
Shared Memory Concurrency for GAP
Reimer Behrends
(TU Kaiserslautern)

behrends@mathematik.uni-kl.de

The GAP system [3], as it is introduced on the GAP
Web site, is an open-source system for computational
discrete algebra, with particular emphasis on compu-
tational group theory. It provides a programming lan-
guage, an extensive library of functions implementing
algebraic algorithms written in the GAP language as
well as large data libraries of algebraic objects. The ker-
nel of the system is implemented in C, and the library
is implemented in the GAP language. Both the kernel
and the library were originally sequential and did not
support parallelism.

In the 4-year long EPSRC project “HPC-GAP:
High Performance Computational Algebra and Dis-
crete Mathematics” (http://www-circa.mcs.
st-and.ac.uk/hpcgap.php), started in Septem-
ber 2009, a team of researchers at the University of
St Andrews reengineered the GAP system to allow par-
allel programming in it using both shared and distributed
memory approaches. In this article, we report on the re-
sults of the HPC-GAP project with respect to paralleliz-
ing execution on multicore systems with shared mem-
ory. The concurrency model that we employ aims at
making concurrency facilities available to GAP users,
while preserving the existing codebase (hundreds of
thousands of lines of code and data) with as few changes
as possible. To this end, the model preserves the appear-
ance of sequentiality on a per-thread basis by contain-
ing each thread within its own data space, while making
concurrent interaction possible through selective shar-
ing of data and by allowing the migration of objects be-
tween data spaces.

Shared Memory: Regions
The fundamental concept through which HPC-GAP reg-
ulates concurrent interaction is that of a region. A region
is a data space in memory; each GAP object belongs to
precisely one region. Access to GAP objects is con-
trolled through ownership of regions: in order to access
objects within a region, a thread must first obtain exclu-
sive or shared ownership of the region. As a rule, when
a thread has exclusive ownership, it can read and modify
objects within the region; when it has shared ownership,
it can only read the objects. Violating these access rules
results in a runtime error, thus disallowing access with-
out ownership entirely.

This approach effectively makes data races – situa-
tions where two threads concurrently modify the same
object or where one thread modifies an object while an-
other reads it – impossible, eliminating what is typically
the major source of software defects in multi-threaded
systems. In this regard, our design differs from most
mainstream programming languages, which tend to not
enforce this property (see, e.g., [2]).

Each thread has an associated thread-local region,
of which it always has exclusive ownership. In partic-
ular, objects in a thread’s thread-local region can never
be accessed by other threads.

When using only a single thread, the thread’s be-
havior is essentially indistinguishable from a sequential
system to the end user (though underlying libraries may
employ concurrency). This design intentionally hides
the complexities of parallelism from users who do not
have the necessary expertise in parallel programming.
They can safely continue to use the system as though it
were sequential code while still benefiting from any par-
allelized libraries and packages that others have written.
By having their actions compartmentalized within the
main thread’s region, their code will not interfere with
any parallelized code and the parallelized code will not
interfere with their code.

In addition, code that requires concurrent interaction
can also create one or more shared regions. In order to
obtain exclusive or shared ownership of a shared region,
a thread must first acquire the read-write lock associ-
ated with the region (a read lock for shared ownership, a
write lock for exclusive ownership). Shared regions are
typically created through the ShareObj(obj) func-
tion, which creates a new shared region and moves obj
inside.

Threads can claim shared or exclusive ownership to
a region through a new control structure, the atomic
statement. An atomic statement takes one or more
arguments, optionally preceded by a readonly or
readwrite descriptor. The thread then gains shared
(readonly) or exclusive (readwrite) ownership
for the duration of the atomic statement. Example:

atomic readonly obj, readwrite obj2 do
Thread has shared ownership of the region
containing <obj> and exclusive ownership
of the region containing <obj2>. Ownership
of both regions will be relinquished when
control flow reaches the "od" keyword at
the end of the code block.

od;

27

For convenience, constant data (esp. large tables) can
be stored in a special read-only region. All threads have
permanent shared ownership of the read-only region,
meaning that they can access the data in it as though it
were a shared region for which they hold a read lock, but
without the extra overhead and inconvenience of having
to aquire one each time. The MakeReadOnly(obj)
primitive puts obj in the read-only region.

Finally, HPC-GAP knows a public region, to which
all threads have constant read and write access. This is
the one exception to the rule that one has to have ex-
clusive ownership in order to modify objects within a
region. As a consequence, only objects that expose ex-
clusively atomic operations to GAP (i.e., operations that
cannot create data races) can be stored in the public re-
gion. The public region therefore only holds certain spe-
cial kinds of objects (such as those needed by the various
HPC-GAP synchronization primitives) as well as certain
types of immutable objects. Functions, for example, are
always contained in the public region1, so that the same
function can be called by multiple threads.

Objects can be migrated or copied between re-
gions. Migration, unlike copying, is an inexpensive
operation in that it simply changes the region mem-
bership descriptor of an object. Migration can be per-
formed through the MigrateObj(obj, target)
function, which migrates objects between arbitrary re-
gions, or the AdoptObj(obj) function, which mi-
grates an object to the current thread-local region.

Multi-threading
In order to use multiple threads, GAP programmers
are encouraged to use the task library, which provides
convenient abstractions over low-level thread manage-
ment2. The task library uses the concept of futures [3]
similar to mainstream programming languages such as
C# and Java.

The primary interface provided consists of the
RunTask() and TaskResult() functions:

task := RunTask(f, x1, ..., xn);
result := TaskResult(task);

RunTask() takes a function f and zero or
more values xi as its arguments. It then evaluates
f(x1, . . . , xn) asynchronously in a different thread.
RunTask() finishes immediately (i.e. while f is still
being executed in parallel), returning a task descriptor
as a result. The TaskResult() function takes a task
descriptor as its sole argument, waits until that task has
completed and returns the result of the underlying eval-
uation of f(x1, . . . , xn).

The task library provides additional primitives (such
as waiting for the first of a set of tasks to finish, hav-
ing the execution of tasks triggered by a condition,
or the cancellation of tasks). But RunTask() and
TaskResult() are the core primitives in that they al-
low the concurrent execution of arbitrary computations

with an interface that is only slightly more complex than
a regular function call.

Note that the evaluation of f(x1, . . . , xn) is per-
formed in a separate thread; in order to make this pos-
sible, any thread-local arguments are implicitly copied
to the new thread; likewise, the result (if thread-local)
is copied back to the thread-local region of the thread
performing the TaskResult() call.

Example: Parallel Matrix
Multiplication

Figure 1 uses the standard parallel matrix multiplication
algorithm to illustrate the above concepts.

1 ParMatrixMultiplyRow := function(m1, m2, i)
2 local result, j, k, n, s;
3 result := [];
4 atomic readonly m1, readonly m2 do
5 n := Length(m1);
6 for j in [1..n] do
7 s := 0;
8 for k in [1..n] do
9 s := s + m1[i][k] * m2[k][j];
10 od;
11 result[j] := s;
12 od;
13 od;
14 return result;
15 end;
16
17 ParMatrixMultiply := function(m1, m2)
18 local tasks, result;
19 ShareObj(m1);
20 ShareObj(m2);
21 atomic readonly m1, readonly m2 do
22 tasks :=
23 List([1..Length(m1)],
24 i -> RunTask(ParMatrixMultiplyRow,
25 m1, m2, i));
26 result := List(tasks, TaskResult);
27 od;
28 atomic readwrite m1, readwrite m2 do
29 AdoptObj(m1);
30 AdoptObj(m2);
31 od;
32 return result;
33 end;

Figure 1: Parallel matrix multiplication.

The ParMatrixMultiply() function in lines 17–
33 performs the actual multiplication. It takes two
square matrices as its arguments. The ShareObj()
primitives in lines 19–20 create new shared regions for
these matrices and migrate them inside. The atomic
construct in lines 21–27 then acquires read locks for the
two shared regions, granting the current thread shared
ownership. The substance of the work occurs in lines
22–25, where one task is started for each row vector in
m1. This is done through the standard List() func-
tion, which takes two arguments, a list and a function,
and applies the function to each element in the list. This
function performs a RunTask() call; thus, the result
of List() is a list of task descriptors. The second
List() invocation in line 26 then maps each of the
task descriptors to their results, returning a list of the

1Obviously, this holds only for the function’s code, which never changes, not any data that it operates on.
2Of course, low-level thread and concurrency primitives are also available for advanced concurrency constructs.

28

row vectors of the product of the matrices. In lines 28–
31, the two arguments are migrated back to the current
thread’s thread-local region; the AdoptObj() calls ef-
fectively undo the Shareobj() calls in lines 19–20.

The actual multiplication operation for each row
vector takes place in the ParMatrixMultiplyRow
function in lines 1–15. This is the basic matrix multipli-
cation algorithm for a given row vector. The only differ-
ence compared to the sequential version is the atomic
statement in lines 4–13, which gives the task temporary
shared ownership of the matrix regions. Note that this
is necessary even though the main thread had already
done the same: the tasks have no knowledge of what
the main thread is currently doing and thus have to also
claim shared ownership on their own. Because all tasks
require only read access to the matrices, shared owner-
ship is sufficient and all tasks can execute in parallel (as
long as the hardware permits).

Conclusion
A public beta release of HPC-GAP is planned for the
near future. If you would like access to the current pre-
release version, please contact the author or the GAP
Group.

References
[1] GAP – Groups, Algorithms, and Programming, Ver-

sion 4.7.5; 2014 http://www.gap-system.org

[2] Hansen, P. B. Java’s Insecure Parallelism. SIG-
PLAN Notices, v.34 n.4, p.38–45, April 1999.

[3] Friedman, D. P. and Wise, D. S. The Impact of Ap-
plicative Programming on Multiprocessing. 1976
International Conference on Parallel Processing,
p.263–272.

The GAP package SingularInterface
M. Barakat, M. Horn, F. Lübeck, O. Motsak, M. Neunhöffer, H. Schönemann
(TU Kaiserslautern, JLU Gießen, RWTH Aachen University, TU Kaiserslautern,
triAGENS GmbH, TU Kaiserslautern)

barakat@mathematik.uni-kl.de, max.horn@math.uni-giessen.de,
frank.luebeck@math.rwth-aachen.de, motsak@mathematik.uni-kl.de,
max@9hoeffer.de, hannes@mathematik.uni-kl.de

What is SingularInterface?
The GAP package SingularInterface is a highly
efficient and robust unidirectional low-level interface to
SINGULAR [2, 3]. It is the outcome of an intensive col-
laboration between core developers of both systems.

The goal of this interface is to map all of SINGU-
LAR’s powerful functionality into GAP. To achieve this
it automatically wraps all SINGULAR datatypes and ex-
ports all of SINGULAR’s interface procedures to GAP.1
Furthermore, all procedures of any contributed library
can be loaded on demand.2

This package is a rather “faithful” image of SINGU-
LAR; it does not make an extensive attempt for a better
integration of SINGULAR into the GAP ecosystem. This
is intentionally left to other packages, which are free to
realize this in different ways.

The development of SingularInterface has
reached a �-phase and is already actively used in some
research projects. We hope to attract more users in the
near future, whose feedback will be crucial for a suc-
cessful further development.

How to get it?
To download and install SingularInterface

please follow the instructions on

http://gap-system.github.io/
SingularInterface/

If you are reading this article, say, more than one year
in the future, and have a recent GAP installation, then
hopefully you already have a working version of this
package.

To check that the package has been successfully in-
stalled, start GAP and type:

gap> LoadPackage("SingularInterface");
true

To see all imported procedures type:

gap> SI_<press TAB twice>

The SINGULAR library “standard.lib” is loaded
by default. To see all imported SINGULAR library pro-
cedures type:

gap> SIL_<press TAB twice>

To load any other library, e.g. “matrix.lib”, type:

gap> SI_LIB("matrix.lib");
true

1With the prefix “SI_” prepended to their names.
2They appear in GAP with the prefix “SIL_” prepended to their names.

29

