
Parallelization Strategies to Speed-Up Computations for

Terrain Analysis on Multi-Core Processors

Steffen Schiele1, Holger Blaar1, Detlef Thürkow2, Markus Möller2,
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Abstract: Efficient computation of regional land-surface parameters for large-scale
digital elevation models becomes more and more important, in particular for web-
based applications. This paper studies the possibilities of decreasing computing time
for such tasks by parallel processing using multi-threads on multi-core processors.
As an example of calculations of regional land-surface parameters we investigate the
computation of flow directions and propose a modified D8 algorithm using an extended
neighborhood. In this paper, we discuss two parallelization strategies, one based on
a spatial decomposition, the other based on a two-phase approach. Three datasets of
high resolution digital elevation models with different geomorphological types of land-
scapes are used in our evaluation. While local surface parameters allow for an almost
ideal speed-up, the situation is different for the calculation of non-local parameters
due to data dependencies. Nevertheless, still a significant decrease of computation
time has been achieved. A task pool-based strategy turns out to be more efficient for
calculations on datasets with many data dependencies.

1 Introduction

A large variety of methods for space-oriented analyses of the earth’s surface have been de-

veloped in the past couple of years. Methods based on photogrammetry and laserscanning

are able to produce digital elevation models (DEMs) with a geometric resolution within

centimeters and a high quality, as well as a high quantity of data. Algorithms have to

be developed enabling computational efficient processing of large datasets in reasonable

time [Woo09]. Therefore, new strategies for efficient implementation and parallelization

of such computations are needed.

The attribute ‘flow direction’ is the basis for the calculation of the most popular hydrolog-

ical parameters like ‘specific catchment area’ or ‘topographic wetness index’ [ZKLY07,

GP09]. The typical workflow for the computation for these parameters is sketched in Fig-

ure 1. First, the raw data of the DEM is preprocessed to remove artefacts, systematic errors,

and to reduce noise. It is also important to eliminate spurious sinks by filling [RHGS09].

Afterwards, the flow directions are determined. The computation of catchment area and
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Figure 1: Sketch of the typical workflow for hydrological parameter calculations.

flow accumulation base on the flow direction. Computationally, these steps are less inten-

sive.

Although the sequential running time for test sites with 108 grid cells is in the range of a

few minutes on standard desktop machines, further reductions of processing times are still

of crucial importance for the acceptance of web-based hydrological applications [ASMB03,

GTDS10]. Our intention is to investigate how parallel processing using multi-threads can

help to decrease computing time of flow direction’s calculation. For this purpose, we have

developed two parallelization strategies and tested them on a modified single-flow algo-

rithm (Section 2.1). In this paper, we restrict our discussion of parallelization strategies

to this single-flow algorithm, although we have implemented parallel algorithms for the

remaining steps of the workflow, too [Sch10].

A classical and most basic algorithm to determine flow directions is the so-called D8-

algorithm [OM84]. From each grid cell, all flow is passed to the neighbor in direction of

the steepest descent. Except for cells at the boundary of the DEM, a cell can be viewed as

the center cell of a 3× 3 subgrid. The 8 non-central cells of such a subgrid are considered
as neighbors, hence the name D8. The crucial point in this method is how ambiguous flow

directions are resolved, when the same minimum down-slope gradient is found for several

neighbor cells. We would like to emphasize that such ambiguities are not an academic

consideration, they occur quite often in practice. To resolve such ambiguities, we have

developed an extended neighborhood approach. Extended neighborhoods pose a particular

challenge for parallelization due to non-local memory access patterns.

Related work Based on the model of SIMD (single instruction stream, multiple data

stream) computers, Mower [Mow94] discusses data-parallel procedures for drainage basin

analysis. More recent work on multi-core machines uses the OpenMP library or MPI.

For example, Neal et al. [NFT09] describe and report experience with parallelization of

procedures for flood inundation models using the OpenMP interface. Building on the

message passing interface MPI, Tesfa et al. [TTW+11] developed parallel approaches for

the extraction of hydrological proximity measures. In contrast to the single flow direction

method studied in this paper, they use the multiple flow direction model D-infinity. Instead

of using multi-core processors, another interesting approach for parallelization is the usage

of GPUs. Ortega and Rueda [OR10] have studied the applicability of this approach for

parallel computation of drainage networks using the CUDA framework.
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To cope with large-scale high-resolution datasets, Mølhave et al. [MAAR10] developed

I/O-efficient external memory algorithms. The focus of our paper, however, is on algo-

rithms which can be handled within internal memory.

Overview In Section 2, we first sketch our extended D8 algorithm for flow computations

and then explain our two parallelization strategies. We also describe the sites used in our

experimental study. Computational results for both parallelization strategies are given in

Section 3. Finally, we summarize and discuss our observations in Section 4.

2 Methods

2.1 Extended D8 algorithm for flow computations

To avoid ambiguous flow directions, we introduce a modified algorithm D8e which recur-

sively extends the neighborhood in such cases until a unique single flow direction is found.

For a given cell c and its neighborhood N(c) let S(c) ⊆ N(c) be the subset of neighbors
which realize the steepest descent. Thus, S(c) forms the candidate set for the flow di-

rection of c. If |S(c)| = 1, the flow direction is unique and we are done. Otherwise, we

determine the extended neighborhoodEN(S(c)) as the set of all cells which are connected
to some cell c̄ ∈ S(c) by a path of cells with the same altitude as c̄. Then we compute

recursively the flow direction of all cells within EN(S(c)). Among all considered cells,

we take again the steepest descent. If this value is unique, we can now assign the flow

direction of cell c as the one which leads along a path of assigned flow directions to the

cell of steepest descent. Otherwise, the procedure has to be continued in the same manner

until the ambiguities are resolved or no further neighborhood extension is possible. In the

latter case, an arbitrary decision for cell c is made.

The neighborhood extension is the most time-consuming part of the computation of flow

directions. The average size of the extended neighborhood varies widely depending on

the terrain. An example of the effect of ambiguous flow directions is given in Figure 2.

The figure shows two catchment areas, one computed with the D8 and one with the D8e

algorithm. The first one misses a significant part of the catchment area.

2.2 Parallelization strategies

We investigate two main strategies for parallelization. The first approach divides the DEM

into squares and the second one divides the computation of the flow directions into two

phases. All threads access the same DEM stored in shared memory. Therefore, there is no

need to transfer data but the data access has to be synchronized among the threads.
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Dividing the DEM into squares If the grid domain of the DEM is partitioned into a

number of disjoint squares and the flow directions are computed concurrently by different

threads complications often arise. Namely, the extended neighborhood computation can

include cells of other squares. This means that the same flow direction of a single cell

might be calculated several times and the number of such cells could be prohibitively

high.

To avoid such problems a pre-computation is executed. At first, the algorithm chooses

squares which are slightly overlapping at common boundary cells. Then the flow direc-

tion of all boundary cells and their neighbors is computed in a sequential step. In doing

so, no thread will cross its square boundary in the upcoming parallelized computations.

Figure 3 exemplarily illustrates two cases where the algorithm extends the neighborhood

of the cell with altitude 7 and precalculates the flow directions of all cells of the extended

neighborhood (cells with altitude 5). Finally, the results of the sequential pre-computation

are accessible by each thread. Afterwards, each thread computes the flow direction of the

remaining cells.

Dividing the computation into two phases The main idea of this approach is to com-

pute the flow direction using the original D8 algorithm during a first phase. Instead of

extending the neighborhood of cells with ambiguous flow directions (see Section 2.1) such

cells are only marked. During the second phase, our algorithm extends the neighborhood

of each marked cell and computes their flow directions.

The first phase can be parallelized by dividing the DEM into squares. Only using the 3×3-
neighborhood of a cell for computing the flow direction, no pre-computation is needed. In

the second phase, the marked cells are assigned to different groups in such a way that

redundant calculations are avoided. At first, a marked cell is assigned to an empty group.

Afterwards, a cell will be assigned to this group, if

• the marked cell is adjacent to one cell of the group, or

• there is at most one unmarked cell between the marked cell and a cell of the group.

The group assignment is done with breadth-first search.

Figure 2: Comparison of catchment areas based on the flow directions computed using the D8 and
D8e algorithm. This example shows the dramatic difference between the traditional D8 algorithm
(which leads to a way too small catchment area) and our new D8e algorithm resulting in a catchment
area confirmed by experts.
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(a) (b)

Figure 3: Excerpts of a DEMwhere two squares overlap in the gray-shaded boundary cells. Numbers
in each cell of the DEMs correspond to the elevation. In both examples, the D8e algorithm extends
the neighborhood of the cell with altitude 7 and precalculates the flow directions of all cells with
altitude 5.

Figure 4(a) shows marked cells for which the computation requires a neighborhood ex-

tension. In each of the three examples the algorithm puts the marked cells into the same

group. The differently marked cells in the example of Figure 4(b) belong to two different

groups. The extended neighborhoods of both cells are disjoint. One thread is responsible

for assigning cells to groups and manages these groups by a task pool [RR10]. Pseudocode

is given in Algorithm 1. Each of the other threads takes a group out of the task pool and

computes the flow direction of the marked cells of this group. In doing so, this approach

ensures that two threads will never compute the flow direction of the same cell and that

the computed extended neighborhoods will never overlap.

(a) In each example, cells with ambiguous flow direction are marked. Because of the neighborhood extension,

the marked cells will be computed by the same thread. Therefore, our algorithm puts them into the same group.

(b) In this example, differently marked cells are far enough from each other so that their extended neighbor-

hoods are disjoint. Thus, our algorithm puts them into different groups.

Figure 4: Parallelization of the D8e algorithm by dividing the computation into two phases. Numbers
in each cell correspond to the elevation in the DEM.

2.3 Efficiency measurement

For measuring the runtime of a parallel implementation, the real time (wall clock time) can

be used, but it can be influenced by other applications running on the system. User and

system CPU time of a parallel application is the accumulated user and system CPU time on

all processors. Because of the disruptive effect of other processes running on the system

the number of cores used by one job cannot easily be determined and can also vary during

program execution. We used an almost unloaded system for real-time measurements.
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Algorithm 1 The procedure determines groups of cells with ambiguous flow direction

(see Figure 4(a)) and puts each group of such cells into the task pool. If all cells with

ambiguous flow direction are grouped a signal is send to all threads.

1: procedure DETERMINE GROUPS OF CELLS

2: for each cell ∈ DEM ∧ cell.f lowdirection == 0 do

3: create newGroup

4: newGroup ← {cell}
5: for each nCell in 4× 4 neighborhood of a cell ∈ newGroup do

6: if nCell.f lowdirection == 0 then

7: newGroup ← newGroup ∪ {nCell}
8: end if

9: end for

10: put newGroup into the taskpool

11: end for

12: send signal termination to all threads

13: end procedure

2.4 Study sites and datasets

The computational experiments are executed on three different DEMs with high spatial

resolutions (Table 1). All DEMs are based on airborne laser-scanning which are cleaned

from vegetation and artificial objects like buildings. The datasets represent three geomor-

phological types of landscapes in Central Europe: high mountains (the Alps - Reintal; see

Figure 2), low mountain ranges (the Ore Mountains - Saidenbachtal) and floodplains of

the lowlands (Floodplain of the River Mulde). In all DEMs sinks were removed by filling

within a preprocessing step (see [RHGS09]). Table 1 shows the meta data of the used

DEMs.

Table 1: Meta data parameters of the DEM datasets

DEM Cell Columns Spatial reso- Filesizea

dataset number and rows lution [m2] [Mb]

Reintal 37,734,557 10717× 3521 1× 1 290

Saidenbachtal 35,000,000 7000× 5000 2× 2 240

Mulde 116,674,076 6661× 17516 1× 1 880

aascii-grid format (*.asc)
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3 Results

The following runtime measurements were done on a symmetric multiprocessing com-

puter (two Intel(R) Xeon(R) CPUs with four cores and 2.93 GHz each, and with 47 GB

main memory). Additional runtime measurements were executed on different hardware,

like a Linux Server with four AMD OpteronTM processors 852 (1000 MHz) and 16 GB

main memory, or a symmetric multiprocessing cluster (18 computation nodes with 16

CPU cores each and with at least 32 GB main memory each). In all cases the computa-

tions require up to 2 GB main memory. Computations on the symmetric multiprocessing

cluster were executed only on one node. On the available architectures speed-up and ef-

ficiency did not show significant differences. The algorithms are implemented in C++ and

the Pthread library is used for parallelization, using compiler g++ in version 4.4.3.

3.1 Dividing the DEM into squares

The sequential runtimes for the three DEMs are 3.4s for DEM 1 (Reintal), 6.7s for DEM

2 (Saidenbachtal) and 122s for DEM 3 (Mulde). The obtained speed-ups for up to four

threads are shown in Table 2. The number of threads is displayed in the form of
”
a ·

b“ where a is the number of rowwise partitions, and b the number of columnwise partitions.

In Figure 5 the runtime (real time) is compared to the ideal runtime. The stacked bars show

Table 2: Speed-ups of the parallel algorithm which divides the DEM into squares.

number of threads: 1 · 1 1 · 2 2 · 1 1 · 3 3 · 1 2 · 2
speed-up (DEM 1 “Reintal”): 0.99 1.80 1.78 2.33 2.23 3.23

speed-up (DEM 2 “Saidenbachtal”): 0.97 1.59 1.63 2.05 2.02 2.40

speed-up (DEM 3 “Mulde”): 0.98 1.53 1.55 1.46 1.81 1.82

the sequential computing part and the cumulative runtime of threads. Added together they

are a measure for the cost of computation. The cost of the computation is also directly

obtained by measuring the CPU time used. Both clarify that rising the number of threads

tends to result in an increase of used CPU time. But the effects differ between different

runs with the same number of threads. The more threads we use, the more likely it is that

the pre-computation steps are computationally more intensive. Note that by chance the

boundary cells of the squares may have (almost) with unambiguous flow directions. If so,

the pre-computation step is computationally less intensive as we can see in the case 2× 2
in Figure 5. The load balance depends in particular on the topology and on the partition of

the DEM. In most but not all cases we have a suboptimal load balance.
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Figure 5: Runtime diagrams of the parallel algorithm which divides the DEM into squares. The
number of threads on the x–axis is displayed in the form of

”
a · b“ where a is the number of rowwise

partitions, and b the number of columnwise partitions.

3.2 Dividing the computation into two phases

In Table 3, the speed-ups for up to four threads are presented. The runtime (real time)

compared to the ideal runtime is shown in Figure 6. The stacked bars show the cumulative

calculation time of threads of both phases and the runtime which is needed to group the

cells. The calculation time is the period in which the threads perform computations without

synchronization and communication. The maximum waiting time becomes significant

when using more than two threads (“Reintal” and “Mulde”) or more than three threads

(“Saidenbachtal”). For instance, using four threads for computing the flow directions of

“Saidenbachtal”, one of the four threads had to wait up to 63% of the whole parallel

runtime. In case of less than four threads, a thread has to wait for a task up to one percent

of the whole runtime. Regarding the dataset “Mulde” a thread has to wait up to 23%
(four threads) or 28% (eight threads), respectively, of the whole parallel runtime. The

average waiting time of a thread is 14% (using four threads) or 27% (using eight threads),

respectively, of its calculation time.

Working on the data set “Saidenbachtal” and “Reintal”, further investigations show that

all threads have nearly equal computation time. The effort of calculation is well balanced,

but in some periods there were no tasks for the threads. Thus, one or more threads had to

wait. The maximum difference between computation time and the cumulated time of all
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threads were determined, too. The more threads were used the more threads had to wait to

get new tasks, but the threads had all nearly the same computation time.

Using the data set “Mulde”, we get a maximum difference between the calculation time of

each thread of 10% (two threads are used) up to 18% (eight threads are used).

Table 3: Speed-ups of the parallel algorithm which divides the computation into two phases.

number of threads: 1 · 1 1 · 2 2 · 1 1 · 3 3 · 1 2 · 2
speed-up (DEM 1 “Reintal”): 0.90 1.67 1.73 2.23 2.26 2.47
speed-up (DEM 2 “Saidenbachtal”): 0.94 1.82 1.84 2.38 2.40 2.58
speed-up (DEM 3 “Mulde”): 0.85 1.76 1.77 2.31 2.29 2.08

Figure 6: Runtime diagrams of the parallel algorithm which divides the computation into two phases.
The number of threads on the x–axis is displayed in the form of

”
a · b“ where a is the number of

rowwise partitions, and b the number of columnwise partitions. Theses partitions only apply to the
first phase.

We have implemented several modifications of the algorithm to improve the runtime. One

modification eliminates recursion. Another one implements a heuristic which tries to

change the processing order in such a way that large groups of cells are handled with

priority. To avoid an overwhelming effort for the data access, a modification – which
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merges small groups of cells together and puts those into the task pool – has also been im-

plemented. However, all these modifications did not show significant runtime differences.

As shown in Figure 6, for all test sites the runtime decreases but the accumulated computa-

tion time increases with the number of threads. There is no explicit synchronization during

the calculations because of the disjoint groups of cells. An increased number of threads

causes an increase of the overhead of thread administration and an increase of random

access which can induce for instance false sharing (see [HS08]). The cumulated waiting

time also increases.

4 Discussion and conclusion

In this study, we investigated the efficiency of parallelization techniques on the example

of the non-local “extended neighborhood” of raster cells. An extended neighborhood is

used within the D8e algorithm to make the flow direction unique when ambiguous flow

directions occur. The ordinary D8 neighborhood has ambiguous flow directions. Two

parallelization approaches were tested regarding their efficiency (Section 2.2):

1. The advantage of parallelization by dividing the DEM into squares is the low cost

of synchronization. A disadvantage is the inefficient load balancing. On the one

hand, if we have a well-adjusted load balance the speed-ups would be improved. On

the other hand, speed-ups near to the best possible speed-up in all cases could not

be achieved because of the sequential part (pre-computation step). Synchronization

costs are insignificant in our implementations.

2. The advantage of parallelization by dividing the computation into two phases is the

well-adjusted load balance. Disadvantages are the increasing cost of synchroniza-

tion and data access. The sequentially grouping of cells causes increased computa-

tion expenditure and is independent from the number of threads. This parallelization

alternative is more independent of the composition of the DEM because of the dy-

namic distribution of the cost-intensive calculations to the threads. Possible reasons

for the non-ideal speed-ups have been examined. Unbalanced distribution of cal-

culations, synchronization time and conflicts between threads because of a shared

data structure can be excluded as being mainly responsible for these observations.

Possible explanations are data access and the effect of false sharing caused by the

high number of write and read accesses.

Neither parallelization strategy enabled speed-ups that are equal to the number of threads.

This is in contrast to the parallelized calculation of local surface parameters like slope

and aspect where speed-ups near to the number of threads have been achieved for all

three study areas. The speed-up comparisons also revealed landscape-related dependen-

cies. While the speed-ups for the high mountain dataset computation are higher by running

the first strategy (DEM “Reintal”), the speed-ups of the second strategy have proved to be

more efficient for the calculation on the low mountain and the floodplain datasets (DEM 2
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“Saidenbachtal” and DEM 3 “Mulde”). The second case shows the effect of flat areas (e.g.

dams, filled sinks and floodplains) on the parallelization efficiency where a fixed DEM

division into threads was carried out. This implies that the distribution of the extended

neighborhoods is fixed, too. This could lead to a sub-optimal load balancing. The second

parallelization strategy is more appropriate to such DEMs because of the dynamic consid-

eration of the extended neighborhood. As mentioned in the abstract, this task pool-based

strategy is more efficient for calculations on datasets with many data dependencies. How-

ever, the second parallelization strategy is more computationally intensive. Thus, in the

case of almost optimal load balances (e.g. dataset “Reintal”) the speed-ups of the second

parallelization strategy are lower than the speed-ups of the first one.

In all datasets there are many small and few huge extended neighborhoods. As a conse-

quence, one thread could work on just one huge extended neighborhood while the other

threads have already finished.

Further runtime measurements based on different spatial resolutions (area of DEM 1 in

2 × 2m2 and 5 × 5m2 resolution, area of DEM 2 in 5 × 5m2 resolution, and area of

DEM 3 in 2 × 2 resolution) were executed, too. Because of the decreased runtime of

the calculations caused by the lower number of cells, the overhead of administration of

the threads becomes more significant. The speed-ups were a bit lower than the speed-

ups presented above. Runtime measurements based on the original DEMs (the datasets

previous to the sink filling) were also executed. Because of significantly fewer flat areas,

the speed-ups were significantly higher than the presented speed-ups.

In future work we will try to improve the computation by parallelizing the extended neigh-

borhood computation. But this seems to be challenging because of data dependencies. We

will also work on much larger datasets (about 109 cells). Because of runtimes greater than

some minutes we will focus on applications besides web-based implementations, too. In

anticipation of a growing number of cores per processor, it will be worth studying other

parallelization strategies for shared memory machines.
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