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Abstract:
Motivation: Microarray gene expression data is collected at an increasing pace and nu-
merous methods and tools exist for analyzing this kind of data. The aim of this study
is to evaluate the effect of the basic statistical processing steps of microarray data on
the final outcome for gene expression analysis; these effects are most problematic for
one-channel cDNA measurements, but also affect other types of microarrays, espe-
cially when dealing with grouped samples. It is crucial to determine an appropriate
combination of individual processing steps for a given dataset in order to improve the
validity and reliability of expression data analysis.

Results: We analyzed a large gene expression data set obtained from a one-channel
cDNA microarray experiment conducted on 83 human samples that have been clas-
sified into four Osteoarthritis related groups. We compared different normalization
methods regarding the effect on the identification of differentially expressed genes.
Furthermore, we compared different methods for combining spot p-values into gene
p-values, and propose Stouffer’s method for this purpose. We developed several qual-
ity and robustness measures which allow to estimate the amount of errors made in the
statistical data preparation.

Conclusion: The apparently straight forward steps of gene expression data analysis,
i.e. normalization and identification of differentially expressed genes, can be accom-
plished by numerous different methods. We analyzed multiple combinations of a num-
ber of methods to demonstrate the possible effects and therefore the importance of the
single decisions taken during data processing. An overview of these effects is essential
for the biological interpretation of gene expression measurements. We give guidelines
and tools for evaluating methods for normalization, spot combination and detection of
differentially regulated genes.

1 Introduction

Today, numerous methods and tools exist for analyzing gene expression data. New nor-
malization techniques are presented, e.g. [Edw03, FC04, WBHW03, ZLS05], so are
methods for detecting differentially expressed genes, e.g. [CNGGC04, CC03, CHQ+05,
TTC01, YDFQ05]. Tools aim at analyzing microarray data in a largely automated way,
e.g. [CKP+04, HZZL02, HVAS+04, KWSPF03, PGM04], many of them even integrate

77



gene expression data with further information obtained from e.g. ontologies, pathway
databases or text mining.
Yet, comparisons between different normalization methods were focussed mainly on Affy-
metrix and two-channel cDNA microarrays [BIAS03, PYK+03], and do not consider sam-
ple groups. Generally, existing literature offers little guidance on how to decide which
method to use, how to compare different methods and their outcomes, especially for one
channel cDNA data, and how to check the correspondance of possible outcomes to a biol-
ogists expectation and downstream interpretation.
The aim of the study presented here is to demonstrate that the ’higher-level’ outcome, i.e. a
list of differentially regulated genes, of any microarray experiment is closely related to the
’low-level’ details of data processing, that individual microarray data processing steps can
not be considered as independent and that it is crucial to be careful in every decision taken
during microarray data processing in order to obtain reliable results. More precisely, our
goal is to investigate the importance of cDNA microarray data normalization and process-
ing for the identification of differentially expressed genes. Therefore we apply different
normalization techniques and evaluate the differences in the final result.
We also compare different methods for combining spot p-values to gene p-values, that is
another neglected problem.
Finally, the large number of samples allows us to perform a stability analysis on the signif-
icantly regulated genes. Recently, it has been shown [MKH05] that in numerous published
large studies on differential gene expression differentially expressed genes are highly un-
stable for subsets of the analyzed samples. Thus, we propose a procedure which estimates
the errors and quantifies their amount via a robustness analysis, because a gold standard is
not available.

We present a study conducted on one-channel cDNA microarray data analysis. The ana-
lyzed dataset represents 83 samples of human joint cartilage classified into four disease-
related groups of osteoarthritis (OA), for reviews on osteoarthritis see [ABZZ02, AD03,
ABSZ04]. Given the difficulty of obtaining human joint samples this represents a large
data set. On the other hand, groups of about 20 samples allow for statistical robustness
and quality analysis. The data was collected to identify differentially regulated genes
which are of potential interest for understanding disease mechanisms, diagnosis and med-
ical therapy. The full dataset used for this study and its biological interpretation is going
to be published in the near future. The study presented here is not intended to focus on the
intrinsic content of the underlying data.

2 Dataset

The data analyzed in the present study was obtained from a custom designed cDNA mi-
croarray. The microarrays were produced and measured by GPC-Biotech AG (Martinsried,
Germany). A part of the spotted cDNA had been preselected for OA-relevant genes. Scan-
ning of the radiolabeled arrays was done by phosphorimaging. Each microarray contains
7467 spots, 5517 spots represent 3648 genes, there are 1 to 74 spots per gene on the array,
and 1062 genes are represented by more than one spot. The fact that the number of spots
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per gene varies complicates data analysis as the information obtained from several spots
needs to be combined for obtaining information for a gene, which is needed for biological
interpretation; yet this applies to most cDNA and oligonucleotide microarrays and there-
fore represents a common problem.
Primary data analysis, i.e. local background correction and removal of outlier spots, was
also done by GPC-Biotech with proprietary software. The data set is described in the fol-
lowing as: X = Xks = {xks|k = 1...83, s = 1...7467}, where s: spots, k: samples.
83 samples of human cartilage were analyzed. The samples were classified based on his-
tological criteria into four groups: normal (n), early degenerative cartilage (e), peripheral
(p) and central (c) Osteoarthritis. Furthermore the class ’late OA’ (l) was defined as the
combined set of peripheral and central OA, this represents all samples of patients severely
affected by Osteoarthritis. It is known that n and e as well as p and c are very similar from
a physiological point of view, whereas n is very different from p and c and, consequently,
also from l.
One of the main goals of the experiment was to identify differentially regulated genes for
the group pairs ne, np, nc, ep, ec, pc, nl, el. The expression value distribution (figure 1)
shows most data concentrated in a very small range (75% of the values are <0.13, 99%
are <5.91) and some values are significantly larger (overall maximum at 539.9). Due to
the technique (cDNA spots of different sequences, radioactive detection), the expression
values for different spots representing the same gene can vary significantly.
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Figure 1: Distribution of raw data of the analyzed dataset (before outlier removal, i.e. 83*7467
spots).

Outlier detection
Three outlier detection methods relying on different principles were chosen for obtaining
a meaningful result: cluster analysis, PCA and analysis of expression value distributions.
These analyses were done with the expression values, and with data transformed to z-
scores over spots, both before and after applying the normalizations described below. The
z-score transformation normalizes the values for each spot over all samples, i.e. every spot
mean is 0 with standard deviation 1. Thus, the contribution of every spot to an overall
analysis is the same, and consequently this transformed data can yield complementary re-
sults to results obtained directly from the raw data.
In cluster analysis, we noticed samples that were clustered with significant distance to
all other samples. For PCA analysis, the first two main components were plotted against
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each other; this yields dense groups of samples belonging to the same sample class and
the groups of different classes partially overlapping with each other. Some samples were
clearly separated from the dense group of all other samples belonging to the same sample
class in this PCA plot; this was interpreted as an indication for being outliers. For analysis
of expression value distributions boxplots and histogramms were inspected visually. We
classified a sample as outlier if it was conspicuous in at least two of the three types of
analysis.
We found 5 of the 83 samples to be outliers. The outlier analysis before and after normal-
ization yielded the same set of outlier samples, this confirms that the classification of a
sample as outlier does not depend on the type of normalization applied to the data.
The outlier samples were removed for further analysis. The remaining 78 samples are
classified as follows: 18 normal (n), 20 early degenerative cartilage (e), 21 peripheral OA
(p), and 19 central OA (c). The raw data excluding outlier samples represents the starting
point for all further analysis we present here.

3 Data Processing

3.1 Normalization

Centralization [ZAZL01] is a normalization method that estimates for each pair of arrays
the quotient of the constants of proportionality and subsequently computes an optimally
consistent scaling for the samples based on the matrix of pairwise quotients. Centraliza-
tion needs two parameters describing the range of reliable measurements to be used. For
estimating these parameters, we analyzed the distribution of expression levels. We inves-
tigated the effect of different pairs of parameters (3 lower limits, 4 upper limits) and the
effect of iterative application of centralization (up to 10 iterations). We required the cen-
tralized data to show little variation of the 25%, 50%, and 75% percentiles after applying
centralization once, and also after several iterations of centralization. The range of ex-
pression values 0.03-1 produced reliable yet conservative results, i.e. the smallest variance
after one and up to 10 iterations, and therefore was applied for final centralization.

Percentile Normalization is a method that adjusts a certain percentile to the same level
for all samples by applying a multiplicative factor to each sample. We used the 50% (eq.
median) and 75% percentiles, which are typically used.

MAD Scale Normalization adjusts the median of all samples to a common expression
level and the median absolute deviation (MAD), which is a very robust measure of scale
for the variability of distributions, to a common level. Typically, the median and MAD are
fixed to 0 and 1, respectively; we applied a variance in that we transformed the median
and MAD back to the original scales. For each sample k and spot s the original value xks

was transformed into the normalized value x��
ks according to the following equation:

x�
ks =

xks − median(xk)

MAD(xk)

x��
ks = x�

ks ∗ MAD(X) + median(X)
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MAD(xk) = median(|xk − median(xk·)|)

where: MAD: median absolute deviation; k: sample; s: spot measured in sample k; X :
entire dataset.

Flooring
The raw expression intensities contain negative values due to background correction of the
original data performed by GPC-Biotech. Negative data are not appropriate for comput-
ing fold changes and p-values. Also expression values very close to 0 are not appropriate
because they lead to inappropriate high fold changes; therefore it is important to estimate
a reliable floor value. The general lower bound of measured intensity accurracy was es-
timated by an analysis of p-values versus individual spot expression values: p-values for
all group comparisons were calculated by the two-sided Wilcoxon ranksum test and plot-
ted against the underlying spot expression values (data not shown). This analysis showed
that p-values smaller than 10−3 were based almost exclusively on expression values above
0.01. Therefore, the background level was estimated to be at 0.01 and expression values
<0.01 were set to 0.01 for all further analysis.

3.2 Differential Expression

p-values
Differently expressed genes were detected based on the following procedure: First, the
two-sided Wilcoxon ranksum test was applied for calculation of p-values for spots. Next,
these spot p-values are combined to obtain overall gene p-values. This two-step procedure
is necessary because of the high variability in expression values measured for different
spots representing the same gene. We applied three different methods for combining spot
p-values into gene p-values:

(1) Fisher’s inverse chi-square method [Fis32]. This method uses the fact that given a
uniform distribution U , −2∗log(U) has a chi-square distribution with two degrees of free-
dom, and the sum of two independent chi-square variables is again chi-square distributed
(with four degrees of freedom). Consequently, the combined p-value pchi(g) for a gene g
can be computed as:

pchi(g) = 1 − χ2
2d(

�
s

−2 ∗ log(ps))

where ps are the p-values for spots s representing gene g (in our case obtained from the
two-sided Wilcoxon ranksum test), d is the number of spots s representing gene g, and
χ2

d(x) is the cumulative distribution function of the chi-square distribution with d degrees
of freedom.

(2) A variant of Fisher’s inverse chi-square method that also considers the directions
associated to individual spot p-values:

pdirchi(g) = min(1 − χ2
2d(

�
s

−2 ∗ log(pdir
s )))

81



where pdir
s are the onesided spot p-values (Wilcoxon ranksum test) for all spots s repre-

senting gene g; these onesided spot p-values are determined for both regulation directions;
the overall combined gene p-value then equals to the smaller of the two combined p-values,
each of them corresponding to one test direction.

(3) Stouffer’s method [Ros84]. This method transforms p-values to z-scores assuming
a normal distribution(ps → Zs), which is a straightforward calculation as the onesided p-
value ponesided

s corresponds to the area under the normal cumulative distribution function
between −∞ and −|Zs|.

ponesided
s =

1√
2π

� −|Zs|

− inf

e
−t2
2 dt

Each Zs gets the sign corresponding to the regulation direction of the corresponding spot,
the z-scores of spots representing one gene are summed, and the sum is scaled in order to
account for the number of combined spots:

Zoverall =
�

s

Zs/
√

k

where k is the number of tests, i.e. the number of spots to be combined. Finally the z-
scores are transformed back to p-values (Zoverall → poverall) by the integration of the
area under the curve as described above.

q-values
The gene p-values are converted into q-values by use of the R-library ’qvalue’[ST03].
The q-value quantifies the false discovery rate, i.e. a q-value of 0.01 indicates that when
selecting significant genes as the subset of all genes having a q-value ≤0.01, 1% of the
selected genes have to be expected to be false positives. The q-value computation implies
the estimation of π0, i.e. the number of non-regulated genes. This is done by analyzing
the distribution of p-values; the uniform distribution underlying the given p-value distri-
bution is estimated and the area under this uniform distribution estimates π0. The number
of regulated genes can thus be estimated by 1 − π0. Different methods for estimating π0

are implemented in the applied R-library, we used the bootstrap method as this is recom-
mended as a robust method by the authors.

Fold change
Given two sample groups C1, C2 ∈ {n, e, p, c, l} , C1 
= C2 the overall fold-change for a
gene g was estimated as follows: A spot s for the gene g is taken into account if at least
one expression value in the groups under investigation is above the floor value (0.01); for
each spot we compute fold-changes (sfcC1,C2

Sg
) for all pairs of samples derived from the

two groups to be compared. The median of these spot fold-changes is used as overall
estimate for the gene-fold change (fc(g)C1,C2).

S�
g := {s spot|s represents gene g}

s ∈ Sg :=
�
s ∈ S�

g |∃k ∈ {C1 ∪ C2} : xks > 0.01
�
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sfcC1 ,C2
Sg

:= {log2(xis/exprjs)|i ∈ C1 ∧ j ∈ C2, s ∈ Sg}

fc(g)C1,C2 = 2
median(sfc

C1,C2
Sg

)

where: xks is the expression value of spot s in sample k.

We apply three different methods for combining spot p-values into gene p-values, and one
method for computing fold changes. The independent determination of gene-fold change
and directed gene p-value makes it possible that the gene p-value is given for the opposite
direction to the fold change-direction. We analyzed the data for this and found that this
effect only occurs for few fold changes that are very close to 1; therefore this does not
imply problems for further biological interpretation of data.

4 Results and Discussion

4.1 Normalization

Normalization can significantly change the original data. Typically, the effect of normal-
ization is evaluated by visual inspection of boxplots. A boxplot shows the 25% percentile
and 75% percentile of a dataset as lower and upper boundary of a box and the median as
horizontal line within the box, it shows whiskers of a length that is typically proportional
to the interquartile range, and all data points lying outside these whiskers are displayed in-
dividually as outliers. For between slide normalizations, the individual samples are listed
on the x-axis, and the expression values are plotted as a dataset on the y-axis (Figure 2,
left panel).
Boxplots of the type of data described above typically show small boxes and whiskers but
numerous outlier values due to the data distribution. While boxplots are easy to generate
and interprete, we suggest in addition to these a different type of plot for evaluating the
effect of normalization, especially for experiments dealing with samples belonging to dif-
ferent classes.
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Figure 2: Boxplot (left panel) and group-level plot (right panel) for the same data. The group-level
plot shows the 25%, 50% and 75% percentile for each sample (as does the boxplot) and additionally
shows the median over these values for each sample group representing different disease stages
(cl.med: class median).
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This group-level plot also shows the 25%, 50% and 75% percentiles for the individual
samples as does the boxplot. Data displayed as outlier in boxplots is ignored as it is not
in the focus of normalization. Most importantly the plot additionally shows the group-
levels of the plotted percentiles, i.e. the median of the corresponding percentile over all
samples belonging to the same group. This group-level allows to identify group-specific
variations within data, which may not be inherent to the biological samples under inves-
tigation. For the investigated samples, analysis of total mRNA content showed no group
specific variations on the mRNA level; variations must be due to experimental setup or
any other undesired effect. Figure 2 shows a boxplot and group-level plot for our dataset.
The group-level plot clearly shows the different levels of expression data for the different
sample groups, in the boxplot this is much less evident.
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Figure 3: Effects of normalization: group-level plots for p(1-21) and c(22-40) samples and volcano
plots for group comparison p versus c for raw data and four different normalizations (for details see
section 4.1).

Differing levels of expression data between groups of samples evidently affect the calcu-
lation of p-values and fold changes. This results in an artificially high number of differen-
tially regulated genes. Another effect may be that more genes seem to be regulated in one
direction than in the other even though this might not be the case after adequate normaliza-
tion and might also not be expected from prior biological knowledge. Figure 3 contrasts
normalized data with raw data for the comparison pc, it shows group-level plots and the
resulting p-values and fold changes. The raw and centralized data yield assymetric fold-
change distributions, more genes appear upregulated than downregulated from p to c due
to the differences in group level. The 50% percentile normalization produces more down-
regulated than upregulated genes. For the analyzed data, we expect that approximately the
same number of genes are up- and down-regulated. Only the 75% percentile normalization
and the MAD scale normalization yield approximately symmetric distributions.
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Far more normalization techniques than the ones analyzed here exist (e.g. [HvHS+02,
YDL+02, SS03, Edw03, BGOT04]); most of the newer normalization techniques are non-
linear as this is assumed to perform generally better than linear techniques. Some of them
focus on two-channel or Affymetrix-type data and can therefore not easily be applied to
one-channel cDNA data, others can directly or after slight adaptation be applied to this
kind of data. The study presented here concentrated on some normalization techniques
and shows that different normalization methods yield different results and therefore we
propose analyses that should be performed after any normalization to test its appropriate-
ness.

4.2 p-value combination

Within cDNA microarrays, the number of spots per gene typically varies, and the experi-
mental technique of spotting different clones for a given gene results in high variability of
the measured data for different spots representing the same gene. This makes it necessary
to combine spot p-values to gene p-values to simplify biological interpretation. In princi-
ple, different cDNAs representing the same gene do not need to be identical, they can be
splicing variants, or they can cover distinct regions within the gene sequence; therefore,
it could be interesting to integrate sequence information about the spotted cDNAs. Here,
we do not take sequence information into account, we make use of the gene annotation as
provided by GPC-Biotech and consider each spot representing the same gene as replicate,
irrespective of the specific cDNA being spotted.
To our knowledge, there is no comprehensive analysis about how to best combine spot
p-values into gene p-values available, therefore we compared three methods for this task.
Figure 4 shows examples of gene p-values obtained from the three investigated methods.
We required the total p-value resulting from significant p-values with the same direction
of regulation to be at least as significant as the most significant p-value; a total p-value
resulting from p-values with inconsistent direction should generally be of lower signif-
icance than the most significant underlying spot p-value; and if the individual p-values
are approximately equal but the fold changes point in opposite direction, the gene p-value
should tend towards 1.
Stouffer’s method has so far been, to our knowledge, predominately been used in social
sciences, we are not aware of its application for gene expression data. This method as-
sumes a normal distribution of the underlying spot p-values, which might not be the case
for the analyzed data. However, we found Stouffer’s method to result in the most plausible
results, especially in cases where multiple spots were investigated for a gene and individual
spots showed fold-changes in opposite direction. This combination method was therefore
applied in all other analyzes based on gene p-values shown here if not indicated otherwise.
The most predominantly used method for combining p-values of the analyzed ones is
Fisher’s inverse chi-square method. This method has the drawback that it does not con-
sider the signs of changes, i.e. the combination of two spots with a significant p-value and
opposite regulation direction results in the same gene p-value as two spots of the same
direction, and the resulting gene p-value is of higher significance than the p-value of the
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Figure 4: Different methods for combining spot p-values to gene p-values; upper figure: spot and
gene p-values; lower figure: spot and gene fold changes. For details see section 3.2 and 4.2.

corresponding spots.
The presented variant of Fisher’s inverse chi-square method partially eliminates this effect.
Generally, the method renders p-values that are slightly more significant than the original
Fisher’s inverse chi-square method. If, however, two spots are regulated in opposite direc-
tions and both have significant p-values the resulting gene p-value is clearly less significant
than the respective value of the original Fisher’s inverse chi-square method. Therefore, the
variant corresponds better to our requirements than the original method.
Compared to Stouffer’s method, we clearly favor the latter because it reflects p-values of
opposite direction in a more prominent decrease in significance of the resulting overall
p-value than does the chi-square variant. This is obvious given the calculation methods: In
Stouffer’s method, two spots of opposite directions and approximately equally significant
p-values nearly cancel each other out due to the summing of z-scores; in the chi-square
variant, one value cannot cancel out another, the more significant one has highest influ-
ence, and the less significant one has a minor, yet still increasing effect on the overall
significance.

4.3 Number of regulated genes

Cluster analysis of the analyzed expression data showed a good separation between the
class pairs ne and pc, whereas the groups n and e as well as p and c were not separated
from each other (results not shown here). Interestingly, also in terms of clinical staging, n
and e and p and c resemble each other, whereas these two group pairs are clearly distinct.
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The result of the cluster analysis lead to the expectation, that more genes are significantly
regulated in the comparisons np, nc, and nl than in the comparisons ne and pc.
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Figure 5: Effect of normalization on the number of significantly regulated genes.

Figure 5 shows the estimated number of significantly regulated genes for different group
comparisons and different normalizations. Once again, the figure shows the very impor-
tant effect of the type of normalization on the outcome of differentially expressed genes.
The effect is most pronounced in the comparison pc; depending on the method of nor-
malization between 7% and 74% of the genes are regulated. Overall, only the percentile
normalization to the median and the MAD scale normalization yield results which support
the expectation to find less genes to be regulated in the comparisons ne and pc compared
to np and nc. The MAD scale normalization yields the smallest number of regulated genes
in all comparisons.

4.4 Robustness analysis

The large number of samples allows us to assess the robustness of the differentially reg-
ulated genes between two sample groups; we performed a leave-one-out and a subset
sampling approach that both show the varying robustness of differentially regulated genes
for different group comparisons.

Leave-one-out Analysis
We performed a leave-one-out analysis for estimating the robustness of p-value calcu-
lation, i.e. we disregarded one sample at a time and calculated p-values based on the
remaining samples. The resulting lists of p-values were compared to the list derived from
the full dataset. This analysis was conducted on the MAD scale normalized dataset and
with the Stouffer method for combining p-values.
For estimating the robustness, the p-values obtained from the full dataset were considered
as standard of truth, we applied a series of cutoff-p-values (between 10−7 and 10−1) and
determined the fraction of significantly regulated genes from the full dataset that are also
significantly regulated to the given cutoff p-value in the leave-one-out datasets. We se-
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lected ’robust’ differentially expressed genes according to two criteria:
exact: The fraction of genes that are significant in all leave-one-out datasets
relaxed: The fraction of genes that are significant with a p-value of ≤2* the cutoff p-value
in all leave-one-out datasets.
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Figure 6: Robustness Analysis of p-value calculation: leave-one-out analysis. Fraction of genes
significant at a certain p-value level in the overall p-value calculation that are also significant in
the leave-one-out p-value calculation according to two different measures for evaluation exact (left
panel) and relaxed (middle). The right panel shows the total number of genes significant at a certain
p-value-level for each group comparison. For details see section 4.4.

The results of this analysis (figure 6) show that the p-values are generally very robust. Con-
sidering a cutoff p-value of 10−3 the agreement of most group comparisons covers > 82%
of all genes in the strict analysis and > 93% in the relaxed analysis. The comparison
of p-values between normal and early degenerative cartilage shows the least robustness;
one reason for this is the small number of significantly regulated genes in this comparison
(only 8 genes have a p-value ≤10−5, 38 genes have a p-value ≤10−3), and this also re-
flects the relatively high similarity of normal and early degenerative cartilage samples.
Overall, this confirms, that the applied methods for normalization and p-value combina-
tion yields robust p-values and, thus, the genes selected on the basis of these p-values or
the corresponding q-values can be assumed to be appropriate for further biological inves-
tigation. An error of about 10% of the significantly differentially regulated genes has to be
expected.

Subset Sampling
For estimating the robustness of the most significantly regulated genes for a given group
comparison we additionally performed a subset sampling analysis. For each group pair,
we generated 50 random subsets of the samples (m=10...18 samples used for each of the
groups to be compared) and calculated p-values based on these subsets. Next, we analyzed
the top p-value genes; we used the t top genes obtained from the entire sample set as
standard of truth and determined the fraction of these top candidates, that are also among
the t top candidates of at least s% of the subset p-value sets. For t we used 50, 75, 100;
for s we used 100, 80, 50.
The result for the MAD scale normalized dataset, with the Stouffer method for combining
p-values, and for t=50 (t=75 and t=100 yielded very similar results) is shown in figure 7.
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Figure 7: Robustness Analysis of p-value calculation: Subset sampling. Fraction of the 50 top p-
value candidates in the overall p-value calculation that are also among the 50 top candidates in at
least s% of the subset-based p-values. Left: all subset p-values (s = 100); middle: s = 80; right:
s = 50. For details see section 4.4.

The figure shows that the p-values are of varying stability. Generally, the fraction of stable
genes raises when the number of samples in the subset (m) increases. The genes for the
group comparisons ne and pc are significantly less robust than the other comparisons. The
other group comparisons show higher stability; for a subset sample size of 10, about 50%
of the top-candidates are present in all subset p-value top-candidates; about 90% of the
top-candidates are present in half of the subset top-candidates. For these group compar-
isons, the fraction of stable genes also rises with increasing subset size, but this increase is
rather modest compared to ne and pc. In any case, the analysis yields an overview of the
error to be expected within the respective group comparison and the involved differentially
regulated genes.

5 Conclusions

The study presented here shows that microarray data normalization and processing has
an important effect on the final outcome especially for the identification of differentially
expressed genes. It presents the group-level plot as an helpful means for visual inspection
of normalization effects on data from classified samples. Furthermore, we compared dif-
ferent methods for combining spot p-values into gene p-values, an important task when
dealing with data that bares large inter-spot expression value differences, but neglected so
far in our opinion. We found Stouffer’s method to work best, which has not been described
before for this task.
Finally, we believe that this study shows on exemplary data that it is of vital importance to
check every individual step of gene expression data analysis for its appropriateness. Cer-
tainly, gene expression data analysis has to fit statistical requirements, but it also needs
to account for experimental and biological background knowledge. For most individual
processing steps numerous alternatives exist and therefore it is important to test differ-
ent possibilities and analyze the effects of the decision with appropriate tools. The use
of global robustness and quality measures for analyzing individual outcomes can help in
estimating the reliability of final microarray study results.
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