An Overview of
Planning Technology in Robotics

Malik Ghallab
LAAS - CNRS, Toulouse, France
Malik.Ghallab@laas.fr

Abstract: We present here an overview of several planning techniques in robotics. We
will not be concerned with the synthesis of abstract mission and task plans, using well
known classical and other domain-independent planning techniques. We will mainly
focus on to how refine such abstract plans into robust sensory-motor actions and on
some planning techniques that can be useful for that.

The paper introduces the important and mature area of path and motion planning.
It illustrates the usefulness of HTN and MDP planning techniques for the design of a
high level controller for a mobile robot.

1 Introduction

A robot integrates several sensory-motor functions, together with communication and
information-processing capabilities into cognitive functions, in order to perform a collec-
tion of tasks with some level of autonomy and flexibility, in some class of environments.
The sensory-motor functions in a robot are, for example:

locomotion on wheels, legs, or wings,

manipulation with one or several mechanical arms, grippers and hands,

localization with odomoters, sonars, laser, inertial and GPS sensors,

scene analysis and environment modeling with a stereo-vision system on a pan-and-tilt
platform.

A robot can be designed for tasks and environments such as:

e manufacturing: painting, welding, loading/unloading a power-press or a machine-tool,
assembling parts,

e servicing a store, a warehouse or a factory: maintaining, surveying, or cleaning the area,
transporting objects,

o exploring an unknown natural area, e.g., in planetary exploration: building a map with
characterized landmarks, extracting samples and setting various measurement devices,

e assisting a person in an office, a public area, or at home,

o performing tele-operated surgical operations, as in the so-called minimal invasive surgery.

Robotics is a reasonably mature technology when, for example

IThis article is based on a revised material from the Chapter 20 in [17].

28

e arobot is restricted to operate within a well known and well engineered environments,
e.g., as in manufacturing robotics,

e a robot is restricted to perform a single simple task, e.g., vacuum cleaning or lawn
mowing.

For more diverse tasks and open-ended environments, robotics remains a very active re-
search field.

A robot may or may not integrate planning capabilities. For example, most of the one
million manufacturing robots deployed today in the manufacturing industry do not per-
form planning per se. Using a robot without planning capabilities basically requires hand-
coding the environment model, and the robot’s skills and strategies into a reactive con-
troller. This is a perfectly sensible approach as long as this handcoding is inexpensive and
reliable enough for the application at hand, which is the case if the environment is well-
structured and stable and if the robot’s tasks are restricted in scope and diversity, with only
a limited man-robot interaction.

Programming aids such as hardware tools, e.g., devices for memorizing the motion of a
pantomime, and software systems, e.g., graphical programming interfaces, allow for an
easy development of a robot’s reactive controller. Learning capabilities, supervised or
autonomous, significantly extend the scope of applicability of the approach by allowing
a generic controller to adapt to the specifics of its environment. This can be done, for
example, by estimating and fine-tuning control parameters and rules, or by acquiring a
map of the environment.

However, if a robot has to face a diversity of tasks and/or a variety of environments, then
planning will make it simpler to program a robot. It will augment the robot’s usefulness
and robustness. Planning should not be seen as opposed to the reactive capabilities of a
robot, handcoded or learned, neither should it be seen as opposed to its learning capabili-
ties. It should to be closely integrated to them.

The specific requirements of planning in robotics, as compared to other application do-
mains of planning, are mainly the need to handle:

o online input from sensors and communication channels;

o heterogeneous partial models of the environment and of the robot, as well as noisy and
partial knowledge of the state from information acquired through sensors and commu-
nication channels;

o direct integration of planning with acting, sensing, and learning.

These very demanding requirements advocate for addressing planning in robotics through
domain-specific representations and techniques. Indeed, when planning is integrated within
a robot, it usually takes several forms and is implemented throughout different systems.
Among these various forms of robot planning, there is in particular path and motion plan-
ning, perception planning, navigation planning, manipulation planning, and domain inde-
pendent planning.

Today, the maturity of robot planning is mainly at the level of its domain-specific plan-
ners. Path and motion planning is a mature area that relies on computational geometry
and efficiently uses probabilistic algorithms. It is already deployed in robotics and other

29

application areas such as CAD or computer animation. Perception planning is a younger
and much more open area, although some focused problems are well advanced, e.g. the
viewpoint selection problem with mathematical programming techniques.

Domain-independent planning is not widely deployed in robotics for various reasons,
among which are the restrictive assumptions and expressiveness of the classical planning
framework. In robatics, task planning should ideally deal with time and resource alloca-
tion, dynamic environments, uncertainty and partial knowledge, and incremental planning
with consistent integration to acting and sensing. The mature planning techniques avail-
able today are mostly effective at the abstract level of mission planning. Primitives for
these plans are tasks such as “navigate to location5”, “retrieve and pick-up object2”.
These tasks are far from being primitive sensory-motor functions. Their design is very
complex.

Several rule-based or procedure-based systems, such as PRS, RAP, Propice, or SRCs,
enable to program manually closed-loop controllers for these tasks that handle the uncer-
tainty and the integration between acting and sensing. These high level reactive controllers
permit preprogrammed goal-directed and event-reactive modalities.

However, planning representations and techniques can also be very helpful for the design
of high-level reactive controllers performing these tasks. They enable to generate, off-line,
several alternative complex plans for achieving the task with robustness. They are useful
for finding a policy that chooses, in each state, the best such a plan for pursuing the activity.

The rest of this article presents the important and mature area of path and motion planning
(Section 2). It then illustrates the usefulness of planning techniques, for the design of
a high level navigation controller for a mobile robot (Section 3). The approach is not
limited to navigation tasks. It can be pursued for a wide variety of robotics tasks, such
as object manipulation or cleaning. Several sensory-motor functions will be presented
and discussed in Section 3.1; an approach that exemplifies the use of planning techniques
for synthesizing alternative plans and policies for a navigation task is described. The last
section refers to more detailed and focused descriptions of the techniques presented in this
overview.

2 Path and Motion Planning

Path planning is the problem of finding a feasible geometric path in some environment for
moving a mobile system from a starting position to a goal position. A geometric CAD
model of the environment with the obstacles and the free space is supposed to be given. A
path is feasible if it meets the kinematics constraints of the mobile system and if it avoids
collision with obstacles.

Motion planning is the problem of finding a feasible trajectory, in space and time, i.e., a
feasible path and a control law along that path that meets the dynamics constraints (speed
and acceleration) of the mobile system. If one is not requiring an optimal trajectory, it
is always possible to label temporally a feasible path in order to get a feasible trajectory.
Consequently, motion planning relies on path planning, on which we focus the rest of this

30

Figure 1: Hilare, a car like robot with an arm and a trailer (left); HRP, a humanoid robot (right).

section.

If the mobile system of interest is a free-flying rigid body, i.e., if it can move freely in space
in any direction without any kinematics constraint, then six configuration parameters are
needed to characterize its position: x,y, z and the three Euler angles. Path planning de-
fines a path in this six-dimensional space. However, a robot is not a free-flying body. Its
kinematics defines its possible motion. For example, a car-like robot has three configura-
tion parameters, x, 3, and 6. Usually these three parameters are not independent, e.g., the
robot may or may not be able to turn on the spot (change 6 while keeping x and y fixed),
or be able to move sideway. A mechanical arm that has n» rotational joins needs n con-
figuration parameters to characterize its configuration in space, in addition to constraints
such as the maximum and minimum values of each angular join. The car-like robot Hilare
in Figure 1 (left) has a total of 10 configuration parameters: 6 for the arm and 4 for the
mobile platform with the trailer [34]. The humanoid robot HRP in Figure 1 (right) has 52
configuration parameters: 2 for the head, 7 for each arm, 6 for each leg and 12 for each
hand (four finger with 3 configuration parameters each) [26, 27].2

Given a robot with n configuration parameters and some environment, let us define:

e ¢, the configuration of the robot: an n-tuple of reals that specifies the n parameters
needed to characterize the position in space of the robot,

e ('S, the configuration space of the robot: the set of values that its configuration ¢ may
take,

e CSyree, the free configuration space: the subset of C'S of configurations that are not in
collision with the obstacles of the environment.

2The degrees of freedom of a mobile system are its control variables; an arm or the humanoid robot have as
many degrees of freedom as configuration parameters, a car-like robot has 3 configuration parameters but only
two degrees of freedom.

31

Path planning is the problem of finding a path in the free configuration space C'Sy,.. be-
tween an initial and a final configuration. If one could compute C'S¢,.. explicitly, then
path planning would be a search for a path in this n-dimensional continuous space. How-
ever, the explicit definition of C'S,... is a computationally difficult problem, theoretically
(it is exponential in the dimension of CS) and practically. Fortunately, very efficient prob-
abilistic techniques have been designed that solve path planning problems even for highly
complex robots and environments. They rely on the two following operations:

e collision checking, which checks whether a configuration ¢ € C'S,.e, or whether a path
between two configurations in C'S'is collision free, i.e., if it lies entirely in C'Sy,.ce,

o kinematic steering which finds a path between two configurations ¢ and ¢’ in CS that
meets the kinematic constraints, without taking into account obstacles.

Both operations can be performed efficiently. Collision checking relies on computational
geometry algorithms and data structures [19]. Kinematic steering may use one of several
algorithms, depending on the type of kinematics constraints the robot has. For example,
Manhattan paths are applied to systems that are required to move only one configuration
parameter at a time. Special curves (called Reed& Shepp curves [43]) are applied to car-like
robots that cannot move sideway. If the robot has no kinematic constraints, then straight
line segments in C'S from ¢ to ¢’ are used. Several such algorithms can be combined. For
example, to plan paths for the robot Hilare in Figure 1 (left), straight line segments for the
arm are combined with dedicated curves for the mobile platform with a trailer [34].

Let £(q,q') be the path in C'S computed by the kinematics steering algorithm for the
constraints of the robot of interest; £ is assumed to be symmetrical.

Let R be a graph whose vertices are configurations in C'S,..; two vertices ¢ and ¢’ are
adjacent in R only if £(g,¢’) isin C'Sy,c.. R is called a roadmap for C'S,c..

Since £ is symmetrical, R is an undirected graph. Note that every pair of adjacent vertices
in R is connected by a path in C'S¢,.. but the converse is not necessarily true. Given
a roadmap for C'S¢,.. and two configuration g; and g, in C'S¢,c., corresponding to an
initial and goal configurations, a feasible path from ¢; to g, can be found as follows:

o find a configuration ¢; € R such that £(g;, q;) € CSfree,
« find a configuration ¢; € R such that £(q,, q;) € CSfree,
« find in R a sequence of adjacent configurations from ¢; to q;,.

If these three steps succeed, then the planned path is the finite sequence of subpaths
L(gi, q;), - - - L£(qy,qg)- In a post-processing step, this sequence is easily optimized and
smoothed locally by finding shortcuts in C'S,... between successive legs.

Given aroadmap R, path planning is reduced to a simple graph search problem, in addition
to collision checking and kinematics steering operations. There remains the problem of
finding a roadmap that covers C'Sy,., i.e., whenever there is a path in C'S,.. between
two configurations, there is also a path through the roadmap. Finding such a roadmap
using probabilistic techniques turns out to be easier than computing C'S¢,.. explicitly.

Let us define the coverage domain of a configuration ¢ to be the set:

D(Q) - {q/ € CSfree|£(Q7 q/) C CSfree}-

32

A set of configurations) covers C'Sy,.. if:

U D) = CSree-
q€Q

The algorithm Probabilistic-Roadmap (Figure 2) starts initially with an empty roadmap.
It generates randomly a configuration ¢ € C'S¢,..; g is added to the current roadmap R
iff either:

e ¢ extends the coverage of R, i.e., there is no other configuration in R whose coverage
domain includes ¢, or

e ¢ extends the connexity of R, i.e., ¢ enables to connect two configurations in R that are
not already connected in R.

Probabilistic-Roadmap(R)
iterate until(termination condition)
draw a random configuration ¢ in C'S¢cc
ifV¢' € R: L(q,q") ¢ CSjree thenadd gto R
else if there are ¢; and ¢» unconnected in R such that
‘C(qa Ch) C CSfree and *C((L q2) C CSfree
then add ¢ and the edges (¢,q1) and (¢, ¢2) to R
end iteration
return(R)
end

Figure 2: A probabilistic roadmap generation for path planning

Let us assume that there is a finite set () that covers CSf,nee.?’ Consider the roadmap R
that contains all the configurations in @, and, for every pair ¢; and g= in @ such that D(¢;)
and D(q2) intersect, R also contains a configuration ¢ € D(q;) N D(q:) and the two edges
(¢,q1) and (¢, q2). It is possible to show that R meets the following property: if there
exists a feasible path between two configurations ¢; and g, in C'S¢,ce, then there are two
configurations ¢; and ¢, in the roadmap R such that ¢; € D(q;), ¢, € D(q), and ¢; and
q,, are in the same connected component of R. Note that the roadmap may have several
connected components that reflects those of C'S ;...

The Probabilistic-Roadmap algorithm will not generate a roadmap that meets the above
property deterministically, but only up to some probability value, which is linked to the
termination condition. Let k& be the number of random draws since the last draw of a
configuration ¢ that has been added to the roadmap because ¢ extends the coverage of the
current R (g meets the first if clause in Figure 2). The termination condition is to stop
when & reaches a preset value k... It has been shown that 1/k,,.. is a probabilistic
estimate of the ratio between the part of C'S¢,... not covered by R to the total C'S¢ycc. In
other words, for £,,,,,, = 1000 the algorithm generates a roadmap that covers C'S¢,.c. with
a probability of .999.

3Depending on the shape of C'Stree and the kinematics constraints handled in £, there may or may not exist
such a finite set of configurations that covers C'Sf ¢, [29].

33

Figure 3: Initial and goal configurations (up left and right) of a path planning problem, and generated
path (down).

From a practical point of view, the probabilistic roadmap technique illustrated by the pre-
vious algorithm has led to some very efficient implementations and to marketed products
used in robotics, computer animation, CAD and manufacturing applications. Typically,
for a complex robot and environment, and k,,.,. in the order of few hundreds, it takes
about a minute to generate a roadmap on a normal desktop machine; the size of R is about
a hundred configurations; path planning with the roadmap takes few milliseconds. This
is illustrated for the Hilare robot in Figure 3 where the task is to carry a long rod that
constrains the path through the door: the roadmap in this 9-dimensional space has about
100 vertices and is generated in less than one minute. The same techniques have also been
successfully applied to manipulation planning problems.

34

3 Planning for the Design of a Robust Controller

Consider an autonomous mobile robot in a structured environment, such as the robot in
Figure 1 (left), which is equipped with several sensors — sonar, laser, vision — and actu-
ators, and with an arm. The robot has also several software modules for the same sensory-
motor (sm) function, e.g., for localization, for map building and updating, or for motion
planning and control. These redundant sm functions are needed because of possible fail-
ures of a sensor, and because no single method or sensor has a universal coverage. Each
has its weak points and drawbacks. Robustness requires a diversity of means for achieving
an sm function. Robustness also requires the capability to combine consistently several
such smfunctions into a plan appropriate for the current context.

The planning techniques described in this section illustrates this capability. They enables
a designer to specify, off-line, very robust ways of performing a task such as “navigate
to”. The designer specifies a collection of Hierarchical Tasks Networks, as illustrated in
Figure 4, that are complex plans, called modes of behavior, or modalities for short,* whose
primitives are sm functions. Each modality is a possible way of combining a few of these
sm functions to achieve the desired task. A modality has a rich context-dependent control
structure. It includes alternatives whose selection depends on the data provided by sm
functions.

Several modalities are available for a given task. The choice of the right modality for
pursuing a task is far from being obvious. However, the relationship between control states
and modalities can be expressed as a Markov Decision Process. This MDP characterizes
the robot abilities for that task. The probability and cost distributions of this MDP are
estimated by moving the robot in the environment. The controller is driven by policies
extracted on-line from this MDP.

To summarize, this approach involves three components:

e Sensory-motor functions, which are the primitive actions.

o Modalities that are HTN plans. Alternate modalities offer different ways of combining
the sm functions within a task,

o MDPs whose policies are used by the controller to achieve the task.

Let us describe these three levels successively.

3.1 Sensory-Motor Functions

The sensory-motor functions illustrated here and the control system itself rely on a model
of the environment learned and maintained by the robot. The basic model is a 2D map
of obstacle edges acquired from the laser range data. The so-called Simultaneous Local-
ization and Mapping (SLAM) technique is used to generate and maintain the map of the
environment.

A labeled topological graph of the environment is associated with the 2D map. Cells

4Behaviors have generally in robotics a meaning different from our modalities.

35

are polygons that partition the metric map. Each cell is characterized by its name and a
color that corresponds to navigation features such as Corridor, Corridor with landmarks,
Large Door, Narrow Door, Confined Area, Open Area, Open Area with fixed local-
ization devices.® Edges of the topological graph are labeled by estimates of the transition
length from one cell to the next and by heuristic estimates of how easy such a transition is.

An sm function returns to the controller a report indicating either the end of a normal
execution, or giving additional information about non-nominal execution. In order to give
to the reader an idea of the “low level”primitives available on a robot, of their strong and
weak points and how they can be used from a planning point of view, let us discuss some
of these sm functions.

Segment-based localization. This function relies on the map maintained by the robot
from laser range data. The SLAM technique uses a data estimation approach called Ex-
tended Kalman Filtering in order to match the local perception with the previously built
model. It offers a continuous position-updating mode, used when a good probabilistic
estimate of the robot position is available. This sm function estimates the inaccuracy of
the robot localization. When the robot is lost, a re-localization mode can be performed.
A constraint relaxation on the position inaccuracy extends the search space until a good
matching with the map is found.

This sm function is generally reliable and robust to partial occlusions, and much more
precise than odometry. However, occlusion of the laser beam by obstacles gives unreli-
able data. This case occurs when dense unexpected obstacles are gathered in front of the
robot. Moreover, in long corridors the laser obtains no data along the corridor axis. The
inaccuracy increases along the corridor axis. Restarting the position updating loop in a
long corridor can prove to be difficult. A feedback from this sm function can be a report
of bad localization which warns that the inaccuracy of the robot position has exceeded an
allowed threshold. The robot stops, turns on the spot and re-activates the re-localization
mode. This can be repeated in order to find a non-ambiguous corner in the environment to
restart the localization loop.

Localization on Visual Landmarks. This function relies on a calibrated monocular vi-
sion to detect known landmarks such as doors or wall posters. It derives from the per-
ceptual data a very accurate estimation of the robot position. The setting up is simple:
a few wall posters and characteristic planar features on walls are learned in supervised
mode. However, landmarks are available and visible only in a few areas of the environ-
ment. Hence this sm function is mainly used to update from time to time the last known
robot position. A feedback from this sm function is a report of a potentially visible land-
mark which indicates that the robot enters an area of visibility of a landmark. The robot
stops, turns towards the expected landmark; it searches it using the pan-tilt mount. A fail-
ure report notifies that the landmark was not identified. Eventually, the robot retries from
a second predefined position in the landmark visibility area.

5Some environment modeling techniques that enable to automatically acquire such a topological graph with
the cells and their labels exist. They are discussed in Section 4. However, in the work referred to here, the
topological graph is hand-programmed.

36

Absolute Localization. The environment may have areas equipped with calibrated fixed
devices, such as infrared reflectors, cameras, or even areas where a differential GPS signal
is available. These devices permit a very accurate and robust localization. But the sm
function works only when the robot is within a covered area.

Elastic Band for Plan Execution. This smfunction updates and maintains dynamically
a flexible trajectory as an elastic band or a sequence of configurations from the current
robot position to the goal. Connexity between configurations relies on a set of internal
forces that are used to optimize the global shape of the path. External forces are associated
with obstacles and are applied to all configurations in the band in order to dynamically
modify the path to take it away from obstacles. This sm function takes into account the
planed path, the map and the on-line input from the laser data. It gives a robust method
for long range navigation. However, the band deformation is a local optimization between
internal and external forces; the techniques may fail into local minima. This is the case
when a mobile obstacle blocks the band against another obstacle. Furthermore, it is a
costly process which may limit the reactivity in certain cluttered, dynamic environments.
This also limits the band length.

The feedback may warn that the band execution is blocked by a temporary obstacle that
cannot be avoided (e.g. a closed door, an obstacle in a corridor). This obstacle is perceived
by the laser and is not represented in the map. If the band relies on a planed path, the new
obstacle is added to the map. A new trajectory taking into account the unexpected obstacle
is computed, and a new elastic band is executed. Another report may warn that the actual
band is no longer adapted to the planed path. In this case, a new band has to be created.

Reactive Obstacle Avoidance. This sm function provides a reactive motion capability
towards a goal without needing a planned path. It extracts from sensory data a description
of free regions. It selects the closest region to the goal, taking into account the distance to
the obstacles. it computes and tries to achieve a motion command to that region.

This sm function offers a reactive motion capability that remains efficient in a cluttered
space. However, like all the reactive methods, it may fall into local minima. It is not
appropriate for long range navigation. Its feedback is a failure report generated when the
reactive execution is blocked.

Finally, let us mention that a path planner (as described in Section 2) may also be seen as a
sm function from the viewpoint of a high-level navigation controller. Note that a planned
path doesn’t take into account environment changes and new obstacles. Furthermore, a
path planner may not succeed in finding a path. This may happen when the initial or goal
configurations are too close to obstacles: because of the inaccuracy of the robot position,
these configuration are detected as being outside of C'S,.... The robot has to move away
from the obstacles by using a reactive motion sm function before a new path is queried.

37

3.2 Modalities

A navigation task such as (Goto x y #) given by a mission planning step requires an
integrated use of several smfunctions among those presented earlier. Each consistent com-
bination of these smfunctions is a particular plan called a modality. A navigation modality
is a one way of performing the navigation task. A modality has specific characteristics that
make it more appropriate for some contexts or environments, and less for others. We will
discuss later how the controller choses the appropriate modality. Let us exemplify some of
such modalities for the navigation task before giving the detail of the HTN representation
for modalities and the associated control system.

Modality M; uses 3 sm functions: the path planner, the elastic band for the dynamic
motion execution, and the laser-based localization. When M, is chosen to carry out a
navigation, the laser-based localization is initialized. The robot position is maintained
dynamically. A path is computed to reach the goal position. The path is carried out by
the elastic band sm function. Stopping the modality interrupts the band execution and the
localization loop; it restores the initial state of the map if temporary obstacles have been
added to it. Suspending the modality stops the band execution. The path, the band, the
localization loop are maintained. A suspended modality can be resumed by restarting the
execution of the current elastic band.

Modality M5 uses 3 sm functions: the path planner, the reactive obstacle avoidance and
the laser-based localization. The path planner provides way-points (vertices of the trajec-
tory) to the reactive motion function. Despite these way-points the reactive motion can
be trapped into local minima in cluttered environments. Its avoidance capability is higher
than that of the elastic band sm function. However, the reactivity to obstacles and the at-
traction to way-points may lead to oscillations and to a discontinuous motion that confuses
the localization sm function. This is a clear drawback for M5 in long corridors.

Modality M3 is like M, but without path planning and with a reduced speed in obstacle
avoidance. It starts with the reactive motion and the laser-based localization loop. It offers
an efficient alternative in narrow environments like offices, and in cluttered spaces where
path planning may fail. It can be preferred to the modality M in order to avoid unreliable
re-planning steps if the elastic band is blocked by a cluttered environment. Navigation is
only reactive, hence with a local minima problem. The weakness of the laser localization
in long corridors is also a drawback for M.

Modality M, uses the reactive obstacle avoidance sm function with the odometer and
the visual landmark localization sm functions. The odometer inaccuracy can be locally
reset by the visual localization sm function when the robot goes by a known landmark.
Reactive navigation between landmarks allows to cross a corridor without an accurate
knowledge of the robot position. Typically this M5 modality can be used in long corridors.
The growing inaccuracy can make it difficult to find out the next landmark. The search
method allows for some inaccuracy on the robot position by moving the cameras but this
inaccuracy cannot exceed one meter. For this reason landmarks should not to be too far
apart with respect to the required updating of odometry estimate. Furthermore, the reactive
navigation of M, may fall into a local minima.

38

Modality M5 relies on the reactive obstacle avoidance smfunction and the absolute local-
ization sm function when the robot is within an area equipped with absolute localization
devices.

Modalities are represented as Hierarchical Task Networks. The HTN formalism is adapted
to modalities because of its expressiveness and its flexible control structure. HTNs offer
a middle ground between programming and automated planning, allowing the designer to
express the control knowledge which is available here.

An internal node of the HTN And/Or tree is a task or a subtask that can be pursued in
different context-dependent ways, which are the Or-connectors. Each such Or-connector
is a possible decomposition of the task into a conjunction of subtasks. There are two
types of AND-connectors: with sequential or with parallel branches. Branches linked by
a sequential AND-connector are traversed sequentially in the usual depth-first manner.
Branches linked by a parallel AND-connector are traversed in parallel. The leaves of the
tree are primitive actions, each corresponding to a unique query to a sm function. Thus,
a root task is dynamically decomposed, according to the context, into a set of primitive
actions organized as concurrent or sequential subsets. Execution starts as soon as the
decomposition process reaches a leaf, even if the entire decomposition process of the tree
is not complete.

A primitive action can be blocking or non-blocking. In blocking mode, the control flow
waits until the end of this action is reported before starting the next action in the sequence
flow. In non-blocking mode, actions in a sequence are triggered sequentially without wait-
ing for a feedback. A blocking primitive action is considered ended after a report has
been issued by the smfunction and after that report has been processed by the control sys-
tem. The report from a non-blocking primitive action may occur and be processed after an
unpredictable delay.

The modality tree illustrated in Figure 4 starts with 6 Or-connectors labeled start,
stop, suspend, resume, succeed and fail. The start connector repre-
sents the nominal modality execution; the stop connector the way to stop the modality
and to restore the neutral state, characterized by the lack of any sm function execution.
Furthermore, the environment model modified by the modality execution recovers its pre-
vious form. The suspend and resume connectors are triggered by the control system
described below. The suspend connector allows to stop the execution by freezing the
state of the active sm functions. The resume connector restarts the modality execution
from such a frozen state. The fail (resp. succeed) connector is followed when the
modality execution reaches a failure (resp. a success) end. These connectors are used to
restore the neutral state and to allow certain executions required in these specific cases.

The feedback from sm functions to modalities has to be controlled as well as the resource
sharing of parallel activities. The control system catches and reacts appropriately to reports
emitted by sm functions. Reports from sm functions play the same role in the control
system as tasks in modalities. A report of some type activates its own dedicated control
HTN in a reactive way. A control tree represents a temporary modality and cannot be
interrupted. A nominal report signal a normal execution. Otherwise a non-nominal report
signals a particular type of sm function execution. The aim of the corresponding control

39

Localization Paral-And ’ st‘op ‘ sus})end‘ r\e\sume‘\s\u‘cce;s‘“‘fail ‘

Path
Planning

And

Model
not loaded

Path
Execution

Model
loaded

Model
not loaded

Model Model
loaded not loaded

d

Create|[
Band Move

(nb)
4

LCoad | Reloc || Start Lgad Thit ;’I Load || Tnit ‘R;a;et
Model | Mode | Loop Model|| Model an Model || Model|| Band

(D))
v

Figure 4: Part of modality M,

tree is to recover to a nominal modality execution. Some non-nominal reports can be non
recoverable failures. In these cases, the corresponding control sends a "fail”message to the
modality pursuing this smfunction. Nominal reports may notify the success of the global
task. In this case, the "success”alternative of the modality is activated.

Resources to be managed are either physical non-sharable resources (e.g. motors, cam-
eras, pan-and-tilt mount) or logical resources (the environment model that can be tempo-
rally modified). The execution of a set of concurrent non-blocking actions can imply the
simultaneous execution of different smfunctions. Because of that, several reports may ap-
pear at the same time, and induce the simultaneous activation of several control activities.
These concurrent executions may generate a resource conflict. To manage this conflict, a
resource manager organizes the resource sharing with semaphores and priorities.

When a non-nominal report is issued, a control HTN starts its execution. It requests the
resource it needs. If this resource is already in use by a start connector of a modality,
the manager sends to this modality a suspend message, and leaves a resume message for
the modality in the spooler according to its priority. The suspend alternative is executed
freeing the resource, enabling the control HTN to be executed. If the control execution
succeeds, waiting messages are removed and executed until the spooler becomes empty.
If the control execution fails, the resume message is removed from the spooler and the fail
alternative is executed for the modality.

40

3.3 TheController

The Control Space. The controller has to choose a modality that is most appropriate to
the current state for pursuing the task. In order to do this, a set of control variables have
to reflect control information for the smfunctions. The choice of these control variables is
an important design issue. For example, in the navigation task, the control variables:

The cluttering of the environment which is defined to be a weighted sum of the distances

to nearest obstacles perceived by the laser, with a dominant weight along the robot mo-

tion axis. This is an important piece of information to establish the execution conditions

of the motion and localization sm functions.

The angular variation of the profile of the laser range data which characterizes the robot

area. Close to a wall, the cluttering value is high but the angular variation remains low.

But in an open area the cluttering is low while the angular variation may be high.

The inaccuracy of the position estimate, as computed from the co-variance matrix main-

tained by each localization sm function.

The confidence in the position estimate. The inaccuracy is not sufficient to qualify the

localization. Each localization smfunction supplies a confidence estimate about the last

processed position.

The navigation color of current area. When the robot position estimate falls within

some labeled cell of the topological graph, the corresponding labels are taken into

account,e.g., Corridor, Corridor with landmarks, Large door, Narrow door, Confined

area, Open area, Area with fixed localization.

The current modality. This information is essential to assess the control state and pos-
Navigation task

sible transitions between modalities.
Topological
%

M,
Resource
D
Stop
Suspend
Resume ..
Set of modalities
Z plan

Reactive|Control System

Feedback reports

Figure 5: The ROBEL control system

41

A control state is characterized by the values of these control variables. Continuous vari-
ables are discretized over a few significant intervals. In addition, there is a global failure
state that is reached whenever the control of a modality reports a failure. We finally
end-up with a discrete control space which enables to define a control automaton.

The Control Automaton. The control automaton is nondeterministic: unpredictable ex-
ternal events may modify the environment, e.g. someone passing by may change the value
of the cluttering variable, or the localization inaccuracy variable. Therefore the execution
of the same modality in a given state may lead to different adjacent states. This nondeter-
ministic control automaton is defined as the tuple ¥ = {S, A, P, C'}:

S'is a finite set of control states,

A is a finite set of modalities,

P:SxAxS —[0,1]is aprobability distribution on the state-transition smfunction,
P,(s']s) is the probability that the execution of modality « in state s leads to state s/,

o C:AxS xS — RTisapositive cost function, c(a, s, s’) corresponds to the average
cost of performing the state transition from s to s’ with to the modality a.

Aand S are given by design from the definition of the set of modalities and of the control
variables. In the navigation system illustrated here, there are 5 modalities and about a few
thousand states. P and C' are obtained from observed statistics during a learning phase.

The Control automaton X is a Markov Decision Process. As an MDP, ¥ could be used
reactively on the basis of a universal policy = which selects for a given state s the best
modality 7(s) to be executed. However, a universal policy will not take into account
the current navigation goal. A more precise approach takes into account explicitly the
navigation goal, transposed into ¥ as a set .S, of goal states in the control space. This set
S, is given by a look-ahead mechanism based on a search for a path in ¥ that reflects a
topological route to the navigation goal (see Figure 5).

Goal Statesin the Control Space. Given a navigation task, a search in the topological
graph provides an optimal route r to the goal, taking into account estimated cost of edges
between topological cells. This route will help finding in the control automaton possible
goal control states for planning a policy. The route r is characterized by the pair (o, 1),
where o, = (cicz ... ¢x) is the sequence of colors of traversed cells, and [, is the length
of r.

Now, a path between two states in 3 defines also a sequence of colors ¢4, those of
traversed states; it has a total cost, that is the sum 3 ., C'(a, s, ") over all traversed arcs.
A path in 3 from the current control state s, to a state s corresponds to the planned route
when the path matches the features of the route (o, ;) in the following way:

® > an clas s, s') > Kl., K being a constant ratio between the cost of a state-transition
in the control automaton to corresponding route length,

e 0patn COITESpONds to the same sequence of colors as o, with possible repetition factors,
i.e., there are factors i; > 0,...,7;, > 0 such that o, = (¢, ¢, ..., ¢;F) when
Opr = <017027 B ;Ck>'

42

This last condition requires that we will be traversing in X control states having the same
color as the planned route. A repetition factor corresponds to the number of control states,
at least one, required for traversing a topological cell. The first condition enables to prune
paths in 3 that meet the condition on the sequence of colors but cannot correspond to the
planned route. However, paths in 3 that contain a loop (i.e. involving a repeated control
sequence) necessarily meet the first condition.

Let route(sg, s) be true whenever the optimal path in 3 from s, to s meets the two previous
conditions, and let S, = {s € S | route(so, s)}. A Moore-Dijkstra algorithm starting from
so gives optimal paths to all states in 3 in O(n?). For every such a path, the predicate
route(so, s) is checked in a straightforward way, which gives .S,,.

It is important to notice that this set S, of control states is a heuristic projection of the
planned route to the goal. There is no guaranty that following blindly (i.e., in an open-
loop control) a path in X that meets route(sg, s) will lead to the goal; and there is no
guarantee that every successful navigation to the goal corresponds to a sequence of control
states that meets route(sg, s). This only an efficient and reliable way of focusing the MDP
cost function with respect to the navigation goal and to the planned route.

Finding a Control Policy. At this point we have to find the best modality to apply to the
current state sq in order to reach a state in .Sy, given the probability distribution function
P and the cost function C.

A simple adaptation of the Value Iteration algorithm solves this problem. Here we only
need to know 7(sg). Hence the algorithm can be focused on a subset of states, basically
those explored by the Moore-Dijkstra algorithm.

The closed-loop controller uses this policy as follows:

o the computed modality 7(sq) is executed,;
o the robot observes the new control state s, it updates its route » and its set S, of goal
states with respect to s, it finds the new modality to apply to s.

This is repeated until the control reports a success or a failure. Recovery from a failure
state consists in trying from the parent state an untried modality. If none is available, a
global failure of the task is reported.

Estimating the Parameter s of the Control automaton. A sequence of randomly gen-
erated navigation goals can be given to the robot. During its motion, new control states
are met and new transitions are recorded or updated. Each time a transition from s to
s" with modality « is performed, the traversed distance and speed are recorded, and the
average speed v of this transition is updated. The cost of the transition C(a, s, s’) can be
defined as a weighted average of the traversal time for this transition taking into account
the eventual control steps required during the execution of the modality « in s together with
the outcome of that control. The statistics on a(s) are recorded to update the probability
distribution function.

Several strategies can be defined to learn P and C in 3. For example:

43

o A modality is chosen randomly for a given task; this modality is pursued until either it
succeeds or a fatal failure is notified. In this case, a new modality is chosen randomly
and is executed according to the same principle. This strategy is used initially to expand
>

e Y is used according to the normal control except in a state on which not enough data has
been recorded; a modality is randomly applied to this state in order to augment known
statistics, e.g, the random choice of an untried modality in that state.

3.4 Analysisof the Approach

The system described here has been deployed on the Diligent robot, an indoor mobile
platform, and extensively experimented with in navigation tasks within a wide laboratory
environment [38, 39]. The approach is fairly generic and illustrates the use of planning
techniques in robotics, not for the synthesis of mission plans but for achieving a robust
execution of their high-level steps. It is not limited to navigation; it can be deployed on
other robot activities.

The HTN planning technique used for specifying detailed alternative plans to be followed
by a controller for decomposing a complex task into primitive actions is fairly general and
powerful. It can be widely applied in robotics since it enables to take into account closed-
loop feedback from sensors and primitive actions. It extends significantly and can rely on
the capabilities of the rule-based or procedure-based languages for programming reactive
controllers, as in the system described here.

The MDP planning technique relies on an abstract dedicated space, namely the space of
control states for the navigation task. The size of such a space is just a few thousand states.
Consequently, the estimation of the parameter distributions in X is feasible in a reasonable
time: the MDP algorithms can be used efficiently on-line, at each control step. The draw-
back of these advantages is the ad hoc definition of the control space which requires a
very good knowledge of the sensory-motor functions and the navigation task. While in
principle the system described here can be extended by the addition of new modalities for
the same task, or for other tasks, it is not clear how easy it would be to update the control
space or to define new spaces for other tasks.

4 Discussion

Robot motion planning is a very advanced research field [35, 28]. The early techniques
in the eighties have been mostly dedicated to deterministic algorithms [36]. They led to a
good understanding and formalization of the problem, as well as to several developments
on related topics such as manipulation planning [2]. More recent approaches have built on
this state of the art with probabilistic algorithms that permitted a significant scale up [4].
The probabilistic roadmap techniques introduced in [30] gave rise to several successful de-
velopments [9, 29, 20, 24, 10, 32, 46] which represent today the most efficient approaches

44

to path planning. Roadmap techniques are certainly not limited to navigation tasks; they
have been deployed in other application areas, within robotics, e.g., for manipulation, or
in CAD and graphics animation. The illustrations and performance figures in Section 2
are borrowed from Move3D, a state of the art system implementing roadmap techniques
[45].

Sensory-motor functions are at the main core of robotics. They correspond to a very wide
research area, ranging from signal processing, computer vision and learning, to biome-
chanics and neuroscience. Approaches relevant to the sm functions presented here are, for
example,

o the techniques used for localization and mapping, e.g., the SLAM methods [40, 49, 14,
501,

o the methods for structuring the environment model into a topological map with areas
labeled by different navigation colors [33, 48],

o the visual localization techniques, e.g., [22], and

o the flexible control techniques, e.g., [42, 44].

Several high-level reactive controllers are widely deployed in laboratory robots. They
permit a preprogrammed goal-directed and event-reactive closed-loop control, integrating
acting and sensing. They rely on rule-based or procedure-based systems, such as PRS,
RAP, SRC and others [16, 25, 11, 15]. More recent developments on these systems, e.g.,
[13], aim at a closer integration to planning. The behavior-based controllers, e.g., [3],
that usually focus on a more reactive set of concurrent activities, have also led to more
goal-directed developments, e.g., [23].The robot architecture, that is the organization that
enables to properly integrate the sensory-motoric functions, the reactive control system
and the deliberative capabilities [1, 47] remains important issue.

The planning and robotics literature reports on several plan-based robot controllers with
objectives similar to those discussed here, such as for example [5, 7, 6, 31, 8]. The ap-
proach of Beetz [6] has also been deployed for controlling an indoor robot carrying out the
cores of an office courier. It relies on the SRCs reactive controllers. These are concurrent
control routines that adapt to changing conditions by reasoning on and modifying plans.
They rely on the XFRM system that manipulates reactive plans and is able to acquire them
through learning with XFRMLEARN [7].

In addition to plan-based controllers, there is an active area of research that aims at inter-
leaving task planning activities together with execution control and monitoring activities.
Several approaches have been developed and applied, for example, to space and military
applications, e.g., within the SIPE [41] or the CASPER [12] systems. Applications in
robotics are for example the ROGUE system [21], and more recently the IxTeT-eXeC sys-
tem [37] that integrates a sophisticated time and resource handling mechanism for planning
and controlling the mission of an exploration robot.

45

References

(1]

(2]

(3]
[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An Architecture for Autonomy.
International Journal of Robotics Research, 17(4), 1998.

R. Alami, J. P. Laumond, and T. Siméon. Two Manipulation Planning Algorithms, pages 109-
125. In Goldberg et al. [18], 1995.

R. Arkin. Behavior-Based Robotics. MIT Press, 1998.

J. Barraquand and J. C. Latombe. Robot motion planning: a distributed representation ap-
proach. International Journal of Robotics Research, 10(6), 1991.

M. Beetz. Structured reactive controllers - a computational model of everyday activity. In 3rd
Int. Conf. on Autonomous Agents, pages 228-235, 1999.

M. Beetz. Plan-based control of robotics agents, volume 2554 of Lecture Notes in Artificial
Intelligence (LNAI). Springer, 2002.

M. Beetz and T. Belker. Environment and task adaptation for robotics agents. In Proceedings
of the European Conference on Artificial Intelligence (ECAI), 2000.

M. Beetz, J. Hertzberg, M. Ghallab, and M.E. Pollack, editors. Advancesin plan-based control
of robotics agents. LNAI 2466, Springer-Verlag, 2002.

P. Bessiere, J. Ahuactzin, E. Talbi, and E. Mazer. The ariadne’s clew algorithm: global planning
with local methods. In Goldberg et al. [18], pages 39-47.

V. Boor, M. H. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for
probabilistic roadmap planners. In IEEE Inter national Conference on Robotics and Automation
(ICRA), 1999.

John L. Bresina. Design of a reactive system based on classical planning. In Foundations of
Automatic Planning: The Classical Approach and Beyond: Papers fromthe 1993 AAAI Sporing
Symposium, pages 5-9. AAAI Press, Menlo Park, California, 1993.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iterative repair to
improve the responsiveness of planning and scheduling. In Proceedings of the International
Conference on Al Planning Systems (AIPS), 2000.

O. Despouys and F. Ingrand. PropicePlan: Toward a Unified Framework for Planning and
Execution. In Proceedings of the European Conference on Planning (ECP), pages 280-292,
1999.

M. W. M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A solu-
tion to the simultaneous localization and map building (SLAM) problem. |EEE Transactions
on Robotics and Automation, 17(3):229-241, 2001.

R. J. Firby. Task networks for controlling continuous processes. In Proceedings of the Inter-
national Conference on Al Planning Systems (AIPS), 1994.

M.P. Georgeff and F.F. Ingrand. Decision-Making in an Embedded Reasoning System. In
Proceedings of the International Joint Conference on Artificial Intelligence (1JCAI), 1989.

M. Ghallab, D. Nau, and P. Traverson. Automated planning, theory and practice. Elsevier,
Morgan Kauffman, 2004.

46

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

K. Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, editors. Algorithmic Foundations of
Robotics. A K Peters, 1995.

J. Goodman and J. ORourke. Handbook of discrete and computational geometry. CRC Press,
1997.

K. Gupta and A. del Pobil, editors. Practical motion planning in robotics. Wiley, 1998.

K. Z. Haigh and M. M. Veloso. Planning, execution and learning in a robotic agent. In Pro-
ceedings of the International Conference on Al Planning Systems (AIPS), 1998.

J.B. Hayet, F. Lerasle, and M. Devy. Planar landmarks to localize a mobile robot. In S RS 2000,
pages 163-169, 2000.

J. Hertzberg, H. Jaeger, U. Zimmer, and Ph. Morignot. A framework for plan execution in
behavior-based robots. In Proc. of the 1998 IEEE Int. Symp. on Intell. Control, pages 8-13,
1998.

D. Hsu, L. Kavraki, JC. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages
with probabilistic roadmap planners. In P. Agarwal et al., editor, Robotics: The Algorithmic
Perspective (WAFR98), 1998.

F.F. Ingrand and M.P. Georgeff. An Architecture for Real-Time Reasoning and System Control.
|EEE Expert, 6:33-44, 1992.

H. Inoue, S. Tachi, Y. Nakamura, K. Hirai, N. Ohyu, S. Hirai, K. Tanie, K. Yokoi, and
H. Hirukawa. Overview of humanoid robotics project of METI. In 32nd International Sympo-
sium on Robatics, 2001.

F. Kanehiro, M. Inaba, H. Inoue, H. Hirukawa, and S. Hirai. Developmental software environ-
ment that is applicable to small-size humanoids and life-size humanoids. In |EEE International
Conference on Robotics and Automation (ICRA), 2001.

L. Kavraki. Algorithms in robotics: The motion planning perspective. In Frontiers of Engi-
neering Publication, pages 90-93. National Academy of Engineering, 1999.

L. Kavraki, M. Kolountzakis, and J.C. Latombe. Analysis of probabilistic roadmaps for path
planning. |EEE Transactions on Robotics and Automation, 14(1):166-171, 1998.

L. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. |EEE Transactions on Robotics and Au-
tomation, 12(4):566-580, 1996.

D. Kortenkamp, R.P. Bonasso, and R.R. Murphy, editors. Al-based Mobile Robots. Case
studies of successful robot systems. MIT Press, 1997.

J. Kuffner and S. Lavalle. RRT-connect: an efficient approach to single-query path planning.
In IEEE International Conference on Robotics and Automation (ICRA), 2000.

S. Lacroix and R. Chatila. Motion and perception strategies for outdoor mobile robot nav-
igation in unknown environments. In O. Khatib and J. K. Salisbury, editors, International
Symposium on Experimental Robotics, pages 538-547. LNCIS 223, Springer-Verlag, 1997.

F. Lamiraux, S. Sekhavat, and J.P. Laumond. Motion planning and control for hilare pulling a
trailer. |EEE Transactions on Robotics and Automation, 15(4), 1999.

J. C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and other
artifacts. International Journal of Robotics Research, 18(11):1119-1128, 1999.

47

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J.C. Latombe. Robot Matiton Planning. Kluwer Academic Publishers, 1991.

S. Lemai and F. Ingrand. Interleaving temporal planning and execution in robotics domains.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004.

B. Morisset and M. Ghallab. Learning how to combine sensory-motor modalities for a robust
behavior, pages 157-178. In Beetz et al. [8], 2002.

B. Morisset and M. Ghallab. Synthesis of supervision policies for robust sensory-motor be-
haviors. In 7th International Conference on Intelligent Autonomous Systems, pages 236—243,
2002.

P. Moutarlier and R. G. Chatila. Stochastic Multisensory Data Fusion for Mobile Robot Lo-
cation and Environment Modelling. In Proc. International Symposium on Robotics Research,
1989.

K. L. Myers. A Continuous Planning and Execution Framework. Al Magazine, pages 63-69,
1999.

S. Quinlan and O. Khatib. Towards real-time execution of motion tasks. In R. G. Chatila and
G. Hirzinger, editors, Experimental Robotics 2. Springer-Verlag, 1992.

J. A. Reed and R. A. Shepp. Optimal paths for a car that goes both forward and backwards.
Pacific Journal of Mathematics, 145(2):367-393, 1990.

A. Saffiotti. Handling uncertainty in control of autonomous robots. In Wooldridge and Veloso,
editors, Artificial Intelligence Today, pages 381-408. LNAI1600, Springer-Verlag, 1999.

T. Siméon, J.P. Laumond, and F. Lamiraux. Move3d: a generic platform for path planning. In
4th International Symposium on Assembly and Task Planning, 2001.

T. Siméon, J.P. Laumond, and C. Nissoux. Visibility based probabilistic roadmaps for motion
planning. Advanced Robotics Journal, 14(6), 2000.

R. Simmons. Structured control for autonomous robots. |EEE Transactions on Robotics and
Automation, 10(1):34-43, 1994.

S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial
Intelligence, 99(1):21-71, 1998.

S. Thrun, A. Biicken, W. Burgard, D. Fox, T. Frélinghaus, D. Hennig, T. Hofmann, M. Krell,
and T. Schmidt. Map learning and high-speed navigation in RHINO. In Kortenkamp et al.
[31], 1997.

S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to concurrent mapping and local-
ization for mobile robots. Machine Learning, 31:29-53, 1998.

48

