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Abstract: We present an extension to common realtime toon/cel-shading rendering
techniques for treating reflective and transparent surfaces in a 3D toon-shading envi-
ronment. Our approach takes advantage of multi texturing hardware and simple frag-
ment and vertex shader programs. This allows a broad usage on todays gaming plat-
forms.

1 Introduction

In recent years numerous game titles utilized cel-shaded or toon style graphics – The Le-
gend of Zelda: Wind Maker, Sly Copper & the Thevious Racoonus, Cel Damage, XIII to
name just a few. We think this is due that the graphic style can be very visual appealing
especially to certain game genres or target audiences. Other interesting aspects are related
to a technology side of view. For example this particular rendering style can be executed
without great effort on many hardware platform, because only texture hardware is needed
which is nowadays broadly available. Additionally by exploiting cel shading one can take
advantage of a lower memory footprint compared to realistic rendered game titles. Rea-
listic rendered game titles often need a huge amount of different textures that put a high
strain on main and video memory of a machine.

Unfortunately until now all the common cel/toon shading algorithms are unable to repro-
duce certain surface characteristics like transmission and reflection. One cannot simply
use standard techniques for representing these kind of surface as they would not fit to the
rendering style and would certainly destroy the mood of the game. It is also not wise to
simply neglect these surface types as certain global interference between objects like sha-
dow casting, reflections, and refractions can still be found in cartoons and cel animations.
They help the viewer to emphasize the scene’s mood and are important cues to increase
the liveliness of the production.

Our work is based on the hard-shading algorithm for cel-shading developed by Lake et
al [LMHB00] which is probably based again on the work from Decaudine [De96]. Re-
cent other extensions in this area include the rendering of stylized highlights in cartoon
rendering and animation [AH03] and shadow casting between objects [PFWF00].
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2 Reflections and Transparency in Cel Animation and their Imple-
mentation

Since there is no particular literature on this topic our reflection and transparency models
are driven by observations. We investigated around 30 different animation productions
dating from the mid 70s to the early 2000s produced by several different commercial
animation studios worldwide.

Depending on the shape and material of the surface several different kinds of reflections
and transparencies can be distinguished. Each of them is expressed in a different style.
On the other hand there are certain characteristics that apply to nearly all of them. For
instance reflections and transparency in cartoons are seldom physical correct, but rather
physical plausible to a degree where the viewer can obtain the feeling and idea of the
material he is currently seeing. This is especially true for curved objects. Often parts and
details seen in reflecting and transparent images are removed or blended out by using a
distinct color for reflected objects or objects lying behind a transparent surface.

The illustration of reflecting and transmissive surfaces in cartoons can basically be cate-
gorized into five different main groups:

Type I Perfect mirror (see Figure 2(a)&(c)) Like in reality objects that are reflected in
mirrors are drawn from a mirroring viewpoint. To enforce the feeling of a mirror surface
an additional highlight texture is placed on top of the reflected image in the mirror, giving
the reflector a shiny appearance as if light would directly bounce off the surface. In the
planar case this highlight texture consists of a set of streak lines with different thickness.
The highlight texture is not just attached to the surface but appears to move, when either
the object location or viewpoint changes. The mirroring can be implemented in a straight
forward manner, by using scanline rendering techniques for planar mirrors for example
described in [AMH02]. The highlight texture can either be loaded as binary image made
by an artist, or generated using a simple algorithm or methods described in [AH03]. To
ensure that the highlight texture changes when the location of the object changes, an addi-
tional offset is added to the texture coordinate for that texture. This offset is calculated as
the difference between current view vector �V and the center middle point of the bounding
box of the mirror in world space P , weighted by the size of the mirror. Curved mirror sur-
faces require more effort as they have different characteristics. It is interesting to note that
these surfaces from an artist point of view are nearly illustrated in the same manner as their
planar version. This means they usually do not have any major perspective distortions. Ins-
tead the highlight texture is taken to illustrate the curvature of a reflective object. Normally
cube environment maps are used for rendering curved reflectors with graphics hardware,
however in our case they would produce a reflected image that looks too distorted to be
appropriate for toon-style graphics. Therefore, we decided to use a different approach that
works in the same fashion as when rendering reflections from planar surfaces only app-
lying a much wider field of view to the virtual camera. For the required surface normal
the normal of the current closed bounding box side is used. It can be determined with the
same technique that is used in direct volume rendering for deciding which 2D texture stack

145



should be used when rendering the volume [LL94]. The curvature highlight texture can be
generated automatically by using a simple trick that is also used for a fast but not 100%
correct detection of silhouette lines. This trick takes advantage of the fact that at silhouette
edges the dot product between the normal vectors �N1 and �N2, of the two faces connected
by the edge e, and the view vector �V at the current edge e switches its sign. Alternatively
the dot product between �N and �V can be used as texture coordinate to look up a value in a
1D ramp texture marking silhouette regions. By offsetting this ramp it is possible to place
the highlight to the location on the object.

Type II Partially reflecting objects (see Figure 2(d)) Planar partially reflecting objects
are illustrated similarly to their perfect mirror counterparts. They only exclude the high-
light texture in the planar version and the final object color is the resulting color between
a mixture of the surface color and the reflected color.

Type III Water surfaces (see Figure 2 left) In reality water surface are both reflective
and refractive but in cartoons the refracting behavior of water is – except for some rare
occasions – mostly ignored. In cartoons water surfaces also do not follow any physical
rules as they rather appear to act like a shadow than a reflector. For large water surfaces
(like rivers, oceans, pools, ponds, etc.) this shadow reflection is slightly distorted to create
a wavy looking surface. Additionally pen&ink outlines of reflected objects are not consi-
dered in the reflecting images of a water surface. The jittering effect can be achieved when
storing the reflected image beforehand in a texture map. When rendering the water surface
a 2D displacement texture can be used to shift the texture coordinate for each fragment
before looking up the value in the mirror texture.

Type IV Completely transparent Objects lying behind completely transparent surfaces
are either drawn as usually or details of the objects are blended out by painting them in a
single color. Thus only providing a feeling of the shape of the object. On top of the surface
a highlight texture is placed similar to the perfect mirror type. Curved transparent surfaces
are not different to their planar counterpart, as refraction is not considered. When rendering
completely transparent surfaces one should assure that all other objects have already been
rendered to the frame and depth buffer. When rendering the transparent object just render
the object together with the highlight texture and enable alpha blending by setting the
blending function to the maximum function. The maximum function takes the maximum
color component between the source color and destination color. As the highlight texture
is binary only the white regions will be drawn in the frame-buffer and all other regions
will stay untouched.

Type V Partial reflecting and transparent (see Figure 2(d)) Partial reflecting and trans-
parent surfaces require a special blending between the reflective and transmissive part of
the surface. This can be very challenging. as it is influenced by two major factors. The first
one is a semantic feature and decides which of the two portions is more important. The
second factor is the difference between the color of the reflective image and the transparent
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image. If this difference is getting too large it is unlikely that a blending between the two
parts takes place, otherwise only one of the parts will be drawn. Deciding which outlines
to draw can be even more complicated since either only the outlines of the more import-
ant objects are drawn or both. Unfortunately there is no blending equation that supports
the term importance. Therefore, the blending cannot be achieved that easily. Right now it
must be mimicked by a fragment program. Since fragment programs are not allowed to
read content from the frame-buffer the reading has to be emulated through a combination
of a vertex program calculating the texture coordinates that matches for each fragment its
position in the framebuffer. Additionally the rendered objects behind the transparent sur-
face have to be stored in an additional offscreen buffer. In a fragment program the intensity
value is calculated for the reflecting and transmissive part. Normally in computer graphics
the intensity formula for RGB color space I = 0.59 ∗R + 0.3 ∗G + 0.11 ∗B is used. But
color mixing in painting mediums behave different. Therefore, arbitrary weightings can
be set for each color component through shader constants. Also the threshold for deciding
when not to blend between parts but to use the more important one can be defined by a
constant as well. If the difference between both colors is too large the output color equals
the color of the important part, coloroutput = colorimportant. Otherwise

coloroutput =

{
colorimportant · ksub · iother iother <= t,

colorimportant · kadd · iother iother > t ,

where ksub and kadd are two user defined factors for darkening and lightening, iother is
the “intensity” of the less important portion and t an additional threshold value helping to
decide when to darken and when to lighten.

There is no significant difference between the curved version to the planar one, except
there is a highlight texture placed on top of the surface symbolizing the curvature of the
object.

3 Results

We have implement the reflection and transparent surface shaders with DirectX 9 using
Vertex Shader 2.0 and Pixel Shader 2.0. For the normal surface and lighting calculation we
use the previously mentioned toon-shading approach described by Lake et al.[LMHB00].
As DirectX has a very limited support for line rendering, we decided to use a screen space
algorithm to create the object’s outlines. Our approach is very similar to an offscreen G-
Buffer [ST90], where the object ids and desired silhouette widths for each fragment are
stored. A dilation filter implemented in a pixel shader program is used in a second render
pass to extract the silhouettes with the desired widths. The result is afterwards blended over
the previous normal shaded image. Figures 1(a)-(c) show a sequence generated with our
algorithm of a moving car. The front shield is represented as a transparent surface. You can
notice the moving of the highlight texture as well as the blending out of far away details.
Figure 2 shows examples of different reflection and transmissive surface types. The left
image shows a more complex water scenery. The right image: (a) planar perfect mirror,
(b) semi transmissive and reflective, (c) curved perfect, and (d) partial curved reflectors.
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Abbildung 1: Sequence of a moving car and a transparent front shield.

Abbildung 2: Different examples of reflecting and transmissive surfaces.
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