
Reengineering Automotive Software at Bosch

Jochen Quante

Robert Bosch GmbH
Corporate Sector Research and Advance Engineering Software

P.O. Box 30 02 40, 70442 Stuttgart, Germany

Jochen.Quante@de.bosch.com

Abstract

Software Reengineering has been a topic at Bosch for
10 years now. This paper reports about our experi-
ences during this time, about ongoing reengineering
activities, and about potential topics for the research
community.

1 Introduction

It is a well-known fact that software ages [5]. Nearly
30 years ago, Lehman and Belady noted that soft-
ware has to change continuously in order to remain
useful, and that a software’s complexity increases as
the software is changed [3]. The combination of these
“Lehman’s laws” means that complexity is steadily
increasing – if no counteractive measures are taken.

Lehman’s laws are valid as well for automotive soft-
ware. Software is becoming more and more impor-
tant in this domain, which means a big change since
the domain is traditionally very hardware-oriented.
Software enables new security, comfort, and economic
functions which allow manufacturers to set themselves
apart from competitors. For example, an engine con-
trol system may consist of up to one million lines of
C code. However, the increasing amount of software
in automobiles comes along with an increasing com-
plexity, rising time and cost pressure, and high quality
demands. This necessitates measures for controlling
and limiting this ever-increasing complexity.

To account for this fact, a research project was es-
tablished at Bosch in 2002. Its goal was to identify
best practices and patterns that are applied in au-
tomotive software development and make them ac-
cessible to all development units within Bosch. For
those units that did not yet use them, this meant
reengineering their code such that they incorporate
the new patterns. Consequently, these patterns had
to be accompanied by tools and methods that help in
this transformation process.

2 Reengineering Phase Model

SEI’s horseshoe model is quite well-known in reengi-
neering [1]. At Bosch, we established a similar soft-

ware reengineering phase model. The basic recon-
struction and construction steps are surrounded by
two additional phases. The model thus consists of
four phases:

1. Identification of modules with unnecessarily high
implementation complexity.

2. Reconstruction of functionality and requirements
of the module.

3. Construction of a new solution that implements
the same basic functionality, but applies best
practices and patterns for its design.

4. Verification and validation of the new solution.

In the following sections, the four phases are dis-
cussed in more detail.

Identification

At first, one has to identify those modules that bear
the highest potential for improvement. Often, devel-
opers have a good feeling about which modules should
be regarded. However, an automated approach that
identifies those “hot spots” is desirable. To achieve
this, we evaluated the “Maintainability Index” by
Oman and Hagemeister [4], which is based on corre-
lating metrics with expert opinions on maintainabil-
ity. The result was that the index indicates modules of
bad maintainability with a precision of 50% and 83%
recall [6], which is considered “good enough” by our
business units. However, we did not only find positive
“best practice” patterns in the code, but also negative
patterns. Such “bad smell patterns” can be automat-
ically detected, and the results are used to improve
the maintainability rating.1 The different indicators
are then integrated using a software quality model.

Reconstruction

Before constructing a new solution, the existing solu-
tion has to be understood first. This is often a labo-
rious task, specially when the software has grown for

1Unfortunately, research is mostly focused on bad smell pat-
terns in object-oriented programs, whereas smells in C code are
hardly covered.



decades and when many different people have manipu-
lated its code. This part takes a lot of time – specially
when you first have to learn the domain knowledge
that is necessary for the respective module. Support
for the understanding of such modules is therefore
highly desirable, since it can save a lot of time and
money.

Existing approaches mostly focus on the “big pic-
ture”, like the extraction of architectural views. There
exist only few approaches that help in understanding
a single module or function. Because of their data-
flow oriented nature in our domain, even single mod-
ules can be hard to comprehend. Different views on
a single module could help with this issue. Possible
examples for that include annotation and abstraction
techniques, data-flow views on imperative code, and
hiding or highlighting parts of code or models. There
appears to be a wide range of research opportunities
in this area.

Construction

The basic result of the search for patterns in automo-
tive software is that things are easier to understand
the better they follow the principle of separation of
concerns. However, the news here is not that sep-
aration of concerns improves the maintainability of
software – this fact has been known for a long time.
What we experienced is that the application of this
principle is also possible in resource-restricted envi-
ronments, and that it can even reduce resource us-
age. Therefore, the most important aspect in cre-
ating a new solution is to improve the separation of
concerns without spending additional resources. In
our dataflow-oriented software, this often means intro-
ducing state machines for separating control flow from
data flow, or identifying and separating the essence of
a function from the rest.

Verification and Validation

The last step is done by performing the standard mod-
ule and integration tests.

3 Experiences

We made the experience that it costs a lot of effort to
reengineer even a single module. You need to build
up a deep understanding of the module’s implementa-
tion, and also of the relevant domain knowledge. This
confirms Fjedstad and Hamlens finding that 50% of
all maintenance effort is spent for understanding the
program to be changed [2]. Therefore, our current
activities aim at developing tools and methods that
better support program comprehension (also see Sec-
tion 2). In particular, our focus is to create methods
and tools that are tailored to the specialities of our
domain [7].

One difficult aspect of reengineering is the proof
of its cost effectiveness. It is very hard to show that
a reengineering will be beneficial before it has been

performed, and it is as difficult to prove that it was
worth the effort afterwards. However, a high number
of successful reengineerings seems to convince people
that it does in fact pay off.

Another experience is that reengineering does not
only improve the code’s readability, but also its re-
source usage. We observed a noticeable reduction of
resource usage in most cases. In some cases, the mem-
ory usage could be reduced by up to 50%. This is an
effect that is better noticeable and measurable than
the long-term effect of improved maintainability, and
it helps a lot to convince people to invest in reengi-
neering activities.

4 Transfer

Reengineering has been a topic at Bosch Corporate
Research for many years now. A lot of concrete reengi-
neerings were performed in collaboration with the
business units. Meanwhile, the business units them-
selves recognize the usefulness or even inevitability of
reengineering and perform reengineering on their own.
Along with an ongoing Software Reengineering qual-
ification program, this helps to further improve the
quality of our software and control its ever-growing
complexity.

References

[1] J. Bergey, D. Smith, N. Weiderman, and S. Woods.
Options analysis for reengineering (OAR): Issues and
conceptual approach, 1999. Technical Note CMU/SEI-
99-TN-014.

[2] R. K. Fjedstad and W. T. Hamlen. Application pro-
gram maintenance study: Report to our respondents.
In Proc. of the GUIDE 48, 1979.

[3] M. M. Lehman and L. A. Belady. Program evolution:
processes of software change. Academic Press, 1985.

[4] P. W. Oman and J. R. Hagemeister. Constructing
and testing of polynomials predicting software main-
tainability. Journal of Systems and Software, 24(3),
1994.

[5] D. L. Parnas. Software aging. In Proc. of 16th ICSE,
pages 279–287, 1994.

[6] J. Quante, T. Grundler, and A. Thums. Main-
tainability index revisited: Adaption and evaluation
for Bosch automotive software. In 3. Workshop zur
Software-Qualitätsmodellierung und -bewertung, Feb.
2010. TUM-I1001.

[7] V. Schulte-Coerne, A. Thums, and J. Quante. Au-
tomotive software: Characteristics and reengineering
challenges. Softwaretechnik-Trends, 29(2), May 2009.


