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Abstract: Recent years have seen a proliferation of mobile devices connected to the
internet, including connected cars. These systems send a stream of position annotated
messages when requesting location based services. The position information in turn
can be used to improve those services. Here, we focus on online map matching of
the most recent position of a connected vehicle on a road map. This information,
aggregated and privacy aware, can serve as a basis e.g. for machine learning algorithms
used to improve traffic prediction. We describe a system for online map matching in
the backend that implements a state of the art algorithm based on a Hidden Markov
Model. This system uses only open source software and open data. The development
of the map matcher was motivated by a perceived lack of a scalable system in the open
source realm. We discuss its role as part of a scalable backend system designed to
provide spatially aware services.

1 Introduction

Connected mobile devices have become commonplace, reaching from smartphones and

tablets to cars and watches. These devices use their connection to the internet to provide

various services such as navigation, traffic alerts, shopping, restaurant reviews and other

points of interest (POI) information. Many of these applications need to know the lo-

cation of the user in to provide the best service. Hence, several studies have been pub-

lished that evaluate movement patterns in cities from pedestrians to cyclists and taxis

([RWFP06, LLC+14, KSR13, LZL+12]). Here, our focus is on cars as connected de-

vices. In contrast to pedestrians and cyclists, cars are bound in their movement to road

networks. In many cases, it is not necessary to know the exact location of a car in order to

provide a service, e.g. pharmacies close by can be listed with only a rough position esti-

mate of the car. Nevertheless, in order to receive relevant traffic information, it is essential

to know a drivers exact location including the position on a road segment. Crucially, such

information can be used to assess the current traffic situation at a specific location. In
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Figure 1: Shows the map matched path of a vehicle (blue dots connected by purple line). The road
map is compiled from OSM data. Red color indicates a primary road, green color secondary roads.

such examples, noisy location information, provided e.g. by GPS measurement, must be

mapped onto the most likely position on a road network. This problem is referred to as

map matching.

Here, we describe a system for online map matching in the backend. It is part of a scalable

backend system designed to provide spatially aware online services. The development

of this system was motivated by a perceived lack of a scalable map matcher in the Open

Source realm. The main contribution is the map matcher1 that is to be released to the

Open Source community. Section 2 gives an introduction to the algorithm we used for map

matching. Section 3 presents the architecture of the map matcher and discusses options

for scaling. Finally, we discuss future steps.

2 Foundations

2.1 Map matching

A trajectory is defined here as the path of a vehicle on a road network. The objective of tra-

jectory map matching is to estimate this path from noisy position data (e.g. from GPS). The

road map represents the topology of the road network and, since every point is localized, it

also provides a geometric representation. The vertices of the road topology correspond to

intersections. Edges represent end-to-end connections between intersections, also referred

1https://github.com/bmwcarit/barefoot
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to as road segments. Since we define edges to be unidirectional, a bidirectional road seg-

ment is represented by two edges with opposite directions. The vehicle’s path is sampled

in a sequence of position measurements (z0, . . . , zT ) during a time interval [0, 1, . . . , T ].
Each position measurement zt with t ∈ [0, T ] corresponds to a position st on the map, i.e.

a position on an edge of the road topology. Since position measurements zt are subject to

measurement errors, they can be matched to more than one map position. The set of pos-

sible map positions for each measurement zt is denoted as the set of position candidates

St.

Map matching can be modeled as a probabilistic problem. It corresponds to finding the

most likely sequence of system states in a Markov chain [RN99].

Definition 1. Trajectory map matching is defined as finding the most likely sequence of

position candidates P̃ = (s0, . . . , sT ) with

P̃ = arg max
s0,...,sT

p(s0, . . . , sT |z0, . . . , zT ), (1)

where st ∈ St with t ∈ [0, T ]. The probability that the sequence (s0, . . . , sT ) corresponds

to the actual trajectory of the vehicle, given the measurements (z0, . . . , zT ), is denoted as

p(s0, . . . , sT |z0, . . . , zT ).

Definition 1 restricts trajectory map matching to finding a sequence of map positions only.

It ignores the vehicle’s path between map positions. Nevertheless, the path gives evidence

on the likeliness of a position sequence e.g. a shorter path is more likely than a longer

one. This is considered in the probability p(s0, . . . , sT |z0, . . . , zT ). However, identifying

a path requires route assumptions for interpolating the vehicle’s trajectory. This is left to

a router that can be configured to use an arbitrary routing cost function. The router takes

a tuple of map positions (st−1, st) with t ∈ [1, T ] and returns the path from position st−1

to position st, denoted as 〈st−1, st〉, with minimum costs according to the chosen cost

function. A path is a sequence of edges of the road topology. The obtained paths are

then assessed with a probability and can be considered in the overall solution of the map

matching problem.

Trajectory map matching is computationally expensive, especially if the number of posi-

tion measurements is large. However, many online services require a position estimate st

only for the most recent measurement zt. In a Markov chain, this corresponds to system

state filtering [RN99].

Definition 2. Online map matching is defined as finding the most likely map position s̃t

with

s̃t = arg max
st

p(st|z0, . . . , zt), (2)

where st ∈ St and t ∈ [0, T ]. The probability that the position candidate st corresponds

to the actual position of the vehicle on the road network, provided the measurements up to

the most recent (z0, . . . , zt), is denoted as p(st|z0, . . . , zt).

Our focus lies on online map matching as it is required by many online services.
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2.2 Hidden Markov Model map matching

Hidden Markov Model map matching has been established as state of the art method

for both offline [NK09] and online map matching [GDM+12]. The first-order Hidden

Markov Model (HMM) defines a system’s behavior over time as a sequence of system

states (s0, . . . , sT ). They are referred to as hidden since the actual system states can only

be observed by a sequence of emissions (z0, . . . , zT ) [RN99]. As illustrated in Figure 2,

each emission zt is the result of an observation (wavy arrows) of the system’s state st at

time t ∈ [0, T ]. The state st at time t is one of many possible states in a finite set of state

candidates St. Since observations are subject to measurement noise, their uncertainty can

be modeled by an emission probability p(zt|st). The state transitions, depicted as straight

arrows, are part of a stochastic process with transition probability p(st|st−1).

s0 s1 . . . st−1 st

z0 z1 . . . zT−1 zT

p(s1|s0) p(sT |sT−1)

p(z0|s0) p(z1|s1) p(zT−1|sT−1) p(zT |sT )

Figure 2: First-order Hidden Markov Model for trajectory map matching. Each emission zt is the
result of an observation (wavy arrows) of the system’s state st at time t ∈ [0, T ]. The state transitions
(straight arrows) are part of a stochastic process with transition probability p(st|st−1). A state refers
to a map position of a vehicle and emissions refer to position measurements. The transition between
system states corresponds to the path between map positions.

The first-order HMM makes the following assumptions about state transitions and emis-

sions [RN99]:

• Markov state assumption: The system state st at time t ∈ [1, T ] depends only on the

previous state st−1 such that p(st|s0, . . . , st−1) = p(st|st−1).

• Markov sensor assumption: The probability of emission zt at time t ∈ [0, T ] de-

pends only on the current state st such that p(zt|z0, . . . , zt−1, s0, . . . , st) = p(zt|st).

In the context of map matching, a state refers to a map position of a vehicle and emissions

refer to position measurements. The transition between system states corresponds to the

path between map positions. The solution to the online map matching problem follows a

recursive approach of state filtering [RN99]:

Theorem 1. The most likely map position s̃t corresponding to a position measurement zt

can be deduced from Definition 2 given that

p(st|z0 . . . zt) = α · p(zt|st) ·

St−1
∑

st−1

p(st|st−1) · p(st−1|z0 . . . zt−1), (3)

2112



where p(st|z0 . . . zt) is the probability of position candidate st ∈ St, given the position

measurements (z0, . . . , zt). Further, p(st−1|z0, . . . , zt−1) is the probability of position

candidate st−1 ∈ St−1, given the position measurements (z0, . . . , zt−1). The emission

probability of position candidate st is p(zt|st) and transition probability from position

st−1 to position st is p(st|st−1), and α is a normalizing constant. The probability of

initial position candidates s0 ∈ S0 is

p(s0|z0) = α · p(z0|s0). (4)

Both equations (3 and 4) are derived using Bayes’ rule.

2.3 Online map matching algorithm

Theorem 1 provides a recursive solution to the online map matching problem (Definition

2). It can be implemented as an online algorithm that iteratively determines the best esti-

mate of the vehicle’s map position s̃t. Each position measurement zt triggers an iteration

of the algorithm and updates the position estimate. The implementation of the algorithm

is straight-forward. It remains to provide robust strategies for the selection of position

candidates and the determination of their emission and transition probabilities. The strate-

gies of our implementation are mainly adopted from [NK09] which are similar to those

used by [LZZ+09, GDM+12]. It identifies map position candidates St as points on a road

segment that have minimum geodesic distance to the measurement zt. The road segments

must overlap with a geodesic circle around the position measurement zt. The emission

probabilities p(zt|st) are defined as a Gaussian distribution

p(zt|st) ∼
1

√

2πσ2
z

exp

{

−
||zt − st||

2

2σ2
z

}

, (5)

where σz is the standard deviation of GPS measurements and ||zt − st|| is the geodesic

distance between map location st and measurement zt. The determination of transition

probabilities requires routing from position candidate st−1 to st. The obtained path is

denoted as 〈st−1, st〉 and has length |〈st−1, st〉|. In [NK09], transition probabilities have

been experimentally determined to fit a negative exponential distribution

p(st|st−1) ∼ λ exp
{

λ (||zt − zt−1|| − |〈st − st−1〉|)
}

, (6)

where it remains to find the best parameterization (estimate of λ) for a specific sampling

set, i.e. the sequence of position measurements.
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3 The system architecture

3.1 The online map-matching system

The online map-matching system processes a stream of position measurements (z0, . . . , zt)
in order to determine a vehicle’s most likely position s̃t on the map that corresponds to the

most recent position measurement zt. Figure 3 depicts the high level architecture of our

system. It consists of an online map matching component (Filter), a geometrical road map

(Map), a routing unit with a separate road map topology (Router) and a memory unit that

provides access to state information of the tracked vehicle (State).

Filter State

Map Router

zt s̃t
St−1

St, p, s̃t

zt St (st−1, st)
〈st−1, st〉

Figure 3: Architecture of a HMM map matching system consisting of an online map matching
component (Filter), a geometrical road map (Map), a routing unit with a separate road map topology
(Router) and a memory unit that provides access to state information of tracked vehicle (State).

The filter implements the online map matching algorithm as described in Section 2.3 and

is executed when it receives a position measurement zt. In the first step, the filter se-

lects map position candidates St from the map, i.e. road segments near measurement zt.

The map is compiled from OpenStreetMap2 data and represents road geometries using

geometry data structures provided with ESRI’s Java Geometry API3. This library comes

with a spatial index data structure (Quadtree) that enables efficient spatial range search for

nearby road segments [Sam90]. Spatial operations such as geodesic distance calculations

or point-to-line projections in WGS-84 map projection are only partially supported. To

provide this functionality, we used and extended the Java implementation of Geographi-

cLib4 maintained by Charles Karney which provides even more exact geodesic distance

calculations [Kar13].

In the second step, the filter requests the path 〈st−1, st〉 for each pair of position candidates

(st−1, st) with st−1 ∈ St−1 and st ∈ St. The path is provided by the router component.

We evaluated several Open Source routers that rely on OpenStreetMap data. The pgRout-

ing5 project provides routing extensions for the PostgreSQL database management system

2http://openstreetmap.org
3http://github.com/Esri/geometry-api-java
4http://geographiclib.sourceforge.net
5http://pgrouting.org
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that can be executed within a SQL query. It has a significant overhead since the routing

algorithms are implemented in C functions that load data from database into memory on

each execution. GraphHopper6 is a Java-based router that is highly optimized for long

distance routing, e.g. using graph contraction hierarchies. However, its programming in-

terface does not support routing between pre-defined road segments. Routino7 is another

router implementation for OpenStreetMap data and was discarded because it is licensed

under the AGPL (GNU Affero General Public License) that we assessed as too restrictive.

In the final step, the filter determines emission probabilities p(zt|st), transition probabili-

ties p(st|st−1) and posterior probabilities p(st|z0, . . . , zt) for each pair of position candi-

dates (st−1, st) with st−1 ∈ St−1 and st ∈ St. The vehicle’s state information, i.e. map

position candidates St, probabilities p(st|z0, . . . , zt) for each st ∈ St (in Figure 3 denoted

as p) and the most likely map position s̃t, is saved to memory. To enable online map match-

ing of multiple vehicles, it is necessary to associate incoming position measurements zt

and state information saved in memory with object identifiers. To provide efficient mem-

ory access, it is necessary to maintain a search index on those identifiers. Furthermore,

services typically query for all objects that are within a certain range. Thus, we also use a

spatial search index on position estimates s̃t to increase search performance [Sam90].

3.2 Strategies for scalability

Our online map-matching system must process and organize information timely without

being affected in its performance by the number of mobile objects that it tracks. We

refer to the number of messages per second as the system’s load. A system is scalable

if it guarantees a fixed response time independently of its load by increasing computing,

storage and communication elements. There are two approaches to system scaling: The

first is to scale up a computer system by increasing the capacity of existing resources, such

as by using faster processors or bigger memory. This is referred to as vertical scaling which

is the focus of research in multicore systems and storage media. The second approach is

referred to as horizontal scaling in which a computer system is scaled out by adding more

machines (cluster nodes). Here, we focus on horizontal scaling.

Figure 4 shows a generic architecture for a scalable online map-matching system. Com-

ponents can be implemented using different Open Source software solutions. The archi-

tecture scales up the online map-matching system of Figure 3. It uses two major clusters,

i.e compute cluster (C), with n nodes, and storage cluster (S), with m nodes. Each node

of the compute cluster runs an instance of the filter, map and router. The state memory is

distributed over nodes s1, . . . , sm of the storage cluster (S). A load-balancer (L) distributes

incoming messages over compute nodes. Each compute node performs map matching as

described for a single-node system, while it reads and writes state information from or to

the storage cluster. The filters of compute nodes access state information directly by object

identifiers. In contrast, service applications (A) query state information mostly by spatial

search through a query layer (Q) provided by the storage cluster.

6http://graphhopper.com
7http://routino.org
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c1

c2
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S

s1

s2

...

sm

Q A

Figure 4: Scalable system architecture for online map matching. A load balancer (L) distributes
message streams to a compute cluster (C). The compute cluster uses the storage cluster (S) that itself
is queried from applications (A) via a query layer (Q). We refer to two physically separated clusters;
however, advanced approaches may separate these clusters only logically to enable physical locality
of computing and storage resources.

The major design decisions made with this architecture are:

• The compute and storage cluster can be physically separated. Hence, the size of

each cluster (m and n) can be scaled independently such that only those resources

have to be added that are running out, i.e. either storage or computing resources.

• The compute cluster consists of interchangeable nodes meaning that each message

can be processed by any of those nodes. This simplifies load-balancing.

• The storage cluster is accessed by compute nodes and services in a different man-

ner, allowing for the independent optimization of each type of state access, i.e. by

identifier search or spatial search.

The components of this architecture (Figure 4) can be implemented completely with Open

Source software. Apache Kafka8 is a distributed messaging system that can be used as

multi-node load-balancer. A broker distributes incoming messages over a set of queues,

referred to as partitions, randomly. Each compute node can fetch messages from a dedi-

cated partition exclusively in a work-stealing fashion. In each partition, ordering of mes-

sages is strictly conserved; however, distribution over partitions violates strict ordering

of messages among partitions. This is a relaxation of fairness that is necessary to gain

scalability. [HKLP12] In our system, this is acceptable if the ordering of messages sent

from a participant is conserved with high probability, which is satisfied if no partition has

significantly higher throughput than any other. Messages that are processed out-of-order

are discarded. This is necessary to prevent overwriting of state information with older

information. Hence, the service quality corresponds to that of a soft real-time system.

The compute cluster requires a runtime environment for the map matcher components,

i.e. filter, map and router. This also requires capabilities for scalable real-time stream

8http://kafka.apache.org
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processing as it is available with Apache Storm9. It provides a framework for implement-

ing directed acyclic computation graphs which are automatically deployed to compute

nodes. Message streams are processed under soft real-time constraints. It is fail-safe and

scalable to an arbitrary number of nodes. Apache Spark Streaming10, a recent extension

of Apache Spark for stream processing, provides an alternative with similar capabilities.

Synchronization between compute nodes can be implemented with Apache Zookeeper11,

a scalable distributed directory service for maintaining configuration information and pro-

viding distributed synchronization. It is also used by various other software components

as e.g. Apache Kafka and Apache Storm.

The storage cluster can be realized by Apache Cassandra12, a database management sys-

tem that provides key-value data access and linear scalability. During message processing,

compute nodes can access state information by object identifiers with low latency by us-

ing respective index structures. The index structure is organized in such a way that the

range of identifiers is partitioned over storage nodes where each storage node holds state

information for a well-defined range of identifiers. This way, accessing storage by object

identifiers can be forwarded directly to the respective storage node. (This is also referred

to as direct mapping.)

Apache Cassandra supports map reduce queries with Apache Hadoop13 by implementing

the interface of the Hadoop Distributed File System (HDFS). This is sufficient to imple-

ment a query layer e.g. by using the following approach: To enable efficient search for

objects by spatial properties, i.e. the object’s last-known position, one must define a sec-

ondary index. This index can be created by hashing the position, e.g. using a geohash

as implemented in one of various Open Source libraries14. A general problem with sec-

ondary indices, however, is that the values associated with a key can be located on any

storage node. This is referred to as fully-associativity which is contrary to direct mapping.

As a consequence, secondary index keys must be queried on each storage node which

decreases performance. Nevertheless, map reduce with Apache Hadoop can query each

storage node in parallel avoiding high latencies. Another performance problem arises with

geohashes that require a range query to be split to all possible geohashes within this range.

Querying larger areas may then be subject to massive performance drops. The problem is

similar with querying nearest neighbors and could be solved in future with spatial index

data structures such as Quadtree [Sam90], R-Tree [Gut84] or R*-Tree [BHPSS90].

4 Discussion

In this paper we discussed the role of map matching as a first and central step in providing

location based services. We describe a map matcher that is both scalable and uses a state

9http://storm.incubator.apache.org
10http://spark.incubator.apache.org/docs/0.9.0/streaming-programming-guide.html
11http://zookeeper.apache.org
12http://cassandra.apache.org
13http://hadoop.apache.org
14https://github.com/davidmoten/geo
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of the art map matching algorithm (Hidden Markov Model) that we believe is missing

in the Open Source domain. This software is important yet non-differentiating from the

OEM (Original Equipment Manufacturer) point of view and can hence be published and

developed in a cooperative Open Source community.

The quality of trajectory map matching depends on the selection of state candidates and de-

termining emission and transition probabilities. These problems are tightly coupled since

candidates can be selected by maximizing the observation and transition probabilities.

This is not yet fully utilized as the transition probability depends on local characteristics

of the road network that are ignored. Further, in-vehicle systems could exploit information

from the car (vehicle turns, velocity, computer vision, etc.). Backend systems, in turn, can

exploit statistical information including:

• Turn probabilities at intersections can serve as base rate if other measurements are

inclusive or contradictory.

• The velocity distribution of road segments can provide information for map match-

ing, e.g. if parallel roads are close to each other and one of the two is a secondary

road with usually lower speeds.

As coverage of technologies like LTE increases we anticipate a steady rise in communica-

tion between connected devices and backend systems, including cars. Nonetheless, since

many services require the use of multiple data sources, we expect that the backend will

continue to need the ability to localize all information on a common map and hence will

require a scalable map matcher component.

We envision our map matcher as a component of a scalable, Open Source based backend

ecosystem optimized for spatial-temporal data and service management. Such an ecosys-

tem should enable scalable stream processing and data management with low latency ser-

vice access and the ability to process large data sets for statistical information that can be

used to optimize services. The quality of these services, in turn, is a differentiating factor

where competition between market participants will take place. We believe that a tight

integration to projects from established players in the Open Source community, such as

the OpenStreetMap and the Apache Software Foundation, will be the key to success.
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