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Accelerating Large Table Scan using Processing-In-Memory
Technology

Alexander Baumstark! Muhammad Attahir Jibril? Kai-Uwe Sattler?

Abstract: Today’s systems are capable of storing large amounts of data in main memory. Particularly,
In-memory DBMSs benefit from this development. However, the processing of data from the main
memory necessarily has to run via the CPU. This creates a bottleneck, which affects the possible
performance of the DBMS. Processing-In-Memory (PIM) is a paradigm to overcome this problem,
which was not available in commercial systems for a long time. However, with the availability of
UPMEM, a commercial product is finally available that provides PIM technology in hardware. In this
work, we focus on the acceleration of the table scan, a fundamental and memory-bound operation.
We show and investigate an approach that can be used to optimize this operation by using PIM.
We evaluate the PIM scan in terms of parallelism and execution time in benchmarks with different
table sizes and compare it to a traditional CPU-based table scan. The result is a PIM table scan that
outperforms the CPU-based scan significantly.

Keywords: UPMEM; Processing-In-Memory; In-Memory Database

1 Introduction

In-memory databases aim at low latency and high throughput for queries and updates in
order to support real-time data processing. By keeping (most of) the data in main memory,
workloads on such databases are typically memory-bound, and accessing main memory
becomes more and more a bottleneck — a phenomenon that is known as memory wall
[WM95]. However, novel and emerging memory technologies open up new opportunities
such as offloading computation to memory. One example is Processing-in-Memory (PIM),
a rather new concept where (simpler) operations can be executed directly in memory (on
the same die) without moving the data from DRAM. The basic idea of this approach is to
equip memory chips with additional processing units. Data can be processed directly on the
memory chips without involving the system’s CPU. PIM offers great potential: CPU load
could be reduced, and memory bandwidth could be increased by reducing the amount of
data to be transferred to the CPU.

Though, many PIM architectures have been proposed in the past (see [Ng20] for a classifica-
tion), the only publicly available commercial product is offered by the UPMEM company. In
addition, Samsung has also announced a product, but it is not available on the market yet. The
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UPMEM technology has only recently become available (first presented at HotChips 2019),
therefore, only a few experimental studies of UPMEM have been published. In [Ni21], the
authors evaluate UPMEM PIM using a few use cases such as data compression, encryption,
JSON processing, and text search. [G622] presents PrIM — the Processing-In-Memory
benchmarks — a benchmark suite from different application domains as well as several key
observations and programming recommendations. Though PrIM contains also a database
selection operator, it is not integrated into a database engine. Both papers discuss also the
technical details of UPMEM.

Based on these works, we investigate in this paper the potential of offloading data management
processing to memory using PIM. Based on the observation that the performance of typical
data management operations often depends on memory bandwidth or latency, we try to
answer the question: Can we accelerate in-memory operations in a database using PIM?
For this purpose, we use a graph database engine Poseidon#, which supports in addition to
a persistent memory storage engine [Ji21] also an in-memory mode. However, because we
focus in this paper on scan operations, the findings of our experiments are not limited to
graph databases. Still, they can be generalized to scans on relational and other non-relational
databases.

2 Related Work

PIM is a well-known technique to overcome the CPU-memory bottleneck for several decades.
There have been a number of concepts and approaches to provide PIM on hardware since
the 1990s [Pa97, Pa97, Dr02]. The high cost and lack of industrial support for this concept
prevented the production and sale of real PIM hardware. Still, research was conducted based
on prototypes. The PIM technology follows a similar approach to GPU processing. The
design space of GPU-accelerated architectures transferred to PIM was investigated in the
work of [Zh14]. Further, with LazyPIM, the authors of [Bo17] published a mechanism for
reducing data exchange between CPU and PIM cores by means of caching. With the company
around UPMEM, hardware providing real PIM-enabled DRAM DIMMs was published
[UP22]. There are already a number of works concerning this architecture investigating
its characteristics and applicability. Gomez-Luna et. al investigates the architecture for its
limitations and performance as well as energy consumption [G622]. The result of the work
shows that the UPMEM system achieves suitable performance as long as the individual
components (DPUs) do not require communication (DPU-to-DPU). There is also available
work concerning the applicability of PIM hardware on real use cases. [Gu] investigates the
potential of PIM hardware for the acceleration of ML training. The results show that ML
training using PIM hardware can improve the training process compared with GPU-based
ML training. [Gi22] investigates the improvement of sparse matrix-vector multiplication
using real PIM hardware. [Ka22] provided an efficient index data structure that leverages
PIM.

4 https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core/-/tree/upmem
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However, due to the short availability of real PIM hardware at the time of this work, there is,
to our knowledge, no DBMS that directly integrates PIM.

3 PIM Technology

The first publicly available real-world PIM technology is provided by the UPMEM company
[UP22]. Because our work is based on this technology, in the following we give a brief
overview of this architecture and the programming model.

3.1 UPMEM Architecture

The core of the UPMEM architecture is the UPMEM DIMMs, which are based on regular
DDR4-2400 DIMM modules but equipped with additional PIM chips. A structural overview
is given in Fig. 1. The UPMEM DIMMs are organized into ranks. A UPMEM DIMM
consists of up to two ranks and each rank consists of up to 8 PIM-enabled chips. A PIM
chip usually consists of 8§ DRAM Processing Units (DPUs). Each DPU has exclusive access
to 64 MB Main RAM (MRAM), 24 KB Instruction RAM (IRAM), and 64 KB Working
RAM (WRAM) for processing. As DPUs have only access to their own MRAM there
is no direct communication possible between different DPUs. Further, a DPU consists
of a general-purpose 32-bit RISC core with a maximum achievable frequency of 400
MHz, which can execute a special instruction set in a multithreaded in-order pipeline. For
multithreading, there are 24 hardware threads available. The context is switched on every
cycle between the threads, which hides the memory latency [Lal6]. All threads share the
same memory on the DPU which requires synchronization to guarantee consistency. This
architecture allows the parallel execution of a program on different pieces of data directly
on DRAM.

3.2 Programming Model

For the utilization of the 24 hardware threads of a DPU, up to 24 tasklets can be used. This
follows the Single Program Multiple Data programming model. All threads are executed
with the same code but on different pieces of data. The number of used tasklets must
be defined by the programmer at compile-time. As the MRAM and WRAM are shared
among all tasklets on a DPU, the model provides synchronization primitives like mutexes,
semaphores, barriers, and handshakes. Critical sections in the execution of a DPU program
can be protected by mutexes with mutex_lock and mutex_unlock methods. Their effect is
the same as the mutexes in usual systems. The critical section is then only accessible by one
tasklet at a time. The purpose of the barriers is to control the execution flow of all tasklets.
This can be done by using the barrier_wait method. The tasklets of the DPU wait at this
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Fig. 1: Overview of a UPMEM DIMM with 2 Ranks of 64 DPUs.

point until all other tasklets have reached the barrier. After this, the execution continues.
The handshake primitives are used for direct synchronization between the tasklets and the
semaphores primitives for counters, similar to the counters known in operating systems.
Using these primitives enables the effective utilization of multithreading provided by the
DPUs.

The execution and control of the DPU program are handled by the host application. The host
application allocates the set of desired DPUs and selects the appropriate DPU program. It is
possible to allocate a specific rank or a specific number of DPUs. Further, the host application
manages the execution of the DPU program and the data transfer to and from MRAM.
The actual execution and data transfer can be handled synchronously and asynchronously
by the host application. When executing the DPU program launch or the data transfer
synchronously, the host application waits for the complete execution of the launch or data
transfer. When transferring data, it is often desired to prepare the next batch for data transfer,
while transferring the old batch. For this purpose, the UPMEM host library provides the
possibility to execute the data transfer and DPU launch asynchronously. The asynchronous
execution executes the instructions in the background using another thread and gives the
control back to the host application. It allows the host application to proceed with the next
batch for data transfer, or launch the same of another program on another set of DPUs.

The workflow of a host program running a DPU program with UPMEM technology can be

summarized in the following steps:

1. Environment allocation (DPU, Ranks, DPU Program),
2. Buffer population from the host’s main memory to MRAM of DPUs.
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3. Execution of the DPU Program.

4. Retrieving of the processed results from the MRAM of the DPUs to the host’s main
memory.

The DPU program can be executed several times. The data is retained in the MRAM of the
DPUs and does not have to be reinitialized. This is useful for tasks where a solution has
to be calculated in several iterations. The DPU programs are written in the programming
language C and compiled by a special compiler, which is based on LLVM and Clang.

3.3 Memory Management

As already mentioned, various memory types are available to a DPU. These differ in size
and also in connection to the DPU. The largest memory available to a DPU is the MRAM.
It has a capacity of 64 MB and has the purpose of exchanging data with the host. The host
system can copy data from its main memory to the MRAM and also transfer data from the
MRAM to the main memory of the host.

The WRAM of a DPU is a working memory in which a DPU stores the stack and global
variables. Access to this memory is restricted to the DPU itself. Direct access from the
host is not possible. Further, the DPU can access the WRAM only through 8-64 bit DMA
instructions. The UPMEM runtime library provides for the transfer between MRAM and
WRAM the methods mram_read for WRAM-MRAM and mram_write for MRAM-WRAM
transfer. Each DMA instruction can copy up to 2 KB of data.

Communication with the host is done through data transfers between the main memory
of the host and the MRAM of the DPU. The UPMEM runtime library provides different
instructions for this purpose like dpu_copy_to/dpu_copy_£from for copying a buffer from
and to MRAM of specific DPUs. For parallel data transfer, the library provides the method
dpu_prepare_xfer which assigns a buffer to a specific MRAM of a DPU. The actual data
transfer is then performed in parallel using the dpu_push_xfer method but requires the same
buffer size for all DPUs.

4 The Poseidon Graph Database

The present work is mainly developed for the graph database Poseidon. Although Poseidon
was originally optimized for the characteristics of persistent memory, these characteristics
can also be transferred to the exploitation of in-memory processing in DRAM. For this
purpose, Poseidon already provides the necessary optimized data structures. In the following,
the general architecture of Poseidon is described.
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4.1 Data Model and Storage

The data layout of the Poseidon Graph Database is based on the labeled property graph
model wherein labels and property values can be assigned to nodes and relationships. A
complete graph in the Poseidon Graph Database consists of different tables in which the
nodes, relationships, and respective property entries are stored. The tables are directly
stored on DRAM. The Poseidon Graph Database provides also support for the storage of
data directly on disk or Persistent Memory using similar data structures but optimized for
utilization of the underlying storage. However, for the scope of this paper, we focus on the
implementation of the storage on DRAM. For the underlying data structure, a linked list of
fixed-size arrays (chunks) is used, which is referred to as a chunked vector. Furthermore, the
nodes, relationships, and properties are stored in fixed-size records within the appropriate
chunked vector. For entries with variable sizes, such as string values, an entry is created in
a dictionary, and the corresponding dictionary code is stored in the respective record. To
achieve the connection between nodes and relationships, the offsets of the respective entries
are used. A node record stores the offsets of the first incoming and outgoing relationships.
This offset points to an entry in the relationship table. A relationship record contains the
offsets of the source and destination nodes. Moreover, the corresponding relationships are
also linked to each other. A relationship record, therefore, contains the next offset of the
relationship list of the source and destination node. The traversing through a graph can
be achieved by alternately searching the node and relationship table for the offsets of the
respective records.

4.2 Graph Queries

Processing graph database queries consists mainly of discovering a path between nodes
in a graph. Besides the usual operators known from relational DBMSs like selections,
projections, or joins, the Poseidon Graph Database provides an additional set of operators,
especially for the processing of graph queries. These operators are based on graph algebra
which is an extension of relational algebra [HG16]. For the data flow between operators, we
implemented a push-based query processing approach. Here, the operators are organized
into a pipeline and push their results toward the consuming operator until a pipeline breaker
occurs [NL14]. For various reasons regarding the simplicity of a graph query language, we
implemented an easy and manageable query language oriented to graph algebra.

Project({{0®, "name"}, {2, "name"}},

Expand(OUT, "Person",
ForeachRelationship (FROM, ":friendOf",
NodeScan("Person"))))

Fig. 2: Example Graph Query in Poseidon
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An example graph query in our language is given in 2. The aim of this query is to find all
Person nodes in the graph, which are connected to another Person node with a :friendOf
relationship, resulting in an overview of all friends in a graph.

The entry point of every query in Poseidon is the NodeScan operator. As the name suggests,
it scans the underlying table for nodes, compares optionally each node with a given label,
and pushes the appropriate nodes to the next operator. A scan as shown in the example is
actually a scan combined with a filter for finding nodes with the given label. Because strings
are dictionary encoded, this kind of filter is a simple integer comparison representing an
appropriate candidate for offloading to UPMEM.

The nodes can be then processed with the ForeachRelationship operator, in order to
find an ingoing or outgoing relationship of the previous node. Optionally, it compares the
relationship label with a given label. The found relationship is then passed to the next
operator. A relationship tuple can then be processed using the Expand operator. This operator
extracts the source or destination node of the handed relationship. With these operators, it is
possible to traverse a graph to find paths between two nodes.

4.3 Query Processing

For the processing of graph queries, Poseidon’s query engine relies on push-based query
processing and Morsel-driven parallelism [Lel4]. The data flow at query processing is
organized in a pipeline, and the resulting tuples are pushed from one operator toward their
consuming operator. This flow continues until a pipeline breaker is reached. For parallelism,
the engine exploits Morsel-driven parallelism using the underlying chunked vector data
structure. Before the execution of the query, the query and each individual chunk of the
chunked vector will be assigned to the task and pushed into a task pool. When executing the
query, the engine spawns several threads which pull a task from the pool and executes the
given query on this task until all tasks are processed.

The query engine provides three different execution modes for the actual processing:
executing ahead-of-time (AOT) compiled code, just-in-time (JIT) compilation, and an
adaptive approach. The AOT-compiled mode processes the given query using pre-compiled
C++ methods, which execute the given operators. The JIT-compilation mode transforms the
given graph query into highly optimized machine code and executes it directly. For this, we
use the LLVM compilation framework. The graph query will be transformed into a single
function in LLVM IR. Then, it will be optimized using several optimization passes like
dead-code elimination or instruction combining. The resulting optimized LLVM IR code
will then be transformed into machine code and executed by the engine. To hide compilation
time, the engine can execute queries in the adaptive mode. Here, the engine starts the query
processing using the AOT-compiled mode and compiles the query in the background. As
soon as the compilation is complete, it switches to the new compiled code. Additionally, this
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mode is useful to hide access latencies of the underlying storage type like disk or persistent
memory [BJS21].

5 PIM-based Table Scans

The starting points of most queries are table scans. Often there is no other way than to
traverse the entire table for tuples that match a given predicate. Especially in the case of
predicates with particularly low selectivity, tuples that do not correspond to the predicate
must be transferred unnecessarily via the CPU of the system. This procedure in today’s
usual systems leads to a bottleneck and reduces the possible performance. In this section,
we will show the possibility of implementing a table scan operator by exploiting the PIM
technology.

5.1 Memory layout

For the execution of table scans on the DPU, the memory of the DPUs must be taken into
account according to their characteristics. The tables of nodes, relationships, and properties
of the Poseidon Graph database are based on the chunked vector data structure. The chunking
of the table can also be exploited for the design of the memory layout on the DPUs.

struct mram_node {

uint8_t tx_pad[40];
uint64_t id;

uint64_t from_rship_list;
uint64_t to_rship_list;
uint64_t property_list;
uint32_t node_label;

b

struct mram_chunk {

struct mram_node data[C_ELEMENTS];
struct mram_chunk* next;

char bitset[BS_SIZE];

uint32_t first;

char padding[PAD_SIZE];

};

List. 1: Structure of node in MRAM List. 2: Structure of chunk in MRAM

Listing 1 shows the structure of the nodes and Listing 2 is the structure of the chunks which
are stored in MRAM. The required size of the nodes for storing the necessary data is 80
bytes. We leave the parts that are used for transactional processing out of the scope of
this paper for the moment and label them as tx_pad. A similar structural layout is used
to represent the relationships and properties in the MRAM of the DPUs. Basically, the
representations are equivalent to those used for storing the data in the main memory of the
host. In addition, care was taken that the size is a multiple of 8 bytes to allow transfer to
MRAM and between MRAM-WRAM without additional transformation. The appropriate
alignment of the data allows the direct transfer to the DPU but also buffering a part of the
data in the DPU WRAM for faster access. With large tables, it may happen that more chunks
exist than available DPUs. To use the memory of a DPU efficiently and to process as much
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Fig. 3: Rank Parallel Chunk to DPU Assigment.

data as possible on it, it is more beneficial to transfer several chunks to a DPU. Considering
the chunk size of 65536 bytes, we reserve in each DPU space that is able to hold up to 1000
chunks. The remaining MRAM space can be used for parameters such as the number of
chunks passed, filter arguments, and storing the results.

5.2 Chunk-DPU Assignment

In order to transfer the data efficiently, we make use of asynchronous and parallel host-to-
DPU data transfer. To implement the data transfer as efficiently as possible the data must
be transferred as parallel as possible. This is achieved with DPU and Rank parallel data
transfer. The underlying data structure in Poseidon, which is used for the storage of nodes
and relationships, is perfectly suited to achieve this with the least possible implementation
effort. Fig. 3 shows the rank parallel chunk-to-DPU assignment. Each chunk is assigned a
DPU on a rank in a round-robin way. After the assignment is done, the data is transferred
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in parallel per rank. This ensures that the workload on all DPUs is similar. Furthermore,
multiple chunks can be assigned to a DPU to make efficient use of the available MRAM
memory. If the table does not fit completely into the MRAM, the program must be executed
with the already transferred part. Then the remaining part must be transferred back to the
DPU. The following listing shows the algorithm for the chunk to DPU assignment.

foreach(chunk) {
DPU_RANK_FOREACH(set, rank) {
DPU_FOREACH(rank, dpu) {
dpu_prepare_xfer(dpu, chunk);
dpu_push_xfer(rank, DPU_XFER_DEFAULT, "mram_chunks",
offset, CHUNKS_SIZE, DPU_XFER_ASYNC);
calc_offset(); }}}

List. 3: Host to DPU chunk transfer algorithm

The algorithm iterates over the available chunks of nodes, relationships, or properties. Then
it iterates over the DPU of a rank. This is advantageous to allow efficient parallel data
transfer, as the buffer for the data transfer must be the same size and write to the same offset
address in the MRAM. Otherwise, the transfer would be serial.

5.3 DPU Scan

To enable an efficient multithreading scan of the chunks, we divide the workload among all
available tasklets. For this, we distribute the elements to all available tasklets per chunk.
Each tasklet thus works on an allocated area in each chunk assigned to the DPU. Then each
tasklet iterates over the allocated area of the chunks. In each iteration, a record is checked
for a given filter predicate. As soon as a record matches the predicate, the result is saved by
setting the corresponding position of the record in the chunk to 1 in a bit vector. Per DPU
there is a single bit-vector for each passed chunk. This tasklet design also has the advantage
that no further synchronization mechanisms are necessary since each tasklet writes the
result to its own memory area.

6 Evaluation

We use the Social Network Benchmark (SNB) dataset from the Linked Data Benchmark
Council (LDBC) for the following benchmarks. This is an applicable benchmark to evaluate
the performance of this approach in a graph DBMS. The used scale factor of the dataset is
1. We further restrict ourselves to the nodes of the dataset which we store in a nodes table in
Poseidon. In total, the table contains 1.180.565 entries, which are stored in 1445 chunks in
DRAM with 817 entries per chunk. For the scan query, we scan the node entries for nodes
labeled as Post with a selectivity of 10%.
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6.1 System

The system used for the following benchmarks runs with two Intel Xeon Silver 4215R with
a total of 16 cores with 2 threads each. A total of 32 threads can be executed on the system.
Furthermore, the system has 512 GB of DRAM, which is made up of 8 x 64 GB DIMMs. In
terms of PIM, the system has 4 UPMEM DIMMs with 16 GB each. Each UPMEM DIMM
has 2 ranks with up to 64 DPUs each. The total number of DPUs is 510, divided into 8 ranks.
The clock rates of the DPUs are between 200-400 MHz. The system runs under Ubuntu
20.04.1 with Linux kernel 5.4.0. The code of the host and DPU program was compiled with
Clang at version 12 and full optimization at -O3.

The data layouts of the baseline and the DPU implementation are based on the same data
structures and the same optimization to get a fair comparison.

6.2 DPU Parallelism

Fig. 4-Fig. 6 show the execution of table scans with different numbers of DPUs as well
as with different numbers of tasklets. The baseline in these experiments is the usual CPU
execution of the table scan with varying numbers of hardware threads (1-32). Furthermore,
each thread performs the scan operation on the same number of chunks. The results in the
baseline execution are saved in a result vector similar to the DPU program in order to obtain
a workload as similar as possible. With a particularly large number of DPUs (164 or more),
the execution runtimes change only slightly, since the size of the workload also changes
only very slightly. The sweet spot for parallelism is around 12-24 task sets and a DPU count
of around 160 for this table size.
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As the number of tasklets increases, the parallelism of the execution also increases. This
can further improve the runtime. Furthermore, with an increasing number of DPUs the
parallelism increases additionally. However, it can be seen that around 32 DPUs, which are
used for the table scan, the runtime approaches the baseline of the CPU execution more and
more. From 128 DPUs and the maximum number of 24 tasklets, the PIM execution is even
faster than the CPU execution with all available hardware threads.

In summary, it can be concluded that the full utilization of the parallelism of the tasklets and
a high number of DPUs can improve the runtimes of table scans by a considerable amount.
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6.3 Table Size

The execution times of the DPU scan with different table sizes are given in Fig. 7. The
baseline of this experiment is again the execution of the table scan on the CPU with all
available hardware threads. Each of these hardware threads executes the scan for several
chunks. To achieve a similar workload, the baseline execution stores the result in a result
vector, similar to the DPU program. The table size is represented by a different number of
chunks. One chunk contains up to 817 records. A table that consists of 1000 chunks (1K)
contains up to 817.000 entries. For this benchmark, we created an additional graph from
using the LDBC SNB dataset containing 50% Post-nodes and 50% Person-nodes.
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The linear increase in the execution time can be seen directly for all executions. Furthermore,
the table scan on the DPU itself with a small number of 32 DPUs is much faster than the
corresponding execution on the CPU with 32 threads. The high task parallelism can lead to
very fast processing of the scan. Anyway, to enable the highest possible parallelism of the
DPUss, it is necessary to have as little inter-DPU communication as possible and as little
synchronization as possible at the tasklet level. In our approach, each tasklet worked on its
own allocated memory space on the MRAM. Thus, no synchronization mechanisms were
necessary. The result is a significant runtime improvement of the table scan.
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Fig. 8: Table transfer times from host to DPUs with different numbers of DPUs.
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6.4 Data transfer

Fig. 8 shows the transfer times of large tables for different numbers of DPUs. For this
experiment, we created several graphs with different numbers of chunks, ranging from 1000
(1K) to 12000 (12K). Each chunk contains up to 817 node records. We considered the
transfer times on different numbers of DPUs to study the parallel data transfer. Furthermore,
we made sure that the total number of chunks is distributed among the DPUs. If the amount
of data does not fit into the memory of the DPUs, the data transfer would have to be executed
multiple times. The results clearly show that the transfer times increase as the number of
data increases. Parallel data transfer can reduce the transfer times by a few milliseconds. For
example, the transfer time can be decreased by half if all 510 DPUs are used instead of 32.

Since the data only has to be loaded into the memory of the DPUs at the startup of
the database, the result of the data transfer is acceptable. However, by using interleaved
execution, the transfer times of data can be hidden. However, these possibilities are outside
the scope of this paper.

7 Conclusion

The table scan is the most basic operator in the query processing of databases. In this work,
we have investigated how we can accelerate table scans with filters using PIM technology.
However, this approach requires an adapted design, since this new paradigm brings different
characteristics with it, such as the transfer of data and the partitioning of the workloads in
order to achieve the highest possible parallelism. As shown in the benchmarks presented
here, PIM technology can outperform the runtime of a comparable CPU execution. To
achieve this, however, high parallelism is needed. Furthermore, PIM technology can also be
used to improve other operators. It is conceivable that especially the operators which are
needed in graph databases for traversing can be further improved in their runtime.

Even when utilizing the CPU with its maximum possible parallelism, the results cannot
come close to the runtimes of a table scan on multiple DPUs. With very large tables, this
effect becomes even more pronounced. This has several implications for the execution of
table scans. To save as much runtime as possible, as much data as possible, if not all of it,
must be transferred to the DPUs’ memory. A problem that comes along with this is data
transfer. As shown in the evaluation, the transfer times increase with increasing table size.
To take advantage of this as much as possible, the data must be transferred to the memory
when the DBMS is started. The execution of updates and the maintenance of the consistency
of this data is another problem, which is outside the scope of this paper. Furthermore, the
data transfer can be optimized by using the possible bandwidth of the DPUs to transfer as
much as possible in parallel.



812 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

The economic aspect of the currently available PIM hardware cannot be fairly measured and
compared to the baseline hardware at the time of this work. Current hardware is currently
only prototypically distributed by the UPMEM company.

8 Outlook

In future work, plan to integrate the compilation process of DPU programs directly into the
query compiler. This would allow more flexible filter operations instead of only pre-coded
filters. Furthermore, the design of an approach for asynchronous execution can be subject
to investigation. The data transfer times are particularly high for very large tables. If this
data were to be transferred to the DPUs before query execution, this would have a negative
impact on the overall response time of the system. With an adaptive design, which transfers
data asynchronously and executes it in parallel on different DPUs or on the rank level,
this problem can be efficiently overcome. Finally, having multiple memory technologies
including PIM available in a database server raises the question of data placement and/or
efficient data transfer.
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