
On the Cache Access Behavior of OpenMP Applications

JieTaoandWolfgangKarl
Institut für RechnerentwurfundFehlertoleranz,

UniversiẗatKarlsruhe(TH), 76128Karlsruhe,Germany
E-mail: {tao,karl}@ira.uka.de

Abstract:
The widening gap between memory and processor speed results in increasing re-

quirements to improve the cache utility. This issue is especially critical for OpenMP
execution which usually explores fine-grained parallelism. The work presented in this
paper studies the cache behavior of OpenMP applications in order to detect poten-
tial optimizations with respect to cache locality. This study is based on a simulation
environment that models the parallel execution of OpenMP programs and provides
comprehensive information about the runtime data accesses. This performance data
enables a detailed analysis and an easy understanding of the cache operations per-
formed on-line during the execution.

1 Introduction

Sharedmemorymodelshavebeenwidely usedfor programmingparallelmachinesdueto
theirability to providetheprogrammerswith asimplemodelfor specifyingparallelismin
applications.As aresult,varioussharedmemorymodelshavebeendevelopedoverthelast
years. Among thesemodels,OpenMPis becomingespeciallyimportant,sinceit allows
incrementalparallelization,andis portable,scalable,andflexible. In addition,OpenMP
supportstheparallelizationof a wide setof applicationsrangingfrom scientificcodesto
any existingsequentialprograms.

However, like with any other programmingmodels,many OpenMPprogramsfacethe
efficiency problemwith respectto parallelexecutionthatusuallyexhibitsbadperformance
on multiprocessorsystems.This is causedby variousissues,amongwhich poor cache
locality is rathercritical.

Modernarchitecturestraditionally deploy several cachesin deepmemoryhierarchiesin
orderto bridgethewideninggapbetweenmemoryandprocessorspeed,whichhasadras-
tic impacton theoverall performanceof currentsystems.Dueto thecomplicatedaccess
patternof applications,however, theadvantageof cachescanusuallynotbefully exploited
resultingin the fact that still a largenumberof memoryaccesseshasto beperformedin
themainmemoryat runtimeduringtheexecution.This renderslocality optimizationwith
respectto cacheutility asnecessary. A prerequisitefor this is the informationaboutthe
application’smemoryaccesscharacteristicsandtheruntimecachebehavior.

Existing approachesfor acquiringperformancedatacan roughly be divided into three
categories:

410



• Hardwarecountersbuilt into theprocessor. Onmodernmicroprocessorsthereexists
asmallsetof registersthatcountsevents,theso-calledhardwareperformancecoun-
ters[In98]. Thesecountersarecapableof monitoringthe occurrencesof specific
signalsandprovidesvaluableinformationabouttheperformanceof critical regions
in programs.

• Hardware monitorsconnectedto a specificmemory location. Several multipro-
cessorsdeploy hardware performancemonitorsto count bus and network events
[Gu92].

• Simulationsystemscoveringthecompletememoryhierarchy. Within thisapproach,
a simulationenvironmentis establishedthatmodelsthe targetarchitectureandthe
executionof applicationcodes.

The first option, the hardwarecounters,allows preciseandlow–intrusive measurements
duringtheexecutionof applications,but is restrictedto very specificeventslike thetotal
numberof cachemissesor thenumberof memoryaccesses.This informationis therefore
oftennotsufficient for adetailedoptimization.Thehardwaremonitors,on theotherhand,
arecapableof offering fine-grainedperformancedata,but with high hardwarecostand
intrusiondelaytherebylosingtheability to captureall accesseswhendeployedwithin the
processorcore.

Hence,we usethe simulationapproachthat allows the acquisitionof completeperfor-
manceinformationandeasierstudyof accessbehavior on variousprogramregionsand
phases.For this,anOpenMPsimulationinfrastructurehasbeendeveloped,whichis based
on anexisting multiprocessorsimulatorSIMT [TSK03] andtheOmni OpenMPcompiler
[KSS00]. While Omni is usedto transformthe OpenMPdirectives,SIMT modelsthe
OpenMPexecutionon targetarchitecturesandoffersdetailedinformationaboutthecache
accessbehavior. This allows to analyzethe runtimedatalayout anddetectoptimization
locations,forming ageneraltool for tuningOpenMPapplications.

The restof the paperis structuredasfollows. Section2 briefly describesthe simulation
environmentwith a focuson thecombinationof SIMT with Omni. This is followedby an
overview of thebenchmarkapplicationsusedfor this studyin Section3. In Section4, ex-
perimentalresultsconcerningcachebehavior andsomeinitial optimizationsarediscussed.
Thepaperconcludeswith a shortsummaryandsomefuturedirectionsin Section5.

2 The OpenMP Simulation Environment

Simulationis regardedasa feasibleapproachfor understandingapplications’execution
behavior andevaluatingnovel architectures.Over the last years,many simulationtools
targetingmultiprocessormachinesweredevelopedandhavebeenusedfor improvinghard-
waredesignsandsystemperformance.In orderto studythememoryaccessbehavior of
parallelapplicationsonNUMA (NonUniform MemoryAccess)machines,suchasimula-
tor, calledSIMT [TSK03], hasbeendevelopedandusedto optimizeprogramcodeswith
thegoalof minimal inter-nodecommunications.

411



SIMT Overview SIMT is an event-driven multiprocessorsimulatormodelingarchitec-
tureswith global memoryabstractions.It directly runstheexecutableon hostmachines
andsimulatesthemultithreadedexecutionof parallelapplications.As it aimsat support-
ing the researchwork on memorysystem,SIMT containsa detailedmemoryhierarchy
simulator, which modelsmulti-level cacheswith variouscachecoherenceprotocolsand
distributedsharedmemorywith aspectrumof dataallocationschemes.In addition,SIMT
usesa specificmonitoringcomponentto collectperformancedata.This monitoringcom-
ponentcanbeselectively combinedwith any locationin thememoryhierarchy, allowing
theacquisitionof completeandaccurateperformancedataaboutruntimememoryrefer-
ences.

SIMT, onthetop level, canroughlybedividedinto afront-endandabackend.Theformer
simulatestheexecutionof multiple threadsrunningonmultiple processorsin paralleland
generateseventsof interest,while thelatteris atargetsystemsimulatorinvokedeverytime
a significanteventoccurs.Eventsarememoryreferencesandsynchronizationprimitives,
andaregeneratedby instrumentingtheassemblycodewith anaugmenter.

For nativeexecutionof parallelthreads,SIMT providesathreadpackagethatsupportsone
threadonthehostmachinefor eachsimulatedapplicationthread,in additionto asimulator
threadfor executingthe simulationcodeandthe architecturesimulator. SIMT switches
context betweenthesethreadswhenaspecificeventoccurs.Besidesthis,SIMT schedules
the threadsin the samemannerlike on actualmultiprocessorsystemsandcomputesthe
executiontime in a fashionasif thecodewouldbeexecutedin parallel.

At the end of the simulationSIMT provides the elapsedexecutiontime and simulated
processorcycles,numberof total memoryreferences,andnumberof hits andmissesto
eachcacheon the system. In addition, its monitor simulatorprovidesmemoryaccess
histogramswith respectto caches,mainmemories,andthecompletememorysystem.The
cachehistogramcontainsinformationaboutloading,hit/miss,andreplacementon each
cacheline, while the memoryhistogramrecordsthe accessesto all pageson the whole
virtual spaceandthecompletehistogramoffersnumbersof accesshits on eachlocation
of thememoryhierarchyat word granularity. Thesehistogramsaremodifiedperiodically
andcanbeaccessedduringthesimulationof anapplication,enablinghenceoperationsof
any on-linepurpose.

Overall,SIMT hasbeendevelopedto beageneraltool for systemdesignandperformance
prediction.Themaincontribution of SIMT is thememorymodelingandthecomprehen-
sive performancedataaboutthe runtimememoryaccesses.This allows SIMT to aid the
usersin the taskof analyzingthe cacheaccessbehavior, memoryaccessbehavior, and
applications’executionbehavior, andof studyingthe impactof locality optimizationson
thememorysystem.

Simulation of OpenMP As describedabove,SIMT is afeasiblemultiprocessorsimulator
capableof exhibiting theaccessbehavior of memorysystemsandevaluatingtheparallel
executionof applications.However, it is initially designedfor runningC/C++codes,like
thosewithin theSPLASH-2benchmarksuite[WOT+95], whichuseANL likem4macros
to expressparallelism. In order to simulatethe OpenMPexecution,modificationsand
extensionsarenecessarywith bothSIMT andOpenMPcompilers.

For SIMT themosttediouswork hasbeendoneto allow nestedparallelism,whichcanbe
found within anOpenMPprogram.For this the structureof SIMT’s threadpackagehas

412



beenchangedin orderto reusethe threadstructuresfor a new parallelconstruct.On the
compilerside,a new OpenMPlibrary is neededfor transformingthesemanticsfrom real
multithreadsto simulatedmultithreads.For this theOmniOpenMPcompiler[KSS00] has
beendeployed.

Omni is a source-to-sourceOpenMPcompilertranslatingC andFortran77programswith
OpenMPdirectivesinto C codesuitablefor compilingwith a native compilerlinkedwith
the Omni OpenMPruntimelibrary. In orderto enableSIMT contexts, several functions
within theOmni OpenMPlibrary have beenrewritten: (1) theompcdo parallelfunction
is replacedwith a subroutinethat createsSIMT user-level threads.In this way OpenMP
threadscanbesimulated.(2) functionsfor implementingsynchronizationprimitives,such
aslocksandbarriers,arerewritten usingSIMT semantics.This is necessarybecausethe
traditionalOpenMPimplementationof theseprimitivesresultsin deadlockson thesimu-
lationplatformdueto SIMT’s threadschedulingmechanism.Within SIMT, theexecution
control switchesfrom threadto threadin casethat a reador write event occurs. This
indicatesthat a lock operation,for example,which issuesa memoryreferencevia set-
ting the lock variableandswitchesthe executionto anotherthreadbeforethe unlock is
performed,cancausedeadlocks.(3) functionswith respectto schedulingarespecially
handledin orderto grantcorrectcomputationdistribution. Currently, SIMT only supports
staticscheduling,whichstaticallyassignsparallelwork to threadsin around-robinfashion.
(4) functionsconcerningsequentialregionsandorderedexecutionarereplaced.An exam-
ple is ORDEREDthatforcesthreadsto runin aspecificorder. Onanactualexecution,this
orderis maintainedwith a global identifier thatspecifiesthenext threadto run. Threads,
whoseid doesnot matchthe global identifier, have to wait until the active threadleaves
theorderedregionandmodifiestheglobalidentifier. For simulation,however, thisscheme
cannot be usedbecausethreadsareactuallysequentiallyexecuted.This meansthat the
executioncontrol,whenownedby athreadwaiting for thepermissionto entertheordered
region, cannot be transferedto theactive threadfor modifying theglobal identifier. For
tacklingthisproblem,weuseexplicit eventsandappropriatehandlingmechanismsthatare
capableof forcing context transformationbetweensimulatedthreads.For otherOpenMP
pragmaanddirectivessimilarwork hasalsobeendone.

In summary, we have implementedthesimulationof OpenMPbasedon SIMT andOmni.
Actually, thisapproachcanbeappliedto otherOpenMPcompilers.For instance,we have
madea new OMP library for theADAPTORcompiler[AD02] in thesameway, allowing
thesimulationof Fortran90applications.

3 Benchmark Applications

In orderto fully understandthevariousaspectsof cacheaccessbehavior, we have simu-
latedavarietyof benchmarkapplications.Thisincludesthejacobi codefrom theOpenMP
Organizationwebsite[WW], severalnumericalcodesfrom theBenchmarksuitedeveloped
by theHigh PerformanceSupportUnit at theUniversityof New SouthWales[St01], and
a few kernelsfrom theNAS parallelbenchmarks[Bea94, JFY99].

Jacobi jacobi isaneasy-to-follow kernelprogramwrittenin Fortran.It solvestheHelmholtz
equationwith a finite differencemethodon a regular2D-mesh,usingan iterative Jacobi

413



methodwith over-relaxation.Thiscodeis well suitablefor studyingloop-levelparalleliza-
tion andtheassociatedcacheperformance.

The main working set is a large 2D matrix usedto storethe resultsof currentiteration
andan additionalarray usedto storethe resultsof the previous iteration. Within each
iteration, two loop nestsaredeployed, wherethe first loop performsarray initialization
by copying the additionalarray to the main matrix, while the secondloop executesthe
sweepoperation.Thecalculationterminateseitheraftera certainnumberof iterationsor
the resultsarewithin the expectederror range. For the OpenMPversionboth loopsare
parallelized.

Matmul and Sparse matmul andsparse areFortranprogramschosenfrom thebenchmark
suitedescribedin [St01]. Theseprogramsweredevelopedfrom asetof smallpedagogical
exampleswritten for anSMPprogrammingcourse.

matmul andsparse bothperformmatrix multiplicationwith theformer for densematrix-
vectorandthelatterfor sparsematrix-vectorin which mostelementsarezero.Thedense
matrix is storedandcomputedin thenormalrow-columnmanner. For thesparsematrix,
however, acompressedstorageschemeis usedin orderto savespaceandexploreexecution
efficiency. Usingthis scheme,thenonzeroelementsof thematrix arestoredastwo arrays
with thefirst arrayfor thevaluesandthesecondfor theposition,i.e. thecolumnnumber.
To multiply this sparsematrix with a densevector, the sparse codeperformsthe dot-
productfor eachsparserow, whereeachvaluein theith sparserow is multiplied with the
i valueof thedensevectorandtheindividual resultsareaccumulated.

NAS OpenMP Benchmarks NAS ParallelBenchmarks[Bea94] weredesignedfor com-
paring the performanceof parallel computersand are widely recognizedas a standard
indicatorof computerperformance.The OpenMPversionusedin this work is acquired
from the Omni projectwebsite. SelectedapplicationsincludeFT, LU, andMG. All of
themarewritten in C.

FT containsthecomputationalkernelof a three-dimensionalFFT-basedspectralmethod.
It performsthreeone-dimensionalfastFourier transformations,onefor eachdimension.
LU is asimulatedCFDapplicationthatusessymmetricsuccessiveover-relaxation(SSOR)
to solve a block lower triangularandblock uppertriangularsystemof equationsresult-
ing from an unfactoredfinite-differencediscretizationof the Navier-Stokesequationsin
threedimensions.MG usesa multigrid algorithmto computethe solutionof the three-
dimensionalscalarPoissonequation.Thealgorithmworkscontinuouslyon a setof grids
thataremadebetweencoarseandfine.

To parallelizetheseapplicationsusingthe OpenMPprogrammingmodel,the serialver-
sionsareoptimizedin orderto moreefficiently useseveralworking arrays.Basedon the
optimizedsequentialcodes,OpenMPdirectivesare insertedfor the outer-mostparallel
loopsto ensurelargegranularityandsmallparallelizationoverhead.To furtherreducethe
parallelizationoverhead,severalend-of-loopsynchronizationsareremoved.

414



4 Experimental Results

In orderto understandthecacheaccessbehavior, andto find theaccessbottlenecksandthe
cachemisssources,we have simulatedtheseapplicationsusingthe OpenMPsimulation
platform.Thesimulatedtargetarchitectureis a16-nodeSymmetricMultiprocessor(SMP)
system,with eachprocessornodedeploying a 16KB, 2-way L1 cacheanda 512KB, 4-
way L2 cache.CachesaremaintainedcoherentusingtheMESI protocolthat invalidates
cachecopiesin all processorsat eachwrite operation. Sincethe monitor simulatorof
this simulationplatform is capableof providing detailedinformation aboutthe overall
referencesperformedduring the completeexecutionof an application,we could study
theglobalaccessdistribution, thecachemisscharacteristics,andthetemporallocality of
caches.

4.1 Global Overview

First, thesimulationenvironmentprovidescacheaccesshistogramsshowing referencesto
the completeworking setat granularityof cachelines. This enablesto aquirea global
overview of the runtimememoryaccessdistribution andto analyzespecificmemoryre-
gionsin detail.

Figure 1: Memory access distribution of matmul (left) and sparse (right).

Figure1 visualizestwo samplecacheaccesshistogramsobtainedby simulatingmatmul
andsparse usinga 256×256anda 256×128matrix individually. The x-axis of thedia-
gramsin Figure1 showstheindividualregionsof thecompleteworkingsetin sizeof cache
lines,while they-axispresentsthenumberof accessesperformedatruntimeoneachmem-
ory locationincludingL1, L2, andthemainmemory. Due to the largeworking setsize,
only the last few memorylines of both applicationsareillustrated. For theconcreteex-
amples,it canbeseenthatthemostmemoryreferencesareperformedon thecaches.This
canbeexplainedby thefactthatbothapplicationsaresimulatedon a systemwith caches
capableof holdingthecompletematrix. However, evenin this case,accessesto themain
memorycan be clearly seen: for example,memoryline 64488–64491in sparse. This
indicatesthata bettercachelocality couldbeachieved.

415



4.2 Cache Miss Reason

Besidesthe cacheaccesshistogramshown above, the simulationenvironmentprovides
additionalinformationin orderto directly supportthework in locality optimization.This
includesnumericalstatisticson causesof cachemissesandhigh-level performancedata
with respectto datastructureswithin thesourcecode.

A prerequisitefor cachelocality optimizationis to know whereandwhy cachemisses
occur. Commonreasonsof cachemissesonmultiprocessorsystemsincludefirst reference,
replacement,and invalidation. First referencemissesoccur when datais not properly
storedin the memoryso that the full line of datafetchedon a cachemiss can not be
efficiently used.Replacementmissesoccurwhena memoryline hasto beremovedfrom
thecachedueto mappingoverlaps.Both kindsof missescanbereducedby restructuring
datain the cache.The sameapproachcanalsobe usedto decreaseinvalidationmisses,
wheremultipleprocessorsusuallyaccessdifferentvariableson thesamecacheline.

The monitor facility integratedin the OpenMPsimulationenvironmentprovides infor-
mationaboutthecachemisssourcesfor individual cacheregions. This informationcan
be further projectedbackto the datastructurewithin the sourcecode,enablinghencea
detectionof possibleoptimizations.

Application Variable Miss rate First reference Replacement Invalidation
A 62% 8193 110588 0

matmul x 26% 33 50962 0
y 10% 33 19701 0
A 44% 8193 9410 0

sparse x 2% 33 798 0
y 5% 33 1775 0
col 44% 8191 9540 0
uold 21% 16436 59656 0

jacobi u 36% 16384 113668 0
f 41% 16424 130595 0
u 32% 13814 748586 8608

MG v 8% 14772 188406 47
r 23% 10039 541581 5

Table 1: Statistics on L1 cache miss sources.

Table1 shows theexperimentalresultsfor small kernelsmatmul, sparse, jacobi, andthe
MG codefrom theNAS Benchmarksuite.Thefirst threeapplicationsaresimulatedusing
a 256×256matrix,while MG performsits multigrid algorithmona 64×64×64grid. The
tablegivespercentage(column3) of L1 misseson individual datastructures(column2)
to thetotal L1 misseson thecompleteworking set,andthenumberof specificoperations
thatcausetheseindividualmisses.

FromTable1 it canbeseenthatfor all testedcodescacheline replacementis theprimary
reasonof cachemisses.An exampleis thematmul program.Themainworking arraysof
this codearethedensematrix A andvectorx to bemultiplied, andtheoutputmatrix y.
As shown in Table1, morethan60% L1 missesarecausedby accessingmatrix A, and

416



93%of themisseson A is dueto replacement.Similar behavior canbeseenwith vector
x, wherealmostall missesarecausedby cacheline replacement.

Thisdetectionledustoexaminethememorydistributionof bothdatastructures.It is found
thatmatrix A andvectorx mapon top of oneanotherin thecache.This resultsin cache
interferencethat further resultsin frequentcacheline replacementandmisses. Hence,
we add inter-variablepaddingbetweenA andx in order to staggerthem in the cache.
The simulationresultswith the optimizedcodeshow that this optimizationsignificantly
reducesthe numberof replacementandthe total cachemisses,allowing the codeto run
20%fasterthantheversionwithout padding.

In comparisonwith cacheline replacement,first referenceandinvalidationdo not intro-
ducesignificantmissesfor thechosenapplications.Besidesthesparse codethatshows a
highermissnumberdueto first reference,the otherprogramsall presentslight first ref-
erencemisses:lessthan10%of the total L1 misses.For invalidation,only MG shows a
smallnumber, while invalidationswith othercodesdonot causecachemisses.

Overall,thestatisticalinformationprovidedby thesimulationenvironmentenablesto find
cacheaccessbottlenecksandto understandtheunderlyingcausesof cachemisses.This
knowledgecandirect theprogrammersto useappropriatecacheoptimizationtechniques
to tuneapplicationstowardsbetterruntimeperformance.

4.3 Temporal Locality

Thecacheaccesspatternis oftendifferentwithin distinctprogramphasesandfunctions.
Hence,a further insight into theseindividual coderegionscanhelp to handlethemsep-
aratelyandrespectively. This kind of analysiscanbebasedon the temporalinformation
achievedby theso–calledmonitorbarriers,whichtriggeracompleteswapoutof all partial
monitoringresultsfollowedby a full reset.

Figure2givestwosuchpartialresultswith respecttophasesandfunctionsseparately. Both
diagramsin this figure show thenumberof L1 andL2 misseswithin a specificprogram
phaseor a function. Theinformationin theleft diagramis acquiredby simulatingtheFT
codeusinga datasetsizeof 64×64×32,while theright diagrampresentsthebehavior of
differentLU functionsfor performingtheequationfactorizationona12×12×12grid.

For theFT codein Figure2,phasesareidentifiedby thesynchronizationprimitivebarrier.
This includesspecificphasesfor startup,processing,andpostprocessing.This alsoindi-
catessingleiterationswithin thecomputationitself in thecaseof iterative methods.For
theconcreteexample,thefirst phasecorrespondsto the initialization process,wherethe
3-D dataelementsarefilled with pseudonumbers.The following threephasesrepresent
the processto performthe 3-D fastFourier transformation(FFT) with eachphasefor a
1-D FFT in onedimension.The last threephasesarewithin the inverseFFT that starts
with thethird dimension.

As shown in Figure2, thenumberof L2 missesvariesslightly betweenphases.However,
theL1 missesdiffer significantly, especiallybetweenthepairfor FFTandinverseFFT(i.e.
phase2–phase7,phase3–phase6,andphase4–phase5).This resultmeansthatthemethods
for performinginverseFFT arespeciallyimportantfor an efficient executionof the FT

417



Figure 2: Cache misses within different phases of FT (left) and functions of LU (right).

code.

Besidesdistinct programphases,like thosewithin the FT program,individual functions
within aprogramcanalsosignificantlyinfluencetheperformance.LU is suchanexample.

TheLU codefactorizestheequationinto loweranduppertriangularsystems.Thesystems
aresolvedusingtheSSORalgorithmin thefollowing step:(1) thesteady-stateresiduals
arecomputedusingroutinerhs. (2) theL2 normsof newton iterationresidualsarecalcu-
latedusingl2norm. (3) the lower triangularanddiagonalsystemsareformedwith jacld
andsolvedwith blts. (4) finally, the uppertriangularsystemsareformed(jacu) andthe
uppertriangularsolutionis performed(buts).

Fromtheright diagramof Figure2 it canbeseenthatthefour mainroutinesin theSSOR
solveraremorecritical for thecachemisses.This indicatesthatoptimizationswithin these
routinescanprobablysignificantlyimprove thecacheperformance.Actually, theSSOR
algorithmcanbe implementedin parallelusingdifferentapproaches.Theseapproaches
resultin differentdataaccesspatternandsomeof themcanevenkeepaprocessorworking
on thesamedataduringthewholecomputation.Thepipeline approachthat transfersthe
processingon thesameblock from oneprocessorto another, for example,clearlyshows
bettercacheutilizationandbetterperformance.

In summary, the temporalinformation provided by the simulatorallows to analyzethe
cacheaccesspatternof individual programphasesandroutines.This directstheuserto
performfinegraintuningoncritical regionsof theapplicationprogram.

5 Conclusions

The OpenMPsharedmemoryprogrammingmodel is being increasinglyaddresseddue
to its portability, scalability, and flexibility . However, as it is a fact for any computer
systemwith uniprocessoror multiprocessors,poorcachelocality usuallycausesinefficient
executionof applications.Thispaperpresentsourresearchwork oncachelocality analysis
with thegoalof detectingpossibleoptimizationswith respectto dataallocationandcode
transformation.

418



This work is basedon an OpenMPsimulationenvironmentestablishedon top of an ex-
isting multiprocessorsimulatorfor NUMA machines.This OpenMPsimulationplatform
modelstheparallelexecutionof OpenMPapplicationsonSMPsystems.Its maincontribu-
tion is thecachesimulatorandthedetailedinformationabouttheruntimecacheaccesses.
Thelatterallows usto analyzethecacheaccesspatternof variousOpenMPapplications,
andto detectthecachemissreasonsandtheaccessbottlenecks.Initial optimizationsbased
on thisanalysishasshown asignificantperformancegain. In thenext stepof this research
work, moreapplications,especiallythoserealisticones,will besimulatedandoptimized.
In addition,thesimulationin mostcasesstill shows a slowdown of 1000factorsin com-
parisonwith the real running. The establishedsimulatorwill be parallelizedin the near
future.

References

[AD02] ADAPTOR. High Performance Fortran Compilation System. 2002. available at
http://www.gmd.de/SCAI/lab/adaptor.

[Bea94] Bailey, D. and et. al: The NAS Parallel Benchmarks. Technical Report RNR-94-007.
Department of Mathematics and Computer Science, Emory University. March 1994.

[Gu92] Gupta, S.: Stanford DASH Multiprocessor: the Hardware and Software. In: Proceed-
ings of Parallel Architectures and Languages Europe (PARLE’92). S. 802–805. June
1992.

[In98] Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual. volume 1–3.
Published on Intel’s developer website. 1998. available at
http://www.intel.com/design/PentiumII/manuals/.

[JFY99] Jin, H., Frumkin, M., and Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. Technical Report NAS-99-011. NASA Ames Re-
search Center. October 1999.

[KSS00] Kusano, K., Satoh, S., and Sato, M.: Performance Evaluation of the Omni OpenMP
Compiler. In: Proceedings of International Workshop on OpenMP: Experiences and
Implementations (WOMPEI). volume 1940 of LNCS. S. 403–414. 2000.

[St01] Standish, R. K.: SMP vs Vector: A Head-to-head Comparison. In: Proceedings of the
HPCAsia 2001. September 2001.

[TSK03] Tao, J., Schulz, M., and Karl, W.: A Simulation Tool for Evaluating Shared Memory
Systems. In: Proceedings of the 36th ACM Annual Simulation Symposium. Orlando,
Florida. April 2003.

[WOT+95] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A.: The SPLASH-2 pro-
grams: characterization and methodological considerations. In: Proceedings of the
22nd Annual International Symposium on Computer Architecture. S. 24–36. June
1995.

[WW] WWW. OpenMP Architecture Review Board. available at
http://www.openmp.org/index.cgi?samples+samples/jacobi.html.

419

http://www.gmd.de/SCAI/lab/adaptor
http://www.intel.com/design/PentiumII/manuals/
http://www.openmp.org/index.cgi?samples+samples/jacobi.html



