Change Propagation with the Change Notification Bus

Tobias Rodenbach! and Lena Wiese?

'Rosenhagen 12
31134 Hildesheim
tobias.rodenbach@udo.edu

2Fakultit fiir Informatik
Technische Universitidt Dortmund
44221 Dortmund
lena.wiese @udo.edu

Abstract: We present requirements and a basic architecture for change management
across application boundaries. The Change Notification Bus addresses heterogeneity
of applications and working environments as well as distribution of team members.
Change Notifications are handled in a decentralised and event-based way.

1 Introduction

One key advantage of agile software development is its ability to flexibly react to changing
requirements or conditions; this feature specifically allows for incremental development of
prototypes with an increased range of functionalities. One crucial aspect are the interde-
pendencies between documents of the different development stages — as for example the
product specification depends on the requirements documentation and later on product
tests depend on the specification. Ideally, the software product and all documents should
be in a consistent state after processing a requirement change.

As a necessary condition for document and product consistency, software development re-
quires “traceability”: the ability to identify all artifacts that might be affected by a change
starting from the changed artifacts. However, maintenance of traceability is a difficult task
during the whole product life cycle which is costly and error-prone if done by hand. This
challenge is even more evident as soon as distributed development teams are concerned
as changes and follow-up steps cannot be communicated directly. Although management
of traceability changes is a major task in software development, there is no off-the-shelf
product available that offers comprehensive support and realising traceability involves a
lot of manual work of developers.'

Although it may be desirable to provide an integrated solution which covers all needs of
the development process, this is usually impeded by practical prerequisites; we propose to
employ application coupling instead of a fully integrated environment.

I'This is particularly the case for embedded software; see Section 2 for details.

165



2 Application Integration versus Application Coupling

In order to automatically support traceability and (at least approximately) achieve a con-
sistent documentation state, all employed development and management applications have
to be combined. As is customary in the literature (see [CHKTO05, Kel02]), we consider two
forms of application combination in this article:

o Application Integration: Original applications are altered (or are replaced) to form
a single new application. As the data exchange in the new application is direct,
external interfaces of the original applications can be removed during this process.

o Application Coupling: Existing external interfaces of original applications can be
used to exchange data between them. Due to proprietary interfaces this typically
involves creation of some glue software that transforms the data from one interface
format to another. In this scenario the applications remain self-contained but still
form a continuous environment.

When talking about application integration, do the stakeholders involved in the develop-
ment process (as e.g. customers, managers, developers, testers and administrators) benefit
from having an integrated all-purpose software development and business process appli-
cation; that is a tool that supports and facilitates the whole software development process
covering both business and engineering needs? An integrated development environment
offers a unified look and feel for all tasks during the development process for as well
manager as developers and testers and in the basic setting might reduce installation and
maintenance effort for administrators.

However such an environment can only either be a predefined one which does not leave
much options for customisation or a very comprehensive one that offers more than is
needed which increases configuration effort and potential confusion. An optimal inte-
grated environment can be custom-made for every field of application but in most cases
the accompanied development cost and effort will bar this option.

Especially in embedded software development, some tools are only available as stand
alone versions or in specialised environments. Frequently legacy systems need to be main-
tained using old-fashioned tools. These environments usually do not offer adequate possi-
bilities to integrate other parts of the tool chain as it is known from more recent products.
They are on the other hand hard to integrate into a larger environment, e.g. because they
are lacing remote control or command line interfaces. Even very comprehensive modern
integrated environments do not cover all aspects of the development cycle, in particular
competitive project management components are rarely found.

There are several reasons why existing applications should be kept in use. First, there are
commercial aspects to consider as tools have already been bought or licensed. Second,
the users are already acquainted with the existing tools and switching to a new tool would
mean starting a new learning curve thus resulting in additional cost due to lower efficiency.
In some areas the choice of the respective tool can be even left to the user as long as the
tool’s output complies with the expected result. Third, working with several independent
applications also increases flexibility. When new constraints demand switching to a new

166



tool for a specific task, the other tools can be kept in use unchanged. Lastly, companies can
also choose products by proficiency and cost instead of being forced to use what comes
packaged with an integrated environment.

3 An Application Coupling Framework for Change Notifications

This chapter describes the basic architecture of a Change Notification system coupling
applications in a distributed environment. The following terms will be used to refer to the
different aspects of change management:

Configuration Item

Configuration Atom

Traceability Link

Change Notification

Any item that goes into configuration management. Most
likely to be a file, but can also be a folder or all files belonging
to a MS Project plan.

The smallest coherent part of a Configuration Item that can
be affected by a change (subsection describing one function, a
class diagram, one requirement, one test case).

A directed dependency between Configuration Atoms signify-
ing that a change of an Configuration Atom requires the linked
Configuration Atoms to be checked for needed changes.
Notification that a Configuration Atom might be affected by
the change of another Configuration Atom.

Change Notification Bus

Figure 1: The Change Notification Bus

Figure 1 depicts the proposed architecture. It is divided into a (virtual) “Change Notifi-
cation Bus” (CNB) and a local framework instance running on each workstation taking
part in the development process, the “CNB environment”. Those two elements will be
described in the following sections.

167



3.1 The Change Notification Bus

The CNB is not a physically existing data bus, although it is essential for the proposed
architecture that all participating workstations are connected via a network. It is rather a
model for the fact that all Change Notifications that are posted reach all connected CNB
environment instances immediately. A message bus is a well known design pattern for
application coupling, e.g. described in [HWO03] as the “Message Bus” pattern.

3.2 The CNB Environment

Each CNB environment instance provides the applications with the means to

post Change Notifications
subscribe for Change Notifications
mark a Change Notification as processed

create/delete a Traceability Link 2

For each type of document and/or application, a plugin is hooked to the CNB environment.
The different types of coupling are depicted in Figure 1 and explained in the following:

(A) Document level coupling

(B)

©

Some applications allow for functionality augmentation by adding macros into their
documents. Those documents can be coupled to the respective plugin in the CNB
environment by inserting a macro that will detect changes in the document and re-
port them to the CNB environment. Further, it will receive Change Notifications for
the Configuration Atoms in the Documents and inform the user in an appropriate
way, depending on the document type.

Application extension

Other applications offer the possibility to extend them by plugin interfaces or appli-
cation level macros. Those can be extended by bi-lateral plugins, being plugged into
the application and the CNB environment at the same time. Analogously to case (A)
for document level macros, Change Notifications can be posted and presented to the
user in an appropriate way.

Framework-internal handler for not extensible applications/document types

Applications that cannot be extended and handle only passive documents are hard to
couple to the CNB environment. However, their documents can still be monitored
by the respective plugins in the CNB environment. In this case, the plugin has
to provide more functionality than offering the interface for Change Notification

168

2The last item is just mentioned for completeness as building and maintaining the traceability database is out
of scope of this document (see Section 4).



handling; it has to be able to read the application’s document format in order to
detect changes. If relevant Change Notifications shall be displayed in the document,
it has to write to the document file. The advantage of this kind of plugin is that
document can be accessed “offline”, i.e. without a running application.

(D) Native CNB application
For newly developed applications, the CNB environment’s interface can be utilised
directly without the need for plugin development.

If an application that is not explicitly designed for extension is available in source code it
can be altered to access the CNB environment directly. This can be regarded as a blend of
the types (B) and (D).

3.3 The Issue Tracker

Although it is convenient to immediately inform the user about Change Notifications re-
ferring to parts of a document that he is currently working on, the majority of Change
Notifications will refer to currently inactive documents. To manage these pending Change
Notifications, they are added as trackable items to the issue trackers database. The issue
tracker will monitor the activity on the CNB and close the respective item as soon as a
processed message for the Change Notification is posted. Using an issue tracker to track
the Change Notifications allows to utilise the means of classical change management for
our approach. In particular those changes can be mapped to baselines or branches, so that
the respective Change Notifications will also refer to the baseline or branch. This means
that the version of the linked Configuration Items can be determined.

The reflection of the Change Notifications in the issue tracker also allows for controlling
the changes to the artifacts. Different policies can be applied for different notification

types:

e Change Notifications triggered for tight links (e.g., from implementation specifica-
tion to source code) may be processed without further checking; this is the main
advantage of our bus architecture because events posted on the bus can be handled
by registered application without delay and inside the artifacts directly (as opposed
to server-based notifications of [CHCCO03]).

e Change Notifications for artifacts with a more complex link structure (e.g., hori-
zontal traceability between equally levelled requirements) need to be reviewed and
approved before further action is taken; in this manner the issue tracker supports the
implementation of a specified workflow in the framework.

Moreover, the issue tracker is a normal application connected to the CNB as described in

Section 3.2. Whenever Configuration Atoms in tracked items like defect reports or change
requests are changed, it will post a Change Notification on the CNB.

169



4 Conclusion and Related Work

We presented a distributed framework for Change Notification handling in a heterogeneous
tool environment. The framework focuses on coupling established applications to support
a high “return on investment”. Notifications about changed Configuration Atoms are based
on instantaneously posted events. Event-based notification for change management is also
proposed by Cleland-Huang et al. in [CHCCO03]. While they rely on a event server, our
proposal utilises a bus architecture for broadcasting Change Notifications directly among
the participating applications if no approval of the change is needed; otherwise change
management workflows can be modelled in the issue tracker. Further, instead of listing the
pending Change Notifications in a separate event log, we aim for a tight integration with
the utilised development and management applications as realised by our four different
coupling types; this specifically allows for handling changes inside an artifact (e.g., by
highlighting affected sections in a text document by coupling of type (A)).

Retrieval of initial traceability information is out of the scope of this article. This topic is
addressed by Poirot ((CHBCT07]) and RETRO ([HDST07]) using information retrieval
techniques. Update of traceability information based on predefined policies is covered by
ArchTrace ((MvdHWO06]).

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

References

[CHBCT07] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella Settimi, and Eli Ro-
manova. Best Practices for Automated Traceability. IEEE Computer, 40(6):27-35,
2007.

[CHCCO03] Jane Cleland-Huang, Carl K. Chang, and Mark J. Christensen. Event-Based Traceabil-
ity for Managing Evolutionary Change. IEEE Transactions on Software Engineering,
29(9):796-810, 2003.

[CHKTO05] Stefan Conrad, Wilhelm Hasselbring, Arne Koschel, and Roland Tritsch. Enterprise
Application Integration. Elsevier, Miinchen, 2005.

[HDST07] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, Elizabeth Ash-
lee Holbrook, Sravanthi Vadlamudi, and Alain April. REquirements TRacing On
target (RETRO): improving software maintenance through traceability recovery. In-
novations in Systems and Software Engineering, 3(3):193-202, 2007.

[HWO03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Addison-Wesley,
2003.

[Kel02] Wolfgang Keller. Enterprise Application Integration. Erfahrungen aus der Praxis.
Dpunkt, Heidelberg, 2002.

[MvdHWO06] Leonardo G. P. Murta, André van der Hoek, and Claudia Maria Lima Werner. Arch-
Trace: Policy-Based Support for Managing Evolving Architecture-to-Implementation
Traceability Links. In 27st IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 135-144. IEEE Computer Society, 2006.

170



