
Heinrich C. Mayr, Martin Pinzger (Hrsg.): INFORMATIK 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 1591

Adding Atmospheric Scattering and Transparency to a

Deferred Rendering Pipeline for Camera Based ADAS Tests

Sabrina Heppner1, Marius Dransfeld2 and Gitta Domik3

Abstract: This paper describes the implementation of a real-time global illumination model (atmo-
spheric scattering and transparency) based on deferred rendering for the realization of virtual test
drives used for the evaluation of camera based ADAS. Atmospheric scattering and transparent objects
(e.g. windows) contribute to a realistic visualization of outdoor street scenes. However, both are not
considered in the basic deferred rendering pipeline. To create an adequate adaption, the in¯uence of
the atmospheric scattering on transparent objects has to be considered. This work compares several
techniques for the integration of transparency in the deferred rendering global illumination model.
The realization of an A-Buffer implemented as Linked List provides the best results concerning the
image quality. Weighted Blended Order-Independent Transparency also achieves adequate results.
Inferred Lighting is inapplicable for the given use case.

Keywords: ADAS, advanced driver assistance system, global illumination, atmospheric scattering,

transparency, deferred rendering, real time

1 Introduction

Camera based Advanced Driver Assistance Systems (ADAS) have gained increasing impor-

tance. Testing a new camera based ADAS during its development performing test drives

with real cars is impractical, as they are cost- and time-intensive. Also the existence of a

car prototype, which is produced late in the development process, is a precondition. An

alternative for real-world test drives are tests in a three-dimensional virtual environment

embedded in a HIL (Hardware-in-the-Loop) simulation. To ensure that the virtual tests

create suf®cient results as closely as possible to the results of real test drives, it is important

that the rendering is as realistic as possible and real-time capable. A global illumination

model for atmospheric scattering is one possibility to create realistic direct and indirect

illumination. Global illumination describes a class of algorithms in computer graphics

to create more realistic images by taking indirect illumination into account. By default,

only local illumination is used and only direct illumination is computed. The interaction

of light with particles in the air is not considered. Global illumination additionally takes

this interaction into account and thus integrates indirect illumination. If light interacts with

particles in the air, it is called atmospheric scattering. Because of the high recursion depth,

the calculation of indirect illumination the direct way is very time-consuming.

1 Paderborn University, CVB, Fürstenalle 11, 33102 Paderborn, sabrina.heppner@uni-paderborn.de
2 Paderborn University, CVB, Fürstenalle 11, 33102 Paderborn, mariusdr@mail.uni-paderborn.de
3 Paderborn University, CVB, Fürstenalle 11, 33102 Paderborn, domik@uni-paderborn.de



1592 Sabrina Heppner et al.

To establish rendering at real-time frame rates, a deferred rendering pipeline4 can be used.

Deferred rendering is an image based technique used in games and real-time applications

gaining in popularity [La10] [Le11]. In contrast to forward rendering5, which is used

by default, deferred rendering is a two-phase technique which decouples the rendering of

geometry and lights into distinct passes: Geometry phase and illumination phase. During the

geometry phase, data (e.g. surface normal, diffuse color, depth) needed for the illumination

calculation is stored in the G-Buffer (geometry buffer). During the illumination phase,

the data stored in the G-Buffer is read and combined with the information of the light to

compute the ®nal surface color. As this computation is done once per pixel, there is no

overdrawing possible, which is one major performance problem of forward rendering.

As with many other applications with three-dimensional graphics output, the test scenes

used in software for the visualization of ADAS tests use transparent objects. Examples

are windows in cars, buildings, noise barriers, bus stops or any other objects including

parts made of glass. Another type of object uses textures with a dedicated alpha channel. It

can be used to display objects like trees or fences. To keep the state of realism high, it is

important that transparent objects like these are rendered correctly. Unfortunately, this is not

feasible with a default deferred rendering pipeline described before. Therefore, an adequate

adaption has to be found. This paper will ®rst take a look at the physical background of

atmospheric scattering and transparency. Afterwards, possibilities for the realization inside

a rendering pipeline are considered and compared. In the end there will be a consistent

concept to render outdoor scenes including atmospheric scattering and transparency based

on deferred rendering. For readers who are interested in the physical background, section 2

gives a short overview. Those who like to get to know the concepts in depth are invited to

read subsections 3.1 to 3.3 (atmospheric scattering) and subsection 4.1 (transparency). If

the interest mainly applies to the results, skip to subsection 3.4 and 4.2.

2 Physical Background

We ®rst consider the physical principles of atmospheric scattering and transparency.

2.1 Atmospheric Scattering

When light passes through the earth’s atmosphere, it interacts with particles, namely

molecules and aerosols. Three different types of interaction happen: Absorption, outscatter-

ing and inscattering. Absorption and outscattering cause a reduction of radiation. Absorption

converts light into a different form of energy. During an outscattering event, some light rays

are diverting into different directions than the initial traveling direction. In contrast to that,

during an inscattering event additional light is redirected into the traveling direction which

4 A rendering pipeline is a logical model of computations needed for the process from 3D scene data to a 2D

image in a raster-display system [LHL14].
5 Each object is rendered separately using material color, lights, etc. to determine the ®nal color of the pixel

associated with an object [Va14].



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1593

causes an increase of the radiation. Incoming light can either come directly from a light

source or it is itself the result of scattering off other particles. The effect that light changes

its direction several times due to scattering is called multiple scattering. In particular the

scattering effect causes the indirect illumination in outdoor scenes.

The results of light interaction are visible effects in outdoor scenes. The most important

effect is the indirect illumination. Other effects are the blue color of the sky, the coloring

of the sky depending on the weather and location, the color gradient on the horizon, the

coloring of dawn and twilight, the aerial perspective, the aureole and the ªblue hour”

[Ha96] [Ho07] [Ka91] [KRZ06] [LL01] [Ne14] [Mi12]. For the human perception these

are familiar effects. Already Leonardo Da Vinci made use of them to give paintings a more

realistic look [Ko12]. Not implementing these effects, e.g. by coloring the sky in an uniform

blue, has the implication that a rendered scene receives an unrealistic appearance (best seen

in our results shown in Figure 5). Consequently, by implementing these effects, a virtual

scene becomes more realistic.

2.2 Transparency

An object can be described as transparent, translucent (partly transparent and partly opaque)

or opaque (non-transparent) [Ho13]. These characteristics depend on how much light is

absorbed and scattered while passing through the matter. When light emitted by a light

source hits an object, some rays will be re¯ected and the rest will be refracted. While the

refracted light is traveling through the object, it might be absorbed and scattered. If there is

no scattering, the scene behind the object will be visible through the object. This effect is

called transparency. In the case of water and glass very little light of the visible spectrum is

absorbed. Therefore, they appear not just transparent, but very clear.

3 State of the Art: Rendering Global Illumination in Outdoor Scenes

In outdoor scenes atmospheric scattering has an important in¯uence on illumination. Be-

cause of multiple scattering, the possible depth of recursion is much higher as if just surface

re¯ection is considered. Hence, the standard rendering pipeline and traditional rendering

methods, like ray tracing and radiosity, are not suitable to create a physical based rendering

of outdoor illumination [Kl87] [Wa07]. In the following, different modern approaches are

considered.

3.1 Previous Approaches

Much research has been done to create mathematical models for integrating atmospheric

scattering into a virtual scene. The developed approaches can be divided into three groups:

Simulation based methods, analytical models, and approximations. Simulation based meth-

ods make use of numerical solutions. Analytical models and approximations avoid numeri-

cal calculations with the help of analytical or rather approximated calculations. Figure 1



1594 Sabrina Heppner et al.

shows an overview of approaches including the chronological order and relations to each

others.

1990

1995

2000

2005

2010

Klassen ‘87

Kaneda

et al. ‘91 Nishita

et al. ‘93
Perez et
al. ‘93

Nishita

et al. ‘96
Preetham

et al. ‘99
Dobashi

et al. ‘02
Preetham &

Hoffman ‘02
Nielsen ‘02

O’Neil ‘05
Schafhitzel

et al. ‘07
Bruneton &

Neyret ‘08
Elek ‘09/’10

Hosek &

Wilkie ‘12 Collienne ‘13

Fig. 1: Rendering of atmospheric scattering (green: Simulation based approaches, blue: Analytical

approches, red: Approximations)

Figure 1 shows that the most modern approaches make use of approximations. This way

the calculation in real time can be realized. A comparison of the given approaches shows

that the approach of BRUNETON & NEYRET [BN08] is the most innovative one ®tting the

given use case. It is an enhancement of the approach of SCHAFHITZEL et al. [SFE07] and

the only approach implementing multiple scattering and shadow [BN08] [Co13] [Ko12].

Several other researchers use the approach of BRUNETON & NEYRET for their work.

3.2 Precalculated Lookup Tables

In the approach of BRUNETON & NEYRET, multiple scattering is implemented by an

incremental calculation of the scattering values performed as precalculation on the GPU

[EK10]. Scattering values are written into lookup tables stored as textures. For performing

the precalculation, nine shaders, three 2D textures (one for intermediate results and two

for ®nal results), and four 3D textures (three for intermediate results and one for ®nal

results) are required. Figure 2 shows the complexity of the precalculation process and the

relationship between different shaders and textures. In each step, exactly one scattering

order is calculated using data of the previous scattering order [EK10].

During run time, the illumination of each pixel has to be calculated. It is composed by the

directly incoming light, the re¯ected light, and the inscattered light. Equation 1 is used to

perform this calculation:

L(x,&v,&s) = Ldirect(x,&v,&s)+Lre f lected(x,&v,&s)+Linscattered(x,&v,&s) (1)

x is the illuminated point,&s the direction to the sun and&v the view direction. How the single

factors are composed is visualized in Figure 3. As marked in this ®gure, some components

include integrals. Because of the huge calculation effort arising from these integrals, they

are (completely or partially) calculated of¯ine as a preprocess, stored in lookup tables

called transmittance, inscatter, and radiance texture and just have to be read during run

time. Some additional components are calculated online. For creating an illumination of

high quality, the values have to be very precise. Offering precise values while performing



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1595

si
n
g
le
sc
at
te
ri
n
g

m
u
lt
ip
le
sc
at
te
ri
n
g

(n
it
er
at
io
n
s)

+

+

shader

2D texture

3D texture

read

write

+
add

Fig. 2: Precalculation process

the calculation of¯ine and storing the results in textures, would cause a high memory

requirement. Therefore, these values are calculated at run time. There is no noticeable

slowdown with this implementation. The real-time capability is still maintained.

L

Ldirect Linscattered
Lre f lected

transmittance
texture

inscatter
texture

irradiance
texture

factor of the
illumination equation

elementary value

elementary value
including an integral

texture

Fig. 3: Factors for the illumination calculation

Because of the consideration of the Mie theory and the Rayleigh theory in the precalculated

values, all effects triggered by atmospheric scattering can be reproduced. Every time

scattering parameters are changed, a rerun of the precalculation has to be performed

[Ko12].

3.3 Deferred Rendering Pipeline

The approach of BRUNETON & NEYRET is adequate to be performed in a deferred rendering

pipeline. Figure 4 shows this concept. In an of¯ine phase, the precalculation is performed.

As input for the precalculation parameters for the illumination are needed. The results

of the calculation are stored in lookup tables to be used in the illumination phase. The

execution of the online phase is divided into geometry and illumination phase. During the

geometry phase, all data of the 3D scene needed for illumination calculations is stored in

the G-Buffer. In the illumination phase the data from the G-Buffer is used in combination

with the lookup textures to construct the illumination of the ®nal scene. The illumination is



1596 Sabrina Heppner et al.

adapted immediately when the 3D scene is changed. Changes of the scattering parameter

cause a rerun of the precalculation.

offline online

data of the 3D scene

geometry phase

G-Buffer

illumination phase

illumination data

precalculation

lookup table

final scene
incl. illumination

ad
ap
ti
on

of
offl

in
e
p
ar
am

et
er
s

ad
ap
ti
on

of
on
lin
e
p
ar
am

et
er
s rendering phase

textures

Fig. 4: Rendering of atmospheric scattering in a deferred rendering pipeline

3.4 Our Results of Deferred Rendering by BRUNETON & NEYRET

We implemented the previously described technique by BRUNETON & NEYRET for several

traf®c scenes and discussed our results (examples in Figure 5) with our domain experts.

3.4.1 Performance

Typically a camera has a frame rate of approximately 30 fps, but faster cameras exist.

Therefore, developer of HIL simulators offer a frame rate of 60 fps. Thus, we de®ne 30 fps

as strong and 60 fps as weak real-time requirement. To evaluate the performance of the

global illumination model for atmospheric scattering, two different types of hardware are

used:

• Computer 1: Intel Core i7-3770, 3.40 GHz, nVidia Quadro 600, 8 GB RAM

• Computer 2: Intel Core i7-3770, 3.40 GHz, nVidia GeForce GTX 660 Ti, 8 GB RAM

The rendering time for 10 263 to 219 826 vertices on a standard PC (Computer 1) guarantees

frame rates of more than 60 fps. Using a more powerful GPU (Computer 2) decreases

rendering time to one ®fth of the original rendering time. The rendering time excludes the

one-time cost of the precalculation. The time of the precalculation strongly depends on the

scattering order (recursion depth of multiple scattering) and on the hardware. For scattering

order 1, less than one second6 is needed, for multiple scattering time increases7. In the case

of the powerful GPU, the performance increases slightly by less than a half second. The

weaker GPU records a stronger degradation of more than 10 seconds. A higher scattering

6 scattering order 1; Computer 1: ∼ 0.95s, Computer 2: ∼ 0.19s
7 scattering order 4; Computer 1: ∼ 13.30s, Computer 2: ∼ 1.10s



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1597

order than 4 is redundant because the adjustments are very small and not recognizable by

the human eye. As expressed by our domain experts, all measured performance values for

the precalculations are acceptable. Even the long measurements can be tolerated because of

the infrequent execution of the precalculation. Most important is the run time itself.

3.4.2 Visual Quality

The visual quality is optimized while using a global illumination model for atmospheric

scattering. The improvement can be comprehended best by the effects of the atmospheric

scattering. Directly implemented by [BN08] are the following effects: Indirect illumination,

blue color of the sky, color gradient on the horizon, coloring of dawn and twilight, aureole,

aerial perspective. Furthermore, the effect ªblue hour” is integrated by adding a blue

coloring when the sun’s position is under a certain threshold value. The more realistic look

of the scene is assessed as useful and pleasing and will be implemented in the product of

our domain experts. Figure 5 contrasts a scene rendered without and including atmospheric

scattering. It is signi®cant that the integration of atmospheric scattering creates a much

more realistic look.

(a) (b) (c)

Fig. 5: Comparison: Rendering without (a) and including ((b) morning sun, (c) ªblue hour”) atmo-

spheric scattering

4 State of the Art: Rendering Transparency

In the typical situation of rendering transparency an opaque object is partially obscured

by a transparent object. The light travels through the transparent object in a straight line

(special cases like scattering inside the model are ignored). While rendering such a scene,

the shading for both, opaque and transparent objects, are computed separately. The two

colors are combined by a process called blending to produce a single color which, if done

correctly, gives the visual impression that the transparent object is in front of the opaque

object. The blending process can be described formally with the help of Equation 2 where

A and B represent the color of a pixel associated with object A and object B and the alpha

value of A (Aα ) describes the opacity of A.

A OVER B = A+B · (1−Aα) (2)

This underlying equation de®ning this process is commutative, meaning the order of the

rendered objects is important. As an additional simpli®cation, transparent objects which are



1598 Sabrina Heppner et al.

not captured by the camera but placed in front of the light source and thus in¯uencing the

color of the light are not considered.

To integrate transparency into a deferred rendering pipeline, the use of different approaches

is conceivable. The techniques we will focus on are Forward Transparency, Weighted

Blended Ordered-Independent Transparency, Inferred Lighting, and an A-Buffer imple-

mented as Linked List on the GPU.

While integrating transparency into the atmospheric scattering concept, the precomputation

remains unchanged. It is only important to de®ne how transparent objects are rendered with

the effect of atmospheric scattering. The illumination equation (see Equation 1) and the

equation of standard alpha (see Equation 2) blending can be combined trivially. The colors

of the pixels associated with object A and B are calculated by the illumination equation and

combined with the help of alpha blending. Thus, the atmospheric scattering model can be

extended intuitively to include transparent objects. There are no modi®cations needed to

add neither the atmospheric scattering nor the blending operator.

4.1 Techniques

The straight forward technique is called Forward Transparency. Here the transparent objects

are rendered in a separate forward rendering pass called transparent pass after the deferred

rendering. During this transparent pass, the transparent objects are rendered as in a forward

rendering pipeline. Each object is rendered separately using material color, lights, etc. to

determine the ®nal color of the pixel associated with an object [Va14]. Thus, the trans-

parent pass has the same disadvantages as normal forward rendering for opaque objects,

e.g. performance decrease with an increasing number of lights. Furthermore, Forward

Transparency does not solve the sorting issues arising from ensuring correct blending of

multiple transparent objects placed successive.

Forward rendering can be improved by a technique called Weighted Blended Order-Inde-

pendent Transparency. This technique removes the need to sort transparent objects prior to

rendering. The idea of blended Order-Independent Transparency in general is to rede®ne

the blending order to be commutative which allows performing the blending process in

arbitrary order. This technique was shaped by the following approaches: [Me07] [BM08]

[MB13] [MB14]. In total ®ve rendering passes are needed: Geometry pass, light pass, clear

pass, transparent pass and composition pass.

Another approach, Inferred Lighting, was invented by KIRCHER & LAWRANCE [KL09]. It

is a variation of deferred rendering to render transparent objects directly into the G-Buffer

and separate them from opaque objects in a later pass. Thus, the main advantage of Inferred

Lighting over deferred rendering is that transparent and opaque pixels can be lit in the same

way. The rendering is separated into three passes: Geometry pass, light pass, and material

pass. The lighting calculation can be performed at a lower resolution than the ®nal output.

This can improve the rendering performance signi®cantly because the illumination equation

has to be computed for fewer pixels and the smaller buffer requires less memory bandwidth.



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1599

The A-Buffer (anti-aliased, area-average, accumulation buffer) was ®rst introduced by

CARPENTER [Ca84] as a general hidden surface mechanism and an improvement over the

Z-Buffer. Among other advantages, it allows rendering of order-independent transparency.

During rendering, for each pixel either a single fragment or a pointer to a list of fragments

is saved. Hardware accelerated implementation of an A-Buffer was proposed by YANG et al.

[Ya10] and LEFEBVRE et al. [LHL14]. They create and maintain linked lists of fragments

for each pixel entirely on the GPU. Previous A-Buffer implementations are designed without

considering a deferred rendering pipeline. SCHOLLMEYER et al. [SBF15] describe a full

deferred rendering pipeline which integrates an A-Buffer implementation using linked

lists. A-Buffer implemented as Linked List approach consists of three rendering passes:

Geometry pass, light-culling pass and shade-composing pass.

There exist various further techniques which are either too slow to be used in real-time

rendering or exhibit other properties which makes them unsuitable for the given domain

[Ma11].

4.2 Our Results of Three Transparency Techniques

To compare results of transparency in a deferred rendering pipeline including atmospheric

scattering, we implemented three techniques8: Weighted Blended Order-Independent Trans-

parency (WBOIT), Inferred Lights (IL), and A-Buffer/Linked Lists (LL). As basis for

evaluation we chose performance and visual quality.

4.2.1 Two Different ADAS Scenes

For evaluation, two suitable ADAS scenes of different complexity are created. The setting

of the ®rst scene is a small village with several houses, cars, streets, and a forest with 400

randomly placed and oriented trees. There are several surfaces using the alpha channel,

e.g. windows, foliage, and fences (see Figure 6a). The second scene is more complex. It is

used to evaluate the implementations for a traf®c scene. It contains a road with numerous

cars surrounded by houses on both sides (see Figure 6b). All tests are conducted with a

resolution of 1920 x 1080 pixels and all statements in the following refer to this resolution.

4.2.2 Performance

For the performance test, two different types of hardware are used:

• Computer 1: Intel Core i7 860, nVidia Quadro K2000, 4GM RAM (slow, less

memory)

• Computer 2: Intel Core i5 4750, nVidia GTX 660, 16GB RAM (fast, more memory)

8 Forward rendering is not considered because the performance is much lower than the performance of the other

techniques.



1600 Sabrina Heppner et al.

(a) Test scene 1: Small village with forest (b) Test scene 2: Traf®c scene

Fig. 6: Test scenes

The performance is recorded from 13 different views of the ®rst scene and 5 different views

of the second scene. These views are used to test a variation of different conditions. In the

case of scene 1, depending on the view, 25 to 2130 objects, 4436 to 92 833 triangles, and 10

263 to 219 826 vertices are given. In the second scene there are signi®cantly more triangles

and vertices to be rendered. On average there are ∼600 objects, ∼350 000 triangles, and

∼420 000 vertices visible. For example, the view in Figure 6b, a close-up view of the

windshield from inside of a car, includes a large amount of transparent fragments (∼1.5

million).

Because precomputation remains unchanged, its performance is unaffected. During run

time, the light distribution function has to be evaluated at every transparent fragment. The

most expensive operation is the adding of inscattered light as it involves many lookups in a

3D texture.

Computer 1 Computer 2

0

50

100

150

fp
s

WBOIT

IL

LL

real-time requirements:

weak

strong

Fig. 7: Average and minimal/maximal performance

Figure 7 shows the results of the performance test. Each bar visualizes the average perfor-

mance of the implementation of one technique on one computer. Furthermore, minimal

and maximal performance occurring during the test are marked. The dashed line and the

dotted line visualize the strong (30 fps) and the weak (60 fps) real-time requirements9. It is

signi®cant that all three techniques offer similar results. The weaker computer (Computer

1) reaches the weak real-time requirement. In the case of the more powerful computer

(Computer 2) even the worst measured performance values exceed the number of 60 fps

and thus the hard real-time requirement is ful®lled.

9 see section 3.4.1



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1601

4.2.3 Visual Quality

On visual quality, we again rely on our domain experts for a qualitative assessment. The do-

main experts observed scenes including transparent objects rendered with different methods.

They identi®ed features that differ for the given methods. Table 1 shows screenshots used

for comparison. In addition to two ADAS scenes we include a teapot scene demonstrating

rendering mistakes arising from a high number of completely transparent overlapping

objects not apparent in the ADAS scenes.

WBOIT produces images with varying quality. For surfaces with low alpha values, including

objects rendered with alpha mask textures like leaves (leaves (a)) or fences, the results are

of desired quality indistinguishable from Linked Lists (leaves (c)). In the case of transparent

surfaces with high alpha value or very saturated colors, rendering mistakes occur. Such an

effect is recognizable in the very bright specular highlights on the windshield (windshield

(a)). Furthermore, the screenshot of the teapots (teapots (a)) reveals that there is a problem

concerning the perceived ordering. The colors of teapots in the background dominate too

much.

Inferred Lighting shows the worst overall image quality of all three tested techniques.

This low quality is caused by the low resolution rendering and subsequent upscaling of

transparent surfaces. This is most notably seen at the border of transparent surfaces like the

car window (windshield (b)). Lighting fails completely for cases where several surfaces

with the same stipple pattern (see [KL09]) are rendered on top of each other (leaves (b)).

This also applies for transparent objects overlapping themselves as seen in the case of the

teapots (teapots (b)).

Linked Lists shows desirable image quality while rendering transparent surfaces due to

the per-pixel sorting of transparent fragments (leaves, windshield, teapots (c)). The results

should be identical to an of¯ine rendering with an A-Buffer implementation. This only

applies as long as there is enough video memory available to store all rendered fragments.

If memory over¯ows, fragments have to be discarded, which leads to visual artifacts. Using

older GPUs10, as the ones used for our evaluation, a ¯ickering effect, not visible on still

images, occurs. These older GPUs do not support atomic operations needed for the ordering

of fragments with similar depth. Thus, the ordering can vary and this leads to a ¯ickering

effect.

Due to the multiple rendering mistakes, WBOIT and IL are rejected by our domain experts.

In case of suitable graphics cards, LL is acceptable.

5 Summery & Conclusion

Our solution employs a deferred rendering pipeline which allows atmospheric scattering to

be added without noticeable slowdown to the real-time requirements while at the same time

10 E.g. the atmomicMax operation for 64-bit values is supported by nVidia GPUs starting with the Maxwell

generation, e.g. nVidia GeForce GTX 970.



1602 Sabrina Heppner et al.

full view on scene (a) WBOIT (b) Inferred Lighting (c) Linked List

le
av

es

✓ ! ✓✓

w
in

d
sh

ie
ld

! ! ✓✓

te
ap

o
ts

! ! ✓✓

Tab. 1: Comparison of visual quality (✓✓: good, ✓: acceptable, !: bad)

providing a pleasing natural effect. Regarding the implementation of transparent objects

(e.g. windshield) and realistic rendering of fences and foliage (textures with dedicated

alpha channel), we have found Weighted Blended Order-Independent, Inferred Lighting and

Linked List to be techniques all satisfying the real-time requirements, while only Linked

List reaches the visual realism requirements of our domain experts. However, best visual

quality is attained at the cost of suf®cient video memory and a modern GPU supporting

atomic operations.

Acknowledgment

The models placed in the test scenes are provided and copyrighted by dSPACE GmbH.

References

[BM08] Bavoil, Louis; Myers, Kevin: Order Independent Transparency with Dual Depth Peeling.
NVIDIA OpenGL SDK, pp. 1±12, 2008.

[BN08] Bruneton, Eric; Neyret, Fabrice: Precomputed Atmospheric Scattering. Computer Graphics
Forum, 27(4):1079±1086, 2008.



ADAS Tests based on Deferred Rendering, Atmospheric Scattering and Transparency 1603

[Ca84] Carpenter, Loren: The A-buffer, an antialiased hidden surface method. ACM Siggraph
Computer Graphics, 18(3):103±108, 1984.

[Co13] Collienne, Peter; Wolff, Robin; Gerdt, Andreas; Kuhlen, Torsten: Physically Based Render-
ing of the Martian Atmosphere. In (Latoschik, Marc Erich, ed.): Virtuelle und Erweiterte
Realität ± 10. Workshop der GI-Fachgruppe VR/AR. Shaker, Aachen, pp. 97±108, 2013.

[EK10] Elek, Oskar; Kmoch, Petr: Real-Time Spectral Scattering in Large-Scale Natural Partici-
pating Media. In (Hauser, Helwig; Klein, Reinhard, eds): Proceedings of the 26th Spring
Conference on Computer Graphics. ACM, New York, pp. 77±84, 2010.

[Ha96] Haltrin, Vladimir I.: Haltrin. A Real-Time Algorithm for Atmospheric Corrections of
Airborne Remote Optical Measurements above the Ocean. In: Proceedings of the Second
International Airborne Remote Sensing Conference and Exhibition. volume 3, pp. 63±72,
1996.

[Ho07] Hoeppe, Götz: Why the Sky is Blue ± Discovering the Color of Life. Princeton University
Press, Princeton, 2007.

[Ho13] Hoffman, Naty: Background: Physics and Math of Shading. SIGGRAPH, 2013.

[Ka91] Kaneda, Kazufumi; Okamoto, Takashi; Nakamae, Eihachiro; Nishita, Tomoyuki: Photore-
alistic Image Synthesis for Outdoor Scenery under Various Atmospheric Conditions. The
Visual Computer, 7(5-6):247±258, 1991.

[Kl87] Klassen, R. Victor: Modeling the Effect of the Atmosphere on Light. ACM Transactions
on Graphics, 6(3):215±237, 1987.

[KL09] Kircher, Scott; Lawrance, Alan: Inferred Lighting: Fast Dynamic Lighting and Shadows
for Opaque and Translucent Objects. In: Proceedings of the 2009 ACM SIGGRAPH
Symposium on Video Games. Sandbox ’09, ACM, New York, NY, USA, pp. 39±45, 2009.

[Ko12] Kol, Timothy R.: Analytical Sky Simulation ± An Implementation and Analysis of Daytime
Skylight Models. Technical report, University, 2012.

[KRZ06] Kment, Thomas; Rauter, Michael; Zotti, Georg: Modelling of Daylight for Computer
Graphics. Technical report, Institut für Computergraphik und Algorithmen, Wien, 2006.

[La10] Lake, A.: Game Programming Gems 8. IT Pro. Course Technology, 2010.

[Le11] Lengyel, E.: Game Engine Gems 2. Taylor & Francis, 2011.

[LHL14] Lefebvre, Sylvain; Hornus, Samuel; Lasram, Anass: Per±Pixel Lists for Single Pass A-
Buffer. GPU Pro 5: Advanced Rendering Techniques, 2014.

[LL01] Lynch, David K.; Livingston, Wiliam Charles: Color and Light in Nature. Cambridge
University Press, Cambridge, 2001.

[Ma11] Maule, Marilena; Comba, Joo L.D.; Torchelsen, Rafael P.; Bastos, Rui: A Survey of
Raster-Based Transparency Techniques. Computers & Graphics, 35(6), 2011.

[MB13] McGuire, Morgan; Bavoil, Louis: Weighted Blended Order-Independent Transparency.
Journal of Computer Graphics Techniques (JCGT), 2(2):122±141, 2013.

[MB14] McGuire, Morgan; Bavoil, Louis: Weighted, Blended Order Independent Transparency.
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2014.

[Me07] Meshkin, Houman: Sort-independent alpha blending. GDC Talk, 2007.



1604 Sabrina Heppner et al.

[Mi12] Minnaert, Marcel: Light and Color in the Outdoors. Springer, New York, 2012.

[Ne14] Nentwig, Mirko: Untersuchungen zur Anwendung von computergenerierten Kamerabildern
für die Entwicklung und den Test von Fahrerassistenzsystemen. PhD thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2014.

[SBF15] Schollmeyer, Andre; Babanin, Andrey; Froehlich, Bernd: Order-Independent Transparency
for Programmable Deferred Shading Pipelines. In: Computer Graphics Forum. volume 34.
Wiley Online Library, pp. 67±76, 2015.

[SFE07] Schafhitzel, Tobias; Falk, Martin; Ertl, Thomas: Real-Time Rendering of Planets with
Atmospheres. In (Rossignac, Jarek; Skala, Václav, eds): Journal of WSCG. University of
West Bohemia, Plzen, pp. 91±98, 2007.

[Va14] Varcholik, P.: Real-Time 3D Rendering with DirectX and HLSL: A Practical Guide to
Graphics Programming. Game Design. Pearson Education, 2014.

[Wa07] Wang, Changbo: Real-Time Rendering of Daylight Sky Scene for Virtual Environment. In
(Ma, Lizhuang; Rauterberg, Matthias; Nakatsu, Ryohei, eds): Entertainment Computing ±
ICEC 2007, volume 4740, pp. 294±303. Springer, Berlin & Heidelberg, 2007.

[Ya10] Yang, Jason C.; Hensley, Justin; Grün, Holger; Thibieroz, Nicolas: Real-time Concurrent
Linked List Construction on the GPU. In: Proceedings of the 21st Eurographics Conference
on Rendering. Eurographics Association, Aire-la-Ville, Switzerland, pp. 1297±1304, 2010.


