal
delay of the path from the Constant- to the Outport-block.

®
Out1
Constant Delay

Fig. 2: Explicit loop with DAP from Constant to Outl of three

4 Evaluation

The aim of the evaluation of our proposal is to show the feasibility on the one hand, while
discussing drawbacks on the other hand. For the feasibility, the analysis has been executed
on a computer with a 2.6 GHz 64 bit Intel i5 4-core CPU with 8GB memory running
Windows 7 and 64 bit Java 8. With respect to the data, the evaluation is carried out on two
models, both configured to a fixed step size of 0.01. The first model is a viscosity model
and illustrated in Figure 3.

Different Conditions for Viscosity

Start at time O Author: Siva Ganesh Malla,
with value 0 - IIT Bhubaneswar, India,
Ramp2 ” ’ ’
Start at time 0 and slope 2 / Email: mafh_pﬂzf@yaﬁoo..com
with value 0 Start at 10 St?rt attime 0
and slope 5 step at time 10 _ " | Saturation with value 0

and slope 2

step to 15 Step EI
Constant L Constant1 Ramp4
y A
L= = |
Subsystem1 > Subsystem2

Ramp

Subsystem

A 4

Scope3

Fig. 3: Viscosity Model (taken from [Mal2]) with annotations

Constant3

1/R1/R1
1/R2/R2

Constant4

Divide Subtract

Product

Fig. 4: Viscosity Model Subsystem (taken from [Mal2])

The internals of the models subsystems are identical and shown on Figure 4. However,
the values for L, R1 and R2 are different from subsystem to subsystem, since they are
configured using masks. Table 1 shows the values for each subsystem (rounded for bet-
ter readability). The specific parameters for the Ramp-, Step- and Saturation- blocks are
annotated in Figure 3.

1657

Dernehl et al.

Subsystem | Subsysteml | Subsystem2
L 14e-3 14 14
R1 10.5e-3 10.5 10.5
R2 12e-3 12 12

Tab. 1: Mask parameters of the subsystems (Viscosity model)

The analysis of the viscosity model takes about 13.782 seconds and determines the reach-
able output values for the subsystems as given in Table 2. Potential problems, e.g. the
occurrence of NaN as a value, of the model are indicated through warning messages. For
instance, the analysis indicates a potential division by zero at the Divide-block in Subsys-
tem1 and Subsystem?2 and a potential division by infinity at the Divide-block in Subsys-
tem2. This is accurate considering that the Ramp-blocks produce signals starting at zero
and that the system runs for an infinite amount of time.

Subsystem Subsystem1 Subsystem?2
Reachable values {[0;00]} {[6.0478E — 6;0.0060418], [00;00]} | {[0;6.0417E — 4],
at outport [e0;00] }

Tab. 2: Results of the value range analysis (Viscosity model)

The second model we chose for evaluation purpose is the ”‘Automotive Suspension”™ [TM]
model from the Simulink example models. This model contains 44 basic Simulink blocks
of 10 different types (Sum, Gain, Step, Constant, Integrator, Mux, Demux, Subsystem,
Outport, Inport). In contrary to the viscosity model, it contains feedback-loops that de-
pend on each other. We replaced the continuous integrators of the model with discrete
integrators, which use the forward euler method. That is because the support for different
continuous integration solvers is not yet completely finished. Furthermore, we switched
the ”‘acceleration due to gravity”” block, which was originally a Constant-block, to an
Inport-block. This allows to vary the gravity depending on the considered location. Since
our static analysis of the model operates on interval sets, we are able to analyze the model
for arbitrary user specified value ranges of the gravity. We chose as input for the gravity the
interval sets A = [—9.81;—-9.81], B = [—-9.80665; —3.71] and C = [—9.82;—9.80]. Those
sets represent the commonly used value for gravity in our region (A), the range of gravity
values above the zero level on earth [TT08] and mars’ (B) and an arbitrary, but similar to
A chosen range (C). Since we know that the model converges to a fixpoint for the constant
—9.81, we perform the analysis without use of a widening operator, which yields a sim-
ulation of the model on the interval set domain terminating in case a fixpoint is reached.
Regarding the results of the simulation with interval set input A we could determine that
our results match exactly (using 64 bit double precision) the values computed by Simulink
for every signal of the model at any considered time. This gives us a hint on the numerical
compliance of our implementation with Simulink.

In general, we use widening to ensure the existence of a fixpoint for systems with loops
[CC77]. Table 3 shows our results® using a simple widening procedure for the discussed

7 http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
8 We show the results as intervals instead of interval sets and rounded for better readability

1658

Static Value Range Analysis for Matlab/Simulink-Models

Input Widening THETA Z Time
Interval Set (Integrator out) (Integrator out) | elapse(s)
A OFF [—0.01098;0.00862] | [—0.15372;0.0] 39.779
A ON [—o0;00] [—o0;09] 31.772
B ON [—o0; 00 [—o0;09] 17.192
C ON —o00; 00] [—o0;09] 17.570

Tab. 3: Results of the value range analysis (Automotive Suspension model)

inputs. The results indicate, that widening (if enabled) is applied before a fixpoint could be
determined and thus a huge overapproximation is achieved. This overapproximation leads
to warnings with false positive character indicating potential problems where none can
occur. For instance, the possible occurrence of the value NaN as a result of the operation
[—o0;00] + [—o0;00] is indicated due to the overapproximation. Our future work focuses
on approaches to reduce this amount of overapproximation for loops using alternative
widening approaches specific to the static analysis of Simulink models, as other additional
analysis domains.

5 Conclusion

This paper presents a formal approach to perform static value range analysis of func-
tional block diagrams, in particular Matlab/Simulink, before generating code. The ap-
proach allows the direct detection of modeling flaws during the modeling phase, early
in the development process. Based on user-provided value ranges for inputs, as demanded
by IS026262 [IS11], a safe value range of outputs is computed. Therefore, the abstract
domain of interval sets, a more precise representation than the widely applied intervals, is
used. We show, that the application of a type concept to this domain can cope very pre-
cisely with numeric issues, e.g. rounding modes, and type related over- and underflows.
The evaluation of the approach shows that it is suited to detect potential errors as divisions
by zero, infinity or occurrences of NaN. In the future, we will evaluate the value range
analysis on more realistic examples. However, the use of interval sets can lead to simi-
lar large overapproximations as intervals in combination with widening for loops of the
model. Thus, the approach is not sufficient to describe the behavior of a dynamic system,
but indicates potential modeling flaws. The next step is to represent the relations between
signals of the model, for example uo(7) > u;(¢) , and the rates of the signals. With this in-
formation more precise conclusions, e.g. reduction of potential overapproximations, about
the system can be drawn.

References

[BHB14] Bauch, Petr; Havel, Vojtech; Barnat, Jiri: Accelerating temporal verification of Simulink

diagrams using satisfiability modulo theories. Software Quality Journal, pp. 1-27, 2014.

[BKS12] Biallas, Sebastian; Kowalewski, Stefan; Schlich, Bastian: Range and Value-Set Analysis
for Programmable Logic Controllers. In: Proceedings of the 11th International Workshop

on Discrete Event Systems. IFAC, Guadalajara, Mexico, pp. 378-383, 2012.

1659

Dernehl et al.

[Ca03]

[CCTT]

[CDO6]

[CMO09]

[HIVEO1]

[IE08]

[1S11]

[Jal2]

[Mal2]

[NJC99]

[RG14]

[Si08]
[TM]

[Tr05]

[TTO8]

[Wa98]

Caspi, Paul; Curic, Adrian; Maignan, Aude; Sofronis, Christos; Tripakis, Stavros;
Niebert, Peter: From Simulink to SCADE/Lustre to TTA: A Layered Approach for Dis-
tributed Embedded Applications. In: Proceedings of the 2003 ACM SIGPLAN Confer-
ence on Language, Compiler, and Tool for Embedded Systems. LCTES °03, ACM, New
York, NY, USA, pp. 153-162, 2003.

Cousot, P.; Cousot, R.: Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, NY, Los Angeles, California, pp. 238-252, 1977.

Chen, Chunqing; Dong, JinSong: Applying Timed Interval Calculus to Simulink Dia-
grams. In (Liu, Zhiming; He, Jifeng, eds): Formal Methods and Software Engineering,
volume 4260 of Lecture Notes in Computer Science, pp. 74-93. Springer Berlin Heidel-
berg, 2006.

Chapoutot, A.; Martel, M.: Abstract Simulation: A Static Analysis of Simulink Models.
In: Embedded Software and Systems, 2009. ICESS ’09. International Conference on. pp.
83-92, May 2009.

Hickey, T.; Ju, Q.; Van Emden, M. H.: Interval Arithmetic: From Principles to Imple-
mentation. J. ACM, 48(5):1038—-1068, September 2001.

IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1-70, Aug
2008.

ISO: ISO 26262-6 - Road vehicles - Functional safety - Part 6 Product development
software level. Technical report, Geneva, Switzerland, 2011.

Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, E.: Applied Interval Analysis: With Examples
in Parameter and State Estimation, Robust Control and Robotics. Springer London, 2012.

Malla, Siva: Calculation of Viscocity. 2012. http://de.mathworks.com/
matlabcentral/fileexchange/39413-calculation-of-viscocity.

Nedialkov, N.S.; Jacksonl, K.R.; Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computation,
105(1):21 — 68, 1999.

Reicherdt, Robert; Glesner, Sabine: Formal Verification of Discrete-Time MAT-
LAB/Simulink Models Using Boogie. In (Giannakopoulou, Dimitra; Salaiin, Gwen,
eds): Software Engineering and Formal Methods, volume 8702 of Lecture Notes in Com-
puter Science, pp. 190-204. Springer International Publishing, 2014.

Simon, A.: Value-Range Analysis of C Programs. Springer, August 2008.

The MathWorks, Inc.: Automotive Suspension. http://de.mathworks.com/help/
simulink/examples/automotive-suspension.html?prodcode=SL.

Tripakis, Stavros; Sofronis, Christos; Caspi, Paul; Curic, Adrian: Translating Discrete-
time Simulink to Lustre. ACM Trans. Embed. Comput. Syst., 4(4):779-818, November
2005.

Thompson, Ambler; Taylor, Barry N.: Guide for the Use of the International System
of Units (SI). National Institute of Standards and Technology Special Publication 811
(2008 Edition). National Institute of Standards and Technology / U.S. Department of
Commerce, 2008.

Walster, G. William: The Extended Real Interval System. Technical report, 1998.

1660

