
Development Issues for Speech-Enabled Mobile
Applications

Werner Kurschl, Stefan Mitsch, Rene Prokop and Johannes Schönböck
Research Center Hagenberg

Upper Austria University of Applied Sciences
Hauptstraße 117

A-4232 Hagenberg, AUSTRIA
{werner.kurschl, stefan.mitsch, rene.prokop, johannes.schoenboeck}@fh-hagenberg.at

Abstract: Developing a speech-based application for mobile devices requires work
upfront, since mobile devices and speech recognition systems vary dramatically in
their capabilities. While mobile devices can concisely be classified by their processing
power, memory, operating system and wireless network speed it is a bit trickier for
speech recognition engines. This paper presents a comprehensive approach that com-
prises a profound classification of speech recognition systems for mobile applications
and a framework for mobile and distributed speech recognition. The framework called
Gulliver speeds up the development process with multi-modal components that can be
easily used in a GUI designer and with abstraction layers that support the integration
of various speech recognition engines depending on the user’s needs. The framework
itself provides the base for a model-driven development approach.

1 Introduction

Developing speech-enabled applications for mobile devices typically requires comprehen-
sive analysis of several speech processing engines and different architectural approaches
before the desired application can be built. In addition, framework and tool support is
often insufficient, which makes developing applications difficult: speech recognition sys-
tems usually provide a native low-level API or support Microsoft SAPI or Java SAPI (see
[Mic] and [Sun98b]). Common to these APIs is that enhancing a graphical user interface
with speech requires additional and separate speech input treatment based on a method-
call-interface; thus, the developer has to manually modify the speech recognition system’s
state and handle textual results.

Furthermore, speech-enabled user interfaces are often hard to use, because speech as input
modality is invisible and transient. It is difficult for a user to find out what can be said in
a particular situation, and to remember which information was already given. Therefore,
a speech-enabled user interface needs to match closely the user’s expectations, which re-
quires usability engineering to be a central part of the development process. As a result
of this ongoing process the user interface will change permanently. From a developer’s
perspective this means that the user interface and the application’s work flow needs to

157



be easily changeable. This can be reached with two measures: tool support and loose
coupling between the user interface and the application’s business logic. Both measures
are common for graphical user interfaces, but, as already stated before, still not met with
current speech recognition APIs.

To overcome some of these issues and to speed up the development of speech-enabled mo-
bile applications we utilize a classification guide for speech recognition systems. Section 2
describes the guide in detail; moreover, it uses the guide to classify several commercially
available speech recognition systems to give an overview of the state-of-the-art. It also
shows possible use cases for each classified speech recognition system and the required
type of device. The analyzed speech recognition systems for mobile devices missed the
following items:

• Support of both constrained and unconstrained speech recognition

• Support of a high-level, event-driven API

• Support of easily usable speech-enabled user interface components

• Support of different platforms

Thus, we present a component framework called Gulliver for distributed speech recog-
nition with multi-modal user interface components. Gulliver supports constrained and
unconstrained vocabulary on mobile devices.

2 State-of-the-Art in Speech Recognition

Speech recognition systems can roughly be classified by the criteria shown in Fig. 1.

Constrained

Vocabulary

(Command &

Control)

Unconstrained

Vocabulary

(Dictation)

Realtime

Recorded

Continuous

Discrete

Continuous

Multi-modal

Voice-only

Speaker Recognition

Device Control

Call Center Automation

Speech

Recognition

Discrete

Figure 1: Classification of speech recognition systems

One of the easiest application classes are command and control applications, which typi-
cally offer a very constrained vocabulary that contains the supported commands. This kind

158



of speech recognition is far less complex than unconstrained speech recognition and can
thus be performed on mobile devices. Today’s mobile phones only support voice-dialing
and very simple commands; PDAs, by contrast, are able to analyze sentences that follow
a predefined grammar (the grammar specifies allowed words, e.g., the numbers from 1–
100). These devices can further be classified by their input modalities: on multi-modal
devices, like PDAs, a user can input data via several input modalities (e.g., graphical with
a pen or by voice) and controlling the device is a common use case, whereas single-modal
devices like voice-only systems (e.g., calling a computer system by phone) are often used
for call center automation.

Speech recognition systems that support dictation (i.e., converting freely spoken words
into written text) have to provide a nearly unconstrained vocabulary. The voice input is
either processed in real-time—the system provides results during speaking—or deferred
processed as a batch job, when recorded speech is used (described by the speech recog-
nition engine’s processing mode). The systems can further be classified with the word
model criterion: continuous systems allow the user to speak fluently, whereas on dis-
crete systems the user has to speak single words individually (i.e., with breaks between
the words). Current continuous systems already achieve high recognition rates and are,
due to their convenience in use, superior to discrete systems (which have thus already be-
come obsolete). Today’s speech recognition systems with an unconstrained vocabulary are
mostly speaker-dependent—which means a user has to train the system prior to using it—
to achieve accurate recognition rates of 95% or more. They also demand high processing
power and memory. Although the processing power of PDAs and mobile phones increases
rapidly, it is far from being acceptable for performing unconstrained speech recognition
locally on the device. Thus there is currently no unconstrained speech recognition engine
available for those kinds of devices.

Tab. 1 shows some commercially available speech recognition systems classified by the
presented criteria.

Table 1: Classification of selected commercially available speech recognition systems

Vocabulary Processing Mode Use Case Device
Nuance Dragon Naturally
Speaking 9

Unconstrained
or constrained

Realtime Dictation PC

Nuance Dragon Naturally
Speaking Prof.

Unconstrained Recorded Dictation PC

IBM ViaVoice 10.5 Unconstrained
or constrained

Realtime Dictation PC

Loquendo Embedded
ASR

Constrained Multi-modal Device Control PDA

Nuance VoCon 3200 Constrained Multi-modal Device Control PDA
MS Speech Server Constrained Voice-only Call Center PC

This classification reveals the current gap in speech recognition systems: depending on the
type of device being used (e.g., PDA or mobile phone) only constrained speech recognition
systems can be applied to mobile devices. But these types of devices are those that would
benefit most from unconstrained speech recognition, as they only provide emulated or

159



small-sized keyboards for entering text.

In section 4 we describe a component architecture that supports developing speech-enabled
applications on heterogeneous devices. Its primary focus is on distributable components
that enable fully featured speech recognition—constrained and unconstrained—on an ar-
bitrary device. Subsequently section 5 describes how to ease developing speech-enabled
applications with user interface components that hide speech recognition specifics from
the application developer and that allow a uniform treatment of the graphical and verbal
user interface.

3 Related Work

Aurora Distributed Speech Recognition (DSR, see [Pea00]) is a standard of the ETSI. DSR
takes special care to minimize network traffic and thus enable speech recognition in low-
bandwidth networks, like General Packet Radio Service (GPRS). So-called features are
extracted out of the speech data at the client side and are transported via the network. On
the server side a speech recognition engine, which must be able to recognize speech based
on those extracted features, converts the features into text. Although DSR is standardized,
hardly any speech recognition engine is able to recognize speech from features.

VoiceXML (specification can be found at [MBC+04]) is a markup language designed to
describe dialog flows in voice applications. Comparable to HTML that is interpreted by
a Web browser, VoiceXML is interpreted by a voice browser. Multimodal applications
can be described using X+V (see [ACF+05]), which integrates XHTML for visual content
and VoiceXML for spoken interaction. Neither standard supports dictation, because each
constrains user input with grammars (at least SRGS, refer to [HM04] for the specification,
must be supported by VoiceXML platforms).

Microsoft Speech API (SAPI, see [Mic]) provides a common API to deal with different
recognition engines. SAPI is also available for embedded devices running Windows CE
.NET 4.2 or newer (i.e., Windows Mobile 2003 or 5.0). However there are no speech
recognition engines that support dictation for these devices.

Microsoft Windows Vista [Bro06] includes speech recognition in the operating system.
This means that one can control Microsoft Windows and its programs via voice commands
and enter text by dictating. Application developers can easily create speech-enabled ap-
plications based on the new APIs exposed by Vista. Unfortunately, these APIs are only
available for desktop PCs and not for mobile devices.

Multimodal Teresa (refer to [PS02] and [MPS03] for details) is a model-based approach
used to design applications for different platforms. It generates platform-specific models
(PSM) based on an abstract task model. From the PSM it is also possible to generate the
user interface of the application. Although Teresa includes an editor, it is impossible to
know what the user interface will look like at the end of the transformations. Furthermore
the software relies on VoiceXML for describing multimodal interfaces, which does not
support dictation.

160



We observe a lack of functionality in different areas. Creating distributed speech appli-
cations with the Aurora standard is limited to special recognition engines, which hinders
the wider adoption of speech technology in business applications. Most speech recog-
nition engines available for building rich-client applications do not support VoiceXML
directly (VoiceXML support is only available in some Web browsers). Therefore com-
ponents would be needed that transform VoiceXML to a format the speech recognition
engine can handle.

4 Distributed Framework

Based on our analysis described in section 2 we divided speech recognition into three
different deployment schemes shown in Fig. 2.

<<Speech Server>>

Speech Server

<<component>>
Gulliver Server

<<component>>
Grammar ASR

<<component>>
Dictation ASR

<<Cell Phone>>

<<Telephone>>

Phone
Audio/GSM

(a) Conventional (cell) phones

<<Speech Server>>

Speech Server

<<component>>
Gulliver Server

<<component>>
Dictation ASR

<<Smart Phone>>

<<PDA>>

PDA

<<component>>
Grammar ASR

<<component>>
Gulliver Client

Audio+Data/WLAN,GPRS

(b) PDA or Smart Phone

<<Laptop>>

Laptop

<<component>>
Gulliver

<<component>>
Grammar ASR

<<component>>
Dictation ASR

(c) Laptop or Tablet PC (note: a
separate speech server is not nec-
essary)

Figure 2: Deployment schemes for speech recognition systems (UML deployment diagram)

(a) Conventional (cell) phones: they are only capable of recording, digitizing and trans-
mitting speech over a GSM or conventional telephone network. A remote device
hosts a speech engine that can be accessed via phone.

(b) PDA or Smart Phone: these devices allow the client-side deployment of (multi-
modal) user interfaces including an engine for constrained speech recognition. But
if dictation is a required feature, an additional speech recognition engine must be
placed on a remote server. The framework hides this deployment environment from
a developer and uses components that transfer voice data over a network (using for
example VoIP) in the background.

(c) Laptop or Tablet PC: they provide enough computational power for local speech

161



recognition, including dictation. Nonetheless a framework that separates the cre-
ation of the user interface and the business logic of an application from speech
recognition eases application development.

Thus all three schemes demand for a flexible framework that hides the speech recognition
from the developer by separating the speech engine from the user interface code; with
current speech engines’ API they are tight-knit.

We base our architecture, shown in Fig. 3, on scheme 2; in less generic scenarios some of
its parts are optional.

<<component>>
Business Logic Server

<<component>>
Database

<<component>>
Client Business Logic

<<component>>
Speech Engine Wrapper

<<component>>
Speech Director

<<component>>
Speech Input

<<component>>
GUI

<<component>>
VUI

<<component>>
Audioadapter

<<component>>
Local Speech Engine

<<component>>
Speech Engine Wrapper

<<component>>
VoIP Sender

<<component>>
Remote Engine Proxy

<<component>>
Speech Server

<<component>>
VoIP Receiver

<<component>>
Remote Engine Wrapper

<<component>>
Remote Speech Engine

<<component>>
Multi-modal Component

IBusiness

Commands + Text

events

Speech
Commands

Speech Text

Speech

Text
Text

Speech

Speech

events

Commands + Text

Speech

Figure 3: Framework architecture (UML component diagram)

The Speech Input allows the multi-modal user interface components to access the speech
recognition system. They separate the development of the client business logic from the
speech recognition layer. Thus, the application can use a voice user interface completely
independent from the type and processing power of the mobile device. To ensure low
latency for command and control tasks, a constrained speech recognition engine hosted
locally on the PDA provides immediate response. To provide dictation functionality a
remote engine can be used. The Speech Director, which implements the Message Router
pattern (described in [Fow03]), controls the cooperation of the local and the remote speech
engine. Hence, the number, type, and location of the engines are completely hidden from
the business logic. To ensure a flexible configuration between components Speech Chan-
nels are used to transport voice data. Together they form a Pipes-and-Filters architecture
(see [BMR+96]). Depending on the scheme a Speech Channel can either be a simple
stream or a VoIP component if voice data should be transferred via a network. For more
detailed information please refer to [KMPS07].

162



5 User Interface Development

Today’s frameworks for building graphical user interfaces typically use events to com-
municate user input to an application. This paradigm is well established and therefore
familiar to most developers. Handling user input from a voice user interface should base
on a similar paradigm; in most cases developers do not even want to distinguish between
the different types of user input. But today’s speech recognition engines only provide a
generic “speech recognized” event. Thus, developers have to deal with the details of the
event: often they have to examine the recognized text to decide which action to take.

Event Handler

Event Handler

Speech Input

Dialog

Multimodal

Component

Multimodal

Component

Multimodal

Component

Grammar

Grammar

(generated or

user defined)

Grammar

(generated or

user defined)

Speech

register

register register

Event Handler

Event Handler

DelegateDelegate

Delegate

Grammar
Grammar

(generated or

user defined)

Event Handler

getGrammar

getComponent

delegateEvent

onSpeechRecognized

Figure 4: The Speech Input and its event handling

Therefore Gulliver provides components (see Fig. 4) based on top of the architecture de-
scribed in section 4. These components offer two additional features compared to common
graphical user interface components:

• Send events if they are operated using speech

• Allow a developer to associate a grammar or to enable dictation

Sending events after speech recognition is one main task of the Speech Input. Multi-
modal components are grouped in dialogs (e.g., a Windows form in C#) by the task they
solve. When a dialog is activated, it registers its components at the Speech Input, which
in turn activates the components’ grammars in the speech recognition engines. If speech
is recognized (either by a local or a remote engine) the Speech Input receives an event
from the speech recognition engine. It parses this event and creates an object-oriented
representation (a dictation result or grammar result) that is more convenient to use. The
dictation or grammar result is then delegated to the multi-modal component. We use a
Mediator (see [GHJV95]) to correlate dictation and grammar results with components;
therefore each result object carries a unique name that identifies the component it belongs
to. Finally, the component sends a specific event that a developer is familiar with: for
example a ButtonClicked-event if a grammar of a button was recognized. The developer

163



can handle this event in the same manner as an event from a graphical user interface
component.

To handle user interfaces via voice input it must be possible to add grammars to a com-
ponent or to enable dictation. Each component defines its syntax (i.e., valid input values)
in a grammar. Simple components, like voice-enabled buttons, provide a generated de-
fault grammar, but they can also be customized with a developer-specified grammar. For
defining a grammar there are two different standards: Speech Recognition Grammar Spec-
ification (SRGS, defined in [HM04]) and Java Speech Grammar Format (JSGF, specified
in [Sun98a]). The Gulliver framework supports both standards by offering an object ori-
ented wrapper that allows a developer to define the grammar in code using common object
oriented paradigms. Each grammar object knows its representation in SRGS or in JSGF,
thus abstracting from the concrete speech recognition engine’s interface.

The .NET Compact Framework and Java (both are widely used for developing applications
for mobile devices) provide an extension mechanism for user interface components. These
so-called custom controls can be integrated in the development environment (shown in Fig.
5) and, thus, be used very conveniently.

Figure 5: Screenshot from an application designed with Gulliver multi-modal components

In the current version of our framework we decided to provide custom controls for the
.NET Compact Framework but the underlying concepts can be applied to any program-
ming language. Gulliver provides many of the most commonly used interface components
like Button, ListBox, and ComboBox. Additional components can be easily integrated
into the framework, and thus a developer can voice-enable his or her custom controls.

164



handles common tasks
and provides default
implementations

GrammarRecognized: sends
ButtonClicked event all unlisted methods
are delegated to the VoiceControlBase

dispatches results
to voice controls

+GrammarRecognized()

+Register()
+Deregister()
+GrammarRecognized()
+DictationRecognized()

+Register()
+Deregister()
+GrammarRecognized()
+DictationRecognized()

System.Windows.Forms.Button

Button SpeechInputVoiceControlBase

<<interface>>
IVoiceControl

Mediator

<<interface>>
ResultParser

0..*

Figure 6: Implementation of a speech-enabled button as a custom control (UML class diagram)

Custom controls are integrated into the Gulliver framework by implementing the IVoice-
Control interface. Fig. 6 shows the example of a voice-enabled Button. The inter-
face IVoiceControl declares methods for registering and deregistering a component at
the Speech Input—these methods are called by a speech-enabled dialog when it becomes
active—and methods for handling grammar or dictation results—they are called by the
Mediator to delegate results to the component. Typically, the speech-enabled custom con-
trol is derived from an existing control, thus, common tasks can not be inherited; instead,
they can be delegated to a VoiceControlBase object embedded in the custom control.

Each control provides a default grammar; we suggest providing meaningful default gram-
mars that allow the user to “say what he or she sees”. In case of the button this could be the
button’s label. Additionally, the custom control has to define which event to send if either a
dictation or a grammar result is received (which is a ButtonClicked event in our example).
Consequently this means a developer just has to follow three steps to integrate new com-
ponents into the Gulliver framework: (a) extend a control from a graphical user interface
component, (b) implement the interface IVoiceControl (c) override properties/methods of
the base class if they are affected by the voice input too.

6 Application Development

In this section we focus on how and where to deploy the framework’s components and
how to develop an application based on the Gulliver framework and the multi-modal user
interface components.

Fig. 7 shows to which nodes the application’s and framework’s components are deployed.
We assume an enterprise application (client-server or multi-tier) that performs significant
business logic on a business server and hosts the presentation tier and some client-side
business logic (together represented by the application in the figure) on the mobile device.
The application’s user interface is built with the multi-modal user interface components;

165



hence, it automatically uses the Gulliver framework to forward speech-related commands
and grammars to an appropriate speech recognition engine and reacts to obtained results.
A complete Gulliver installation comprises an optional local speech recognition engine on
the device and the Gulliver Client, which is automatically deployed with the application.
The Gulliver Server is a separately installed component on a powerful server and accesses
a server-side speech recognition engine.

PDA

Business Server

Speech Server

<<component>>
Business Logic

<<component>>
Speech Recognition Engine

<<component>>
Gulliver Server

<<component>>
Speech Recognition Engine

<<component>>
Gulliver Client

<<component>>
Application

<<component>>
Audioadapter

<<artifact>>
Plugin Configuration

<<artifact>>
Gulliver Configuration

SAPI / native

Commands, Grammars and Results

Commands, Grammars and Results

Audio
SAPI 4 / JSAPI

Audio

Audio

Figure 7: UML deployment diagram of application and framework

Application development is further simplified by a Struts-like MVC architecture. The ap-
plication’s forms are implemented as plug-ins, i.e., they implement a defined interface,
follow a defined life cycle and are managed by a plug-in container. For a thorough discus-
sion on component architecture and plug-in management refer to [Szy02].

As we mentioned before developing speech enabled applications needs special care in the
sense of usability. Close interaction with the user is necessary to achieve a convient to
use system. This inevitably leads to the fact that user interfaces and the business logic
must often be changed. With the help of Gulliver it is possible to change the user interface
of speech enabled applications as easy as of applications providing only a grahpical user
interface. With the help of the custom multi-modal components that are integrated in a
graphical designer costs and time for changes are minimized.

7 Conclusion and Further Work

Gulliver provides a framework that dramatically eases the development of speech-enabled
applications. It allows application developers to enrich their user interfaces with speech
and it neither causes any additional effort nor does it demand proprietary design concepts.
Moreover, a developer does not need to take care of mobile device or speech recogni-
tion deployment specifics in the business logic layer or user interface. Nonetheless, the
framework leaves room for improvement.

Currently, we implemented the framework in C++ (the audio handling and remote com-

166



munication) and C# (the multimodal user interface components) targeted for Microsoft
Windows Mobile Pocket PC and Smartphone Edition. For the implementation of the Gul-
liver Server we used Java. The various languages and platforms were chosen to show a
proof of concepts.

As stated before, we based our implementation on scheme 2 as described in section 4.
The audio data was compressed and transmitted to the remote server using VoIP. On the
server side Nuance Dragon Naturally Speaking 9 was chosen as speech recognition engine.
Besides recognition rate the required bandwidth is an important criterion. Not surprisingly
the transmission of the audio data consumes most bandwidth (1.9 KB/s) and is responsible
for 90% of data being transmitted. Due to the fact that VoIP uses Real Time Protocol
(RTP), which itself is based on UDP, we can not guarantee delivery of complete audio
data. Nonetheless even GPRS offers enough bandwidth to transfer enough audio data to
achieve accurate recognition rates. Our testing scenarios showed that especially Dragon
Naturally Speaking does not naturally reduce recognition rate but the speech recognition
process takes more time. Using a high quality Bluetooth headset therefore leads nearly to
the same recognition rate as using the system on the desktop with a headset.

However, as the Gulliver framework is designed not to be limited to a specific type of
device and operating system, an application that uses the framework and which is targeted
on a specific platform can potentially run on many types of devices and operating sys-
tems. The modifications to the application (e.g., switching the programming language)
are laborious when they need to be done manually. An improved approach, which we
are currently investigating, would in the first place describe an application on an abstract
level (i.e. model) and then transform this abstract description (via intermediate steps) to
different implementations. This is exactly the essence of model-driven software develop-
ment as described in [BMS04]. We propose an abstract user interface model—platform
independent model (PIM)—which defines the basic work flow of the application and its
common properties. The abstract model could be transformed into more specific models
called platform specific models (PSM) and finally into source code for a specific device
and operating systems and necessary configuration files. An additional benefit from this
approach is that many of the artifacts in our framework could be generated: for exam-
ple, the plug-in configuration file or stubs for the application’s forms could be generated
from the application’s work flow defined in the PIM (for further details please refer to
[KMPS06]).

Acknowledgements

This research was supported by the Austrian Research Promotion Agency under the FH-
plus program, the Austrian Broadcasting Corporation (ORF), and Microsoft. Any opin-
ions, findings, and conclusions or recommendations in this paper are those of the authors
and do not necessarily represent the views of the research sponsors.

167



References

[ACF+05] J. Axelsson, C. Cross, J. Ferrans, G. McCobb, T. V. Raman, and L. Wilson. Mobile X+V
1.2. http://www.voicexml.org/specs/multimodal/x+v/mobile/12/, 2005.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture—A System of Patterns. John Wiley & Sons, 1996.

[BMS04] S. Bleul, W. Mller, and R. Schaefer. Multimodal Dialog Description for Mobile Devices.
In Proceedings of International Conference on Advanced Visual Interfaces (AVI 2004),
Gallipoly, Italy, 2004.

[Bro06] R. Brown. Talking Windows—Exploring New Speech Recognition And Synthesis APIs
in Windows Vista. MSDN Magazine, 21(1), 2006.

[Fow03] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, Boston,
2003.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, 1995.

[HM04] A. Hunt and S. McGlashan. Speech Recognition Grammar Specification Version 1.0.
http://www.w3.org/TR/speech-grammar/, 2004.

[KMPS06] W. Kurschl, S. Mitsch, R. Prokop, and J. Schönböck. Model-Driven Development of
Speech-Enabled Applications. In Proceedings FH Science Day, pages 216–223, Hagen-
berg, Austria, 2006.

[KMPS07] W. Kurschl, S. Mitsch, R. Prokop, and J. Schönböck. Gulliver—A Framework for Build-
ing Smart Speech-Based Applications. In Proceedings of the 40th Hawaii International
Conference on System Sciences (HICSS-40), Hawaii, USA, 2007. IEEE.

[MBC+04] S. McGlashan, D. C. Burnett, J. Carter, P. Danielson, J. Ferrans, A. Hunt, B. Lucas,
B. Porter, K. Rehor, and S. Tryphonas. Voice Extensible Markup Language (VoiceXML)
Version 2.0, W3C Proposed Recommendation. http://www.w3.org/TR/voicexml20, 2004.

[Mic] Microsoft. Microsoft Speech SDK (SAPI 5.1). http://www.microsoft.com/
speech/techinfo/apioverview/.

[MPS03] G. Mori, F. Paterno, and C. Santoro. Tool Support for Designing Nomadic Applications.
In Proceedings of the International Conference on Intelligent User Interfaces (IUI), Mi-
ami, FL, USA, 2003. ACM Press.

[Pea00] D. Pearce. Enabling New Speech Driven Services for Mobile Devices: An Overview
of the ETSI Standards Activities for Distributed Speech Recognition Front-ends. In Pro-
ceedings of AVIOS 2000: The Speech Applications Conference, San Jose, CA, USA, 2000.

[PS02] F. Paterno and C. Santoro. One Model, Many Interfaces. In Proceedings of 4th In-
ternational Conference on Computer-Aided Design of User Interfaces (CADUI), pages
143–154, Valenciennes, France, 2002. Kluwer Academics.

[Sun98a] Sun Microsystems, Inc. Grammar Format Specification. http://java.sun.com/
products/java-media/speech/forDevelo%pers/JSGF/, 1998.

[Sun98b] Sun Microsystems, Inc. Java Speech API. http://java.sun.com/products/
java-media/speech/, 1998.

[Szy02] C. Szyperski. Component Software—Beyond Object-Oriented Programming. Addison-
Wesley, Boston, 2002.

168


