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Abstract: In this paper, we propose an extension to bounded confidence model which
is a nonlinear opinion dynamics model. The goal of this new extension is to emphasize
the underlying network structure of the model, since in real life network structure plays
an important , if not vital, role in opinion dynamics. And with simulation results, we
show how networks, such as grid and scale-free, affect the consensus formation in
bounded confidence model separately as well as together.

1 Introduction

An opinion is a subjective statement or thought about an issue or a topic. Among a group

of individuals, through interaction, they may change their opinions and eventually the dy-

namics may lead to fragmentation, polarization or consensus. Bounded Confidence (BC)

model is one of the efforts to model this dynamic process, and it is first proposed by Krause

in 1997 [KS97]. Later in 2002 Hegselmann and Krause [HK02] studied the model both in

historical and analytical details, and discussed its simulation results. They also have men-

tioned the preliminary results for taking the network structures into account in the model,

in particular grid network. In 2005 Hegselmann and Krause [HK05] further discussed the

effect of different averaging methods, such as arithmetic mean, geometric mean, power

mean as well as random mean, in opinion aggregation. In 2000 Deffuant et al. [De00]

proposed another opinion dynamics model, while it is similar to the BC model by Krause

and Hegselmann, the difference between the them is the opinion exchange process. Till

now BC model has been studied from different angles and approaches [Fo05a] , [Fo05b],

[Fo05c], [HK06], [ULH08], [BHT09]. Among them, Fortunato in [Fo05a] has shown

that network structures do matter in a BC model. The different network structures used

in the demonstration are grid, random graph, scale-free graph and complete graph. With

simulation, the consensus threshold for those graphs are shown and discussed.

Those works investigate opinion dynamics by analytical methods as well as by computer

simulations, considering only one network structure at a time. In the real life scenario,

networks are much more complex than that, specially in our era with the fast development
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of artificial social networks. People interact, communicate and share opinions through

different networks of various social influences such as family relations, social network

relations and professional relations, to name a few. In order to better imitate this point, in

this paper we propose to use two networks at the same time, and show how it influences

the consensus threshold of BC model via multi-agent simulation.

The paper is organized as the following: section two introduces opinion dynamics models,

in particular BC model. Then in section three, grid and scale free graphs are introduced as

they will be used later in the model. In section four our extension of BC model is intro-

duced and simulation results are discussed. Finally, the paper is closed with a conclusion.

2 Opinion Dynamics

Early formulation of opinion dynamics was given by J.R.P. French in 1956 [Fr56] in order

to understand complex phenomena found empirically about groups. This work was fol-

lowed by M.H. De Groot in 1974 [Gr74] and by K. Lehrer in 1975 [Le75]. In general, they

deal with simple cellular automata, where people become the vertices of a graph and the

neighboring vertices represent agents which have a personal relationship (acquaintance).

A simple rule determines how the opinion of an agent is influenced from (or can influence)

that of its neighbors. The aim is to understand how it happens that the large groups of peo-

ple ultimately share the same opinion, starting from a situation in which everybody has its

own ideas independently of those people with whom they interact. As difficult as these

early models might be in their details, they are all comparatively simple in the sense that

they are all linear models i.e. the structure of the model don’t changes with the states of the

model given by the opinions of the agents. The first nonlinear model was formulated and

analyzed in [KS97][Kr00], in these works Krause introduced also bounded confidence,

which describes the fact that peers holding opinions that are sufficiently different from

an agent’s own opinion do not exhibit any influence on this agent. On this basis, Hegsel-

mann & Krause [HK02] introduced a model of continuous opinion dynamics where agents

perceive all other agents’ opinions with bounded confidence.

2.1 Bounded Confidence Model

Bounded confidence model is also called Hegselmann & Krause (HK) Model. It is a

continuous opinion dynamics model with bounded confidence.This means it is a model

where the opinions are real numbers between 0 and 1, and two agents are compatible

for interaction if the difference of their opinions is smaller than the confidence bound

parameter ε.
Let n be the number of agents in the group under consideration. To model the repeated

process of opinion formation we think of time as a number or rounds of periods, that is as

discrete time T = {0, 1, 2, . . .}. It is assumed that the opinion of an agent is continuous

and expressed by a real number. For a fixed agent, say i where 1 ≤ i ≤ n, with n denoting
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the number of agents, the agent’s opinion at time t is xi(t) ∈ [0..1]. Thus xi(t) is a real

number and the vector x(t) = (x1(t), . . . , xn(t)) in n − dimensional space represents

the opinion profile of the system at time t. Fixing an agent i, the weight given to any other

agent, say j, is denoted by aij with ai1 + ai2 + . . . + ain = 1 and aij ≥ 0 for all i, j.

Having these notations, opinion formation of agent i can be described as averaging in the

following way

xi(t+ 1) = ai1x1(t) + ai2x2(t) + . . .+ ainxn(t) (1)

That is, agent i adjusts his opinion in period t+1 by taking a weighted average with weight

aij for the opinion of agent j, 1 ≤ j ≤ n, at time t. Of course, weights can be zero. For

example, if agent i disregards all other opinions, this means aii = 1 and aij = 0 for j v= i
or, if i follows the opinion of j then aij = 1 and aik = 0 for k v= j. It is important to note

that the weights may change with time or with the opinion, that is aij = aij(t, x(t)) can

be a function of t and/or of the whole profile vector x(t). By collecting the weights into

a matrix, A(t, x(t)) = (aij(t, x(t))), with n rows and n columns, we obtain a stochastic

matrix, i.e., a nonnegative matrix with all its rows summing up to 1. Thus, using matrix

notation, the general form of the HK model can be compactly written as

x(t+ 1) = A(t, x(t))x(t) for t ∈ T (2)

The HK model portrays bounded confidence among the agents in the following sense. An

agent i takes only those agents j into account whose opinions differ from his own not more

than a certain confidence level ε. Fixing an agent i and an opinion profile x = (x1, . . . , xn)
this set of agents is given by

I(i, x) = {1 ≤ j ≤ n with |xi − xj | ≤ εi} (3)

Thus the model with bounded confidence is given by

xi(t+ 1) = |I(i, x(t))|−1
∑

xj(t) for t ∈ T (4)

Hegselmann and Krause have also explored their model with different configuration of ε
[HK02]. For example, symmetric and asymmetric confidence interval, opinion dependent

and independent asymmetric confidence interval, etc.

3 Graph Representation of Networks

In the most common sense of the term, a graph is an ordered pair G := (V,E) comprising

a set V of vertices or nodes together with a set E of edges or lines which are 2-element

subsets of V (see Figure 1).

In modeling opinion dynamics with agents and graphs, agents will be represented by ver-

tices and communications between agents by links between vertices. For we suppose that

the interaction between agents be mutual, undirected graphs are used in our model.
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(a) (b)

Figure 1: Graph examples: (a) a directed graph; (b) an undirected graph.

3.1 Scale-free Graph

A scale-free graph is a graph whose degree distribution follows a power law. A key ingredi-

ent in scale free network is preferential attachment, i.e., the assumption that the likelihood

of receiving new edges increases with the nodeâs degree. The Barabási-Albert model as-

sumes that the probability P (k) that a node attaches to node i is proportional to the degree

k of node i, that is P (k) ≈ k−γ where γ is a constant whose value is typically in the range

2 < γ < 3, although occasionally it may lie outside these bounds. Figure 2 shows a scale

free graph and its degree distribution 1. Scale-free graphs are noteworthy because many

empirically observed networks appear to be scale-free, including protein networks, cita-

tion networks, some social networks [AB02] and the world wide web as well. For those

reasons scale free network is chosen in our model to represent agents’ communication by

means of social networks, mail or other internet tools.

3.2 Grid Graph

Grid or lattice graph refer to a number of categories of graphs whose drawing corresponds

to some grid/mesh/lattice, i.e., its vertices correspond to the nodes of the mesh and its

edges correspond to the ties between the vertices. So, a grid graph is a unit distance graph

corresponding to the square lattice, so that it is isomorphic to the graph having a vertex

corresponding to every pair of integers (a, b), and an edge connecting (a, b) to (a + 1, b)
and (a, b + 1). The finite grid graph Gm,n is an m × n rectangular graph isomorphic to

the one obtained by restricting the ordered pairs to the range 0 ≤ a < m, 0 ≤ b < n.

Grid graphs can be obtained as the Cartesian product of two paths: Gm,n = Pm × Pn.

Grid is very important in agent based models, notably in cellular automata, to model local

relationship between agents. Normally grid is used with a periodic boundary condition to

simulate large systems by modeling a small part, which is the case in our simulation, too.

1The graph is created using Lev Muchnik’s Complex Networks package for matlab:

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html. Visited in April, 2011.
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(a)

(b)

Figure 2: (a) A scale free graph. (b) Degree distribution of graph (a).
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Figure 3 shows a grid graph, and Conway’s game of life as an example of periodic grid’s

usage in modeling.

(a) (b)

Figure 3: (a) A grid graph with n = 5 and m = 7. (b) Conway’s game of life.

4 The Model and Simulation Results

As we have seen in the previous section, in modeling, grid networks emphasize local

neighborhood interactions, while scale-free networks highlight those not geographically

restricted, say internet or social networks. To imitate as close as possible real life interac-

tions, we propose to integrate those two networks at the same time in BC model. We also

study their impact on the behavior of the consensus threshold through simulation.

4.1 The Coupled Network Model

As said previously, our model is based on mixing two BC opinion dynamics models, one

using a grid graph as the relation network and the second using a scale-free graph as

following:

• Number of agents: N = {0, 1, 2, . . . , n}
• Discrete time: T = {0, 1, 2, . . .}
• Opinion formation:

xi(t+ 1) = |I(i, x(t))|−1
∑

xj(t) + |J(i, x(t))|−1
∑

xj(t) (5)

with:

• For the grid graph
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I(i, x) = {1 ≤ j ≤ n with |xi − xj | ≤ ε1,i} (6)

• For the scale-free graph

J(i, x) = {1 ≤ j ≤ n with |xi − xj | ≤ ε2,i} (7)

4.2 Simulation Results

The simulation is realized with MultiAgent simulation platform Repast. We first give the

Results for Grid network, and Scale-Free network, finally the results of mixed network.

In Figure 4, we can see a screenshot from simulation. The different opinions are colored

differently, and each cell in the grid are connected to its 4 neighbors, as well as through

scale-free network to other possibly not local cells, whose edges are represented with

gray links. In judging the consensus we use the notion of consensus probability, which is

calculated by dividing the number of agents in the largest cluster by the total number of

agents in the system. Of course, this is calculated when the simulation is stabilized, which

means there will occur no more opinion changes in the simulation. Our criterion for “no

opinion changes” is to check whether any opinion varied by less than 10−9 after a time

step.

Figure 4: A peek at the simulation

4.2.1 BC Model with Grid Network

In simulation we tested the grid network BC model with 400, 900, 1600 and 6400 nodes

respectively. The bounded confidence variable ε is ranged from 0.2 to 0.6, increasing 0.01

each step.
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Figure 5: BC model on periodic grid networks

From Figure 5, we can see that starting from ε = 0.4 the system achieves almost consensus

disregard of the agent number. In the simulation we also noticed that the increasing ε
shortens the time needed for stabilization. Besides, with the growing number of nodes

system needs more time to stabilize.

4.2.2 BC Model with Scale-free Network

In this simulation, scale-free networks with 400,900,1600 and 2500 nodes are tested. The

Barabási–Albert scale-free network is used [AB02]. It is known that this method results a

network which has a degree distribution with a power law tail, and exponent of the power

law is 3. In this simulations, ε is varied from 0.2 to 0.6, in the same way as above.

From Figure 6 we can see while epsilon is changing from 0.2 to 0.6, the consensus

probability will slightly improve from around 0.4 to around 0.6. We also investigated

with bounded confidence of 1, simulation still stabilizes around 0.6, no full consensus is

achieved. This is because the average degree of the networks that is used here equals 1.

Thus it is inevitable to have isolated agents. Contrary to the BC model with grid network,

it seems that the increasing number of nodes does not evidently delay the stabilization of

the system. This is again due to the particularity of the scale-free networks. We need to

verify this with more simulations and further analysis.

33



Figure 6: BC model on BA scale-free networks

4.2.3 BC Model with Grid and Scale-free Networks

Here is the most interesting part of the simulation, since it shows the effect of coupled

network structures on the consensus threshold. Even if we have tested this model with

varying number of nodes, here we only show the ones with 900 and 2500 nodes. We denote

the bounded confidence for grid network as ε1, and denote that of scale-free network as

ε2. As shown previously, ε1,2 = [0.1..0.5], with an incremental step of 0.05.

In Figure 7 and 8, the consensus threshold space is shown. Since scale-free network struc-

ture fails to achieve a consensus alone, when ε1 = 0.1, the increase of ε2 value again does

not result a consensus. If we change the confidence interval in grid network ε1 to 0.2, by

increasing ε2, simulation results a consensus state. Despite of the ε2, increasing ε1 always

results a consensus. However, consensus threshold of ε1 changes according to the value

of ε2. We can conclude that while those two networks compensate each other to some

extent in achieving consensus, the stronger one plays a more important role, as in the case

of grid network. Meanwhile, the role of scale-free network is still notable in that it not

only accelerates the consensus process, but also it helps to achieve consensus when the

grid confidence is not high enough.

As we can see in two previous cases, curves are identical despite of the increasing number

of nodes. However, we noticed that the time to achieve stabilization in the system increases

along with the number of nodes, clearly a direct consequence of underlying grid network,

though not so evident as in the case of grid only simulation.
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Figure 7: BC model on a mixed network with 900 agents

Figure 8: BC model on a mixed network with 2500 agents
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5 Conclusion

Although BC model has been studied heavily among researchers and some of those works

have studied the relationship between underlying network structure and consensus thresh-

old, little work has been done on integrating several network structures into a single model.

The important part of our model is that we introduced multi-relationship in the opinion dy-

namics. Despite the fact that only two networks are considered at the first step, this work

has shown the possibilities of achieving more complex and realistic network structures by

integrating multiple networks. Furthermore the preliminary simulations have shown us

that consensus threshold for BC model changes according to the multi-network structures.

Possible future works that we are considering will continue in this direction. These results

encourage us to further explore the multi-network structures as a underlying structure of

the opinion dynamics models. Besides, we would also like to study the dynamic networks

as the result of opinion dynamics.
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