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Message from the SE’24 Workshop Chairs

Deepak Dhungana1 and Leen Lambers2

Abstract: This volume includes the proceedings of the Workshops of the 2024 Software Engineering
conference (SE’24). SE is the leading conference on software engineering in German-speaking
countries and is annually organized by the Gesellschaft für Informatik (GI). The SE conference series
serves as a platform to exchange experiences and insights in the area of software engineering for
which it addresses an audience from both practice and academia. The workshops were held on 26th
and 27th of February 2024. The SE’24 was held at the Johannes Kepler University in Linz, Austria.

1 Workshops

The workshops were selected by the workshop chairs, considering the feasibility of the
proposed workshop and the potential to attract an engaged audience. All submitted proposals
were of high quality and therefore were accepted.

• 5th Workshop on Anforderungsmanagement in Enterprise Systems-Projekten
(AESP’24) Many enterprise systems selection, implementation, and development
projects fail due to missing, incorrect, inadequate, or incomplete requirements. This
is often because these projects involve incorrect expectations, disagreements in
definitions, and differing opinions on requirements management between clients
and suppliers. In addition to the requirements driven by enterprise systems, com-
panies involved in enterprise systems projects often face additional organizational
requirements and challenges, such as (i) New or modified business processes (ii)
New or modified corporate organization (iii) Need for capacity and availability of
relevant project personnel, such as key users (iv) ERP and process competence of
employees (v) ERP capability of the organization and its personnel (vi) Financing
and budgeting – operationalization of agile methods, etc. These challenges were
highlighted, discussed, and debated in this workshop. https://www.sis-consulting.
com/se24-anforderungsmanagement-in-enterprise-systems-projekten/

• 21th Workshop on Automative Software Enineering (ASE’24) Like its predecessors,
the 21st Workshop on Automotive Software Engineering addresses the challenges
of software development in the automotive sector, exploring suitable methods,
techniques, and tools for this purpose. With increasingly connected vehicles, modern
driver assistance functions, and the challenges of fully automated driving, automotive
software plays an ever-important role in today’s context. In addition to the continuously
rising complexity, stricter requirements for reliability, safety (both security and safety),

1 IMC University of Applied Sciences, Krems, Austria, deepak.dhungana@fh-krems.ac.at
2 Brandenburgische Technische Universität Cottbus-Senftenberg, Germany, leen.lambers@b-tu.de
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and data protection (privacy) must be met. Furthermore, distraction-free and intuitive
multimodal operation of vehicle applications through voice and gesture control
is becoming increasingly significant. The trend towards connectivity has already
reached vehicles. Thus, driving is being transformed by advancing "digital cultures":
value-added services (e.g., social media, streaming, office applications) will be even
more seamlessly integrated into vehicles and can be operated by users while driving.
This workshop discussed challenges and solution approaches in Automotive Software
Engineering, with a particular focus on the use of agile methods in a regulated
environment. https://ase-workshop.github.io/2024/

• 6th Workshop on Avionics Systems and Software Engineering (AvioSE’24) Software
development in the aerospace domain is driven by demanding fault tolerance, increas-
ing complexity, new application potentials, rising certification effort, and increasing
cost pressure. New software development methodologies are required for future appli-
cations such as e.g. Advanced Air Mobility (AAM), aircrew (workload) reduction, and
further enhancement of existing functionality. At the same time, there are challenges
in communication and navigation in airspace, certification for multi-core processors,
artificial intelligence (AI) as well as security of software, hardware, and connectivity.
The aim of the workshop is to exchange information on software and systems en-
gineering methods and tools with an application in avionics. Presentations of new
methods and technologies in this field are welcome. This was a one-day event with
presentations, keynotes and discussions. https://aviose-workshop.github.io/

• 1st Workshop on Generative and Neurosymbolic AI in Software Engineering
(GenSE’24) Generative methods have strongly influenced developments in the field of
Artificial Intelligence (AI) over the past year, ranging from ChatGPT to open-source
models like Llama-2. The automatic generation of computer code or structured data
based on a description in natural language can be considered the first application
of generative models in software development. However, since the accuracy and
reliability of the outputs of such generative models cannot be guaranteed, their
practical application often comes with risks. In software development, this can lead
to software errors or result in security vulnerabilities. In this workshop, we aim
to discuss challenges in the use of generative AI methods in software engineering
and propose and validate solutions to the aforementioned risks and challenges. The
practical application of neurosymbolic approaches will be particularly emphasized.
The workshop is targeted at researchers, scientists, developers, and users from both
the academic and industrial fields. https://gense-workshop.github.io/

• Quantum Software Engineering Meetup (QSE Meetup) Quantum computing promises
to solve problems beyond the capabilities of classical computing. To harness the
potential of emerging quantum hardware, extensive method development within
the field of quantum software engineering is required. This involves the need for
abstraction concepts, programming languages, compiler technology, testing and
analysis methods, processes, and guidelines that allow for the broad operation and
efficient utilization of quantum computers. The goal of the QSE-MeetUp is to engage
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the software engineering community in the field of quantum computing and to enhance
the contribution of software engineering in making quantum computing accessible and
applicable. The Meetup included an introductory keynote on quantum computing and
a series of keynote speeches addressing challenges in quantum software engineering
from both academic and practical perspectives. It was followed by a panel discussion
involving speakers and participants. https://tva.kastel.kit.edu/aktivitaeten/
Quantum_Software_Engineering_MeetUp_2024.php

• 6th Workshop on Software Engineering for Cyber-Physical Production Systems
(SECPPS’24) Software plays an essential role in operating industrial production
systems efficiently. Despite variability and complexity being core challenges in cyber-
physical production systems (CPPS), recent developments in software engineering
have yet to make significant inroads into the automation of production systems.
Various ways to integrate software engineering will be discussed in this workshop.
https://rickrabiser.github.io/secpps-ws/se24
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Verbesserung der Testqualität mit dem Testing Quality Audit

Ein Erfahrungsbericht

Ralf Reißing1, Christoph Gomringer2, Frank Houdek3

Abstract: Die Entwicklung der Elektrik/Elektronik (E/E) im Automobil ist typischerweise verteilt
auf den Fahrzeughersteller (OEM) und seine Zulieferer. Mitentscheidend für eine hohe Qualität
der entwickelten Systeme ist eine hinreichende Absicherung der Erfüllung aller jeweils relevanten
Anforderungen durch die beteiligten Parteien. Mercedes-Benz hat ab 2008 das Testing Quality Audit
(TQA) eingeführt, um bei Bedarf die Güte der durchgeführten Testaktivitäten bei Zulieferern zu
bewerten und zu verbessern. Dieser Beitrag stellt das TQA vor und diskutiert seine Weiterentwicklung
über die Jahre seit der Einführung sowie die dabei gemachten Erfahrungen sowohl zum TQA-Ablauf
als auch zu typischen Befunden bei den TQAs.

Keywords: Testen; Testprozess; Testqualität

1 Einführung

Das Testing Quality Audit (TQA) hat sich bei Mercedes-Benz ab dem Jahr 2008 etabliert.
Gegenstand des TQA sind die Testprozesse, Testaktivitäten und Testartefakte bei Lieferanten
von Systemen oder Komponenten, die Software enthalten. Das sind typischerweise einzelne
Steuergeräte oder Verbünde aus Steuergeräten, Sensoren und Aktuatoren. Ziel eines TQA
ist es, die Effektivität und die Effizienz der Testaktivitäten zu verbessern, wobei sowohl
Lieferanten als auch die Entwicklungsbereiche von Mercedes-Benz selbst betrachtet werden.
Dazu werden die Aktivitäten im statischen und dynamischen Test analysiert, bewertet und
Verbesserungsvorschläge generiert.

Dieser Abschnitt beschreibt die Entstehung, die Grundprinzipien und weitere Entwicklungen
des TQA bis heute. Abschnitt 2 zeigt, wie ein typisches TQA abläuft und wie die Ergebnisse
aussehen. In Abschnitt 3 geht es um Beobachtungen und Erfahrungen aus TQAs in vielen
Projekten, sowohl zur Durchführung als auch zu den Ergebnissen. Abschnitt 4 schließlich
fasst zusammen und gibt einen Ausblick.
1 Hochschule Coburg, Fakultät Maschinenbau und Automobiltechnik, Friedrich-Streib-Str. 2, 96450 Coburg,

Germany, ralf.reissing@hs-coburg.de
2 Mercedes-Benz AG, Research & Development, 71059 Sindelfingen, Germany, christoph.gomringer@mercedes-

benz.com
3 Mercedes-Benz AG, Research & Development, 71059 Sindelfingen, Germany, frank.houdek@mercedes-benz.

com

cba doi:10.18420/sw2024-ws_02

D. Dhungana, L. Lambers, L. Bonorden, S. Henning (Hrsg.): SE 2024 - Companion,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 19

mailto:ralf.reissing@hs-coburg.de
mailto:christoph.gomringer@mercedes-benz.com
mailto:christoph.gomringer@mercedes-benz.com
mailto:frank.houdek@mercedes-benz.com
mailto:frank.houdek@mercedes-benz.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024-ws_02


2 Ralf Reißing, Christoph Gomringer, Frank Houdek

1.1 Entstehung

Im Jahr 2007 erfolgte ein spontaner Lieferantenbesuch durch einen Mitarbeiter der Daimler-
Konzernforschung (Bereich Software) bei einem Steuergeräte-Entwicklungsprojekt mit
Qualitätsproblemen. Der Auftrag dazu kam aus dem Entwicklungsbereich Pkw. Ziel war
es, die Testaktivitäten des Lieferanten im Projekt zu begutachten und die Befunde an den
Auftraggeber zu berichten. Ein Vorteil dieser Vorgehensweise war, dass der Gutachter zwar
vom selben Unternehmen wie der Auftraggeber kam, aber eine vergleichsweise neutrale
Position einnahm, also auch Verbesserungspotential beim Auftraggeber aufzeigen konnte.
Aus Sicht des Auftraggebers war die Unternehmung erfolgreich, weil sie dazu beitrug, die
Zusammenarbeit mit dem Lieferanten zu verbessern.

Der Erfolg sprach sich im Entwicklungsbereich Pkw herum. Weitere Anfragen zu ähnlichen
Begutachtungen bei Lieferanten führten zur Etablierung der internen anstleistung Testing
Quality Audit (TQA). Der Name lehnt sich an eine andere, bereits etablierte Dienstleistung
an, das Code Quality Audit (CQA). Beim CQA wird die Codequalität, aber auch die Über-
einstimmung von Codestruktur und Softwarearchitektur untersucht. Diese Dienstleistung
bot ein anderes Team der Konzernforschung an. Der Begriff Audit deutet an, dass es um die
Analyse und Bewertung von Prozessen geht. Allerdings ist die Grundlage des TQA kein
(inter)nationaler Standard, sondern Kenntnisse der Best Practices im Bereich Test (z.B. aus
dem ISTQB Certified Tester [IS23]) und der Besonderheiten der Entwicklungsprozesse bei
Mercedes-Benz sowie des zugehörigen Lieferantenmanagements.

Vom CQA wurde die Idee übernommen, mit einer standardisierten Berichtsvorlage zu
arbeiten. Zunächst gab es nur einen Endbericht, der die vorgefundene Situation beim
Lieferanten ausführlich beschreibt, bewertet (Stärken, Schwächen, Risiken) und Verbesse-
rungsvorschläge (kurz-/mittel-/langfristig) unterbreitet. Da die Erstellung des Endberichts
mit 4-6 Wochen den Auftraggebern aber zu lange dauerte, wurde später zusätzlich ein
innerhalb einer Woche verfügbarer kurzer Zwischenbericht eingeführt, dessen Inhalte
allerdings als vorläufig deklariert sind. Für die Vorbereitung und Durchführung der TQAs
wurde eine Checkliste mit vielen Prüfpunkten erarbeitet.

Die Indikation für die Durchführung eines TQA waren anfangs vor allem Lieferanten-
Projekte in Schwierigkeiten, typischerweise starke Zeitverzögerungen bei der Lieferung von
Produktversionen und/oder mangelnde Qualität der gelieferten Produktversionen. Später gab
es auch proaktive TQA, um beispielsweise die Fähigkeiten neuer Lieferanten vor Vergabe
eines Entwicklungsauftrags zu beurteilen. Diese wurden allerdings wieder eingestellt, da kein
reales Projekt mit realen Artefakten beurteilt werden konnte, sondern nur Standardprozesse,
deren konkrete Umsetzung in Projekten aber theoretisch blieb. In seltenen Fällen gab es
auch auch unternehmensinterne TQA bei Eigenentwicklungen von Software-Modulen oder
ausführbaren Modellen, die später von Lieferanten in deren Steuergeräte integriert werden
sollten.
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1.2 Grundsätze

Bei der Definition von Ablauf und Inhalt eines TQA waren die folgenden Grundsätze
handlungsleitend:

• Das TQA betrachtet sowohl Effektivität als auch Effizienz der Testaktivitäten – sowohl
beim Lieferanten als auch beim beauftragenden Fachbereich.

• Das TQA ist erfahrungsbasiert, d.h. es werden typische Fehler abgeprüft, die organi-
satorischer, strategischer, planerischer, oder technischer Natur sein können. Intuitive
Stichproben in vorhandenen Testartefakten decken oft weitere Befunde auf. Dieses
Vorgehen setzt viel Wissen und Erfahrung bei den Gutachtern voraus.

• Das TQA ist firmenspezifisch, d.h. das Vorgehen des Lieferanten muss zu den
Entwicklungsprozessen des Auftraggebers passen, z.B. sind spezielle Anforderungen
an durchzuführende Testaktivitäten beim Lieferanten zu berücksichtigen. Aber auch
die Betrachtung der Anforderungsdokumente, der Testabläufe und Testumgebungen
beim Auftraggeber und deren Schnittstellen zum Lieferanten (z.B. gemeldete Fehler,
Fehlernachtests) ist relevant.

• Das TQA ist lösungsorientiert, d.h. die vom TQA-Team gemachten Verbesserungs-
vorschläge sind Empfehlungen an den Lieferanten und den Auftraggeber. Sind sind
nicht verbindlich und es wird vom TQA-Team nicht überprüft, ob sie umgesetzt
wurden. Bei einem zweiten TQA im selben Projekt (ein sogenanntes Delta-TQA)
wird allerdings zu Beginn abgefragt, wie mit den Befunden und Empfehlungen aus
dem ersten TQA umgegangen wurde.

• Die Anforderungen anwendbarer Standards wie ASPICE (ASPICE, [VD17]), ISO
26262 [IS18] und von Mercedes-Benz-Normen an die Testaktivitäten werden berück-
sichtigt.

• Die Bewertung erfolgt in mehreren Dimensionen (siehe Abschnitt 1.3), was für die
Beurteilung wichtiger ist als die daraus abgeleitete, eher artifizielle Gesamtnote.

• Das TQA-Meeting dauert maximal einen Arbeitstag, um die Personalressourcen beim
Lieferanten nicht übermäßig in Anspruch zu nehmen.

Oft wird die Frage gestellt, wie sich das TQA von einem ASPICE-Assessment abgrenzt.
Beide betrachten ja die Qualität der Testaktivitäten in einem Projekt. Ein wichtiges
Unterscheidungsmerkmal ist die Berücksichtigung der firmenspezifischen Verhältnisse bei
Mercedes-Benz und der projektspezifischen Anforderungen an den Lieferanten. Außerdem
liegt der Fokus intensiver auf den Testaktivitäten. Anderen Aktivitäten wie Anforderungs-
oder Konfigurationsmanagement werden beim TQA bei Bedarf ergänzend mit einbezogen,
während ein ASPICE-Assessment alle Entwicklungsaktivitäten gleichermaßen in den
Blick nehmen muss. Dadurch bleibt im TQA mehr Zeit für tiefergehende Untersuchungen
der Testaktivitäten, Stichproben in den zugehörigen Testartefakten und der Besichtigung

Verbesserung der Testqualität mit dem Testing Quality Audit 21
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sowie Demonstration der eingesetzten Testumgebungen. Für den Lieferanten wertvoll sind
insbesondere die Empfehlungen aus dem TQA, denn ein ASPICE-Assessment liefert in
der Regel wenig konkrete Verbesserungsvorschläge für aufgedeckte Kritikpunkte. Es ist
von Vorteil, wenn vor dem TQA bereits ein ASPICE-Assessment stattgefunden hat, da das
TQA-Team dann in der Vorbereitung besser beurteilen kann, wo eine vertiefte Begutachtung
der Testaktivitäten besonders lohnenswert ist.

1.3 Bewertung

Für die Bewertung des im TQA untersuchten Projekts haben sich die folgenden Bewertungs-
bereiche etabliert, die im Folgenden kurz charakterisiert werden:

• Testmanagement: Organisation von Qualitätssicherung und Testen, Zeit- und Ressour-
cenplanung, Qualifikation Testmanager, Traceability, Erhebung von KPIs

• Testvorgehen: Teststrategie, Prozesse, Methoden, Werkzeugeinsatz, konform zu
anwendbaren Standards

• Testspezifikation: Testfallermittlung, Testfalldokumentation, Testüberdeckung

• Testberichte: Form und Inhalt der Testberichte

• Testtechnologie: Eignung der eingesetzten Werkzeuge und Testumgebungen

• Fehlermanagement: Organisation und Prozess der Fehlerdokumentation und der
Fehlerabstellung, Austausch von Fehlern und Statusupdates zwischen allen beteiligten
Parteien, Fehlerstatistiken

Abbildung 1 zeigt, wie sich diese Bereiche in der Gesamtbewertung in der Management
Summary des Endberichts wiederfinden. Die Bewertungskala sind hier deutsche Schulnoten
(1 = sehr gut bis 6 = ungenügend) mit Zwischenschritten von 0,5. Es wird pro Bereich
jeweils über alle betrachteten Teststufen gemittelt.

1.4 Weitere Entwicklung

Das TQA verbreitete sich vom Pkw-Bereich aus auch in die anderen Bereiche wie Truck, Van
und Bus, die ebenfalls Lieferanten mit Qualitätsproblemen hatten. Durch die zunehmende
Eigenentwicklung strategisch wichtiger Steuergeräte und Softwareumfänge bei Mercedes-
Benz gibt es zunehmend auch interne TQA, die solche Projekte in den Fokus nehmen.

Die zunehmende Etablierung von ASPICE bei den Lieferanten führte zu einer Anpassungen
in der Vorgehensweise: Die Benennung der Teststufen in den Agenda-Punkten orientiert
sich inzwischen an den Namen von ASPICE (also zunächst ENG.x, später dann SYS.x bzw.
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Abb. 1: Darstellung der Bewertungsdimensionen im Bericht

SWE.x). Zunächst war die Benennung an das Glossar des ISTQB angelehnt gewesen. Beim
Bewertungsschema wurde von einer eigenen Skala (0-3, 0 = gar nicht, 3 = vollständig) auf
das vertrautere deutsche Notenschema (1-6) umgestellt, damit der beauftragende Fachbereich
die Bewertungen besser interpretieren konnte.

Wegen steigender Nachfrage nach TQA und daher höherer Arbeitslast beim TQA-Team bei
der Durchführung und Dokumentation der Ergebnisse ist seit Jahren immer ein externer
Gutachter dabei. Der externe Gutachter ist mit den Abläufen bei Mercedes-Benz zwar
vertraut, arbeitet aber nicht dort. Neben der Entlastung bei den Dokumentationsaufgaben
hat der externe Gutachter daher auch den Vorteil, andere Perspektiven einzubringen und
weniger betriebsblind für Optimierungspotenziale bei Mercedes-Benz zu sein.

Die TQA-Methodik wird alle paar Jahre auf den Prüfstand gestellt und angepasst bzw.
optimiert. Bspw. wurde zuletzt 2022 die Vorlage des Endberichts überarbeitet, um die
Klarheit der Darstellung zu erhöhen, aber auch um den Aufwand der Erstellung zu reduzieren.
Kleinere Optimierungen finden jederzeit statt.

2 Ablauf eines TQA

Der Ablauf eines TQA gliedert sich in drei Phasen: Vorbereitung, Durchführung und Bericht.
Diese Phasen werden im Folgenden genauer betrachtet.

Verbesserung der Testqualität mit dem Testing Quality Audit 23



6 Ralf Reißing, Christoph Gomringer, Frank Houdek

2.1 Vorbereitung

Die Entscheidung ein TQA für ein bestimmtes Projekt durchzuführen, basiert auf mehreren
Kriterien, welche vorab mit dem beauftragenden Fachbereich besprochen werden. Hierbei
gilt es zeitliche Aspekte (aktueller Projektzeitplan, weitere Audits/Assessments) sowie die
Kritikalität (aktueller Projektstatus, Erfahrung Zulieferer, Komplexität Technologie) zu
berücksichtigen.

Ein weiterer Bestandteil der Vorbereitung ist es, die Ziele des TQAs und den Rahmen
(Projektgegenstand, Testobjekte) klarzustellen. Gerade in komplexeren Projekten mit vielen
Stakeholdern sollte das Projekt und die zugehörigen Testobjekte klar definiert und abgegrenzt
sein. Auf Basis dieser Informationen wird dann die Agenda des TQA erstellt. Es wird zudem
geklärt, welche Teststufen im Projekt tatsächlich vorhanden sind und welche Personen aus
dem Projekt bei den einzelnen Agendapunkte anwesend sein sollten.

Die inhaltliche Vorbereitung der Gutachter profitiert von vorab bereitgestellten Dokumenten
wie Projektplan, Organigramm, Testkonzepten, aktuellen Fehlerberichten und schon vor-
handenen ASPICE-Assessment-Ergebnissen. Für das Projekt steht die abgestimmte Agenda
als Anhaltspunkt für die Vorbereitung zur Verfügung. Das Projekt muss für das TQA keine
neuen Dokumente erstellen. Eine kurze Projekt- und Teamübersicht sowie das Testkonzept
sind aber für den Einstieg in das TQA-Meeting sehr hilfreich. Die weiteren Inhalte wie
Anforderungen, Testspezifikationen, Implementierung, Fehler und Kennzahlen (KPIs) sollen
direkt in den verwendeten Tools oder Testberichten demonstriert werden. Dadurch soll
nicht nur der Vorbereitungsaufwand beim Projekt gering gehalten werden, sondern auch
der Blick auf die realen Arbeitsstände und Vorgehensweisen gewährleistet werden. So
bekommt man im TQA-Meeting auch einen Eindruck, wie gut sich die Teammitglieder in
der Dokumentenlandschaft des Projekts auskennen.

2.2 Durchführung

In Abhängigkeit des Formats und Standorts, wird das TQA vor Ort (on-site) beim Projektteam
oder als Videokonferenz (remote) durchgeführt. Bei den meisten Projekten findet ein on-
site-TQA an einem vollen Arbeitstag statt. Bei remote-TQAs in stark unterschiedlichen
Zeitzonen bietet es sich aber an, diese auf zwei halbe Tage zu verteilen. Im Gegensatz
zu ASPICE-Assessments werden alle Agendapunkte zunächst durchgängig besprochen.
Die Konsolidierung der Gutachter erfolgt dann im Nachgang des TQA-Meetings. Für die
einzelnen Agendapunkte müssen jeweils nur die zuständigen Personen anwesend sein,
typischerweise sind das Testmanager und Tester. Auch das soll den zeitlichen Aufwand
beim Projektteam möglichst gering halten.

Es hat sich als sinnvoll erwiesen, als ersten Agendapunkt die Projektorganisation inklusive
der Qualitätsmanagement-Aktivitäten zu besprechen. Aufbauend darauf gewinnt man
einen ersten Überblick über die Teststufen im Projekt und die allgemeine Teststrategie.
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Üblicherweise kann die Teststrategie bereits anhand der Dokumentation im Testkonzept
besprochen werden. Anhand der Dokumentation und weiterer Fragen sollten sich hier die
Definition und Abgrenzung der Testobjekte (mit Varianten), die Verantwortlichkeiten, sowie
die Testziele und verwendeten Teststufen herausstellen.

Anschließend folgt die Durchsprache der einzelnen Teststufen. Die Agenda orientiert
sich in diesen Agendapunkten an den üblichen Prozessschritten der Testfallermittlung,
Testspezifikation, Testimplementierung, Testdurchführung und Auswertung sowie Berichten
der Testergebnisse. Für die Integrationsstufen wird zudem die Integrationsstrategie genauer
betrachtet. Liegen vorab bereits Ergebnisse eines ASPICE-Assessments vor, werden diese
von den Gutachtern berücksichtigt, um Zeit zu sparen. Meist können die detaillierten
Prozessbeschreibungen kurz gehalten und der Fokus auf das “wie wird getestet” gelegt
werden. Dabei wird sowohl die Umsetzung als auch die Angemessenheit betrachtet. Im
Vergleich zu ASPICE-Assessments werden zudem auch inhaltliche Themen tiefergehend
diskutiert und z.B. die Umsetzung von Fault-Injection-Tests in einzelnen Testumgebungen
genauer betrachtet oder der Umgang mit Codierrichtlinien besprochen. Zudem werden
die verwendeten Testumgebungen genauer betrachtet, nach Möglichkeit vor Ort im Labor.
Fragestellungen sind hier bspw. die ausreichende Verfügbarkeit von Testumgebungen oder
die Reproduzierbarkeit von Testergebnissen zwischen Testumgebungen.

Ein weiterer Agendapunkt beinhaltet das Fehlermanagement und soll einen Einblick in den
aktuellen Status, die Planung der Fehlerbehebung sowie die Zusammenarbeit zwischen
den Stakeholdern im Projekt und mit dem Fachbereich beim OEM liefern. Abgeschlossen
wird das TQA mit einem kurzen Feedback der Gutachter, um dem Projektteam eine erste
Einschätzung zu geben und die weiteren Schritte zu besprechen. Für die Konsolidierung
der Einschätzungen der Gutachter werden im Nachgang die gezeigten und ggf. weitere
Dokumente als freiwillige Bereitstellung angefragt. Bereitgestellte Dokumente werden
grundsätzlich nicht an den Fachbereich weitergegeben. Auf Basis der betrachteten Inhalte
und bereitgestellter Dokumente beginnt dann die Erstellung des Berichts.

2.3 Bericht

Beim Berichtswesen über ein TQA entstand zu Beginn nur der Vollbericht. Aufgrund des
Umfangs und einer Abstimmung mit dem Lieferanten dauerte es immer einige Wochen, bis
dieser vorlag. Um schneller eine erste Rückmeldung geben zu können, wurde mittlerweile
ein Vorabbericht eingeführt.

Der Bericht erfolgt üblicherweise in zwei Schritten. Eine erste kurzfristige Rückmeldung in
Form eines Zwischenberichts mit Management Summary mit den wichtigstens Eckdaten und
Erkenntnissen, sowie einer vorläufigen Bewertung. Der Zwischenbericht ist ein Foliensatz,
welcher aus einem Management Summary (eine Folie) sowie einigen Folien mit den
wesentlichen Stärken, Schwächen, Risiken und Empfehlungen besteht – vorbehaltlich
Anpassungen, welche sich im Rahmen der Erstellung des Endberichts ergeben. Vor allem
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das Management Summary auf einer Seite wird intensiv nachgefragt und mittlerweile ca.
eine Woche nach dem TQA an das zuständige Management bei Mercedes-Benz verteilt.
Der Zwischenbericht geht nicht an den Lieferanten.

Anschließend folgt die Konsolidierung im Detail und die Ausarbeitung des Endberichts.
Hierbei wird für jede Teststufe zusammengefasst, was im Audit gezeigt und bewertet wurde.
Daraus abgeleitet werden dann Stärken, Schwächen, Risiken und Empfehlungen genannt
und erläutert. Die kurzfristigen, mittelfristigen und langfristigen Empfehlungen bilden den
Kern des Berichts und sollen einen konkreten, für das Projekt umsetzbaren Mehrwert bieten.

Bevor der Bericht allen Stakeholdern im Fachbereich inkl. höherem Management bereitge-
stellt wird, bekommt der Lieferant den Endbericht zum Review. Der Lieferant kann den
Bericht kommentieren, beispielsweise um auf Missverständnisse der Gutachter hinzuweisen
oder eine andere Sichtweise darzustellen. Erst nach Berücksichtung dieser Rückmeldungen
wird der Endbericht finalisiert und bei Mercedes-Benz verteilt.

Das TQA ist mit Bereitstellung des Endberichts vollständig abgeschlossen. Die Verfolgung
der empfohlenen Maßnahmen obliegt dem Projektteam beim Lieferanten in Abstimmung
mit dem Fachbereich. Bei Bedarf kann nach ca. 6-12 Monaten ein Delta-TQA durchgeführt
werden, um den Fortschritt und die Umsetzung der empfohlenen Maßnahmen nochmals
genauer zu bewerten.

3 Erfahrungen

3.1 TQA-Prozess

Bei der Durchsprache der Teststufen im TQA-Meeting wurden zwei Ansätze ausprobiert:
Bottom-up, d.h. die Teststufen werden in logischer Reihenfolge vom Software-Unittest bis
zum Systemtest durchgesprochen, und Top-Down, d.h. die Teststufen wurden beginnend
mit der höchsten Teststufe (z.B. Systemtest) bis zu niedrigsten, also Software-Unittest
durchgesprochen. Da aufgrund des festen Zeitrahmens das Risiko besteht, nicht alle
Teststufen in der verfügbaren Zeit durchzusprechen, hat der Top-Down-Ansatz den Vorteil,
dass die für den OEM relevantesten Teststufen in jedem Fall ausführlich besprochen
wurden. Aus Sicht der Gutachter hat der Bottom-Up-Ansatz aber den Vorteil, dass die
Testvorgehensweise hier deutlich besser nachvollzogen werden kann und insbesondere klar
wird, welche Aspekte auf einer Teststufe abgesichert sind und welche Aspekte für spätere
Teststufen noch offen bleiben.

In der Anfangsphase wurden TQAs immer vor Ort beim Lieferanten durchgeführt. Nur in
wenigen Ausnahmefällen wurde ein TQA remote durchgeführt. Dies war immer dann der Fall,
wenn das TQA mit hohen Reiseaufwänden und möglicherweise höheren Gesundheitsrisiken
verbunden war. Remote-TQAs haben unter anderem den Nachteil, dass wichtige Indikationen,
wie das Verhalten der Personen vor Ort (wie gehen sie miteinander um) weniger gut
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beobachtet werden können. Zudem entfallen die Besichtigungen und Live-Vorführungen an
den Prüfständen, und damit auch ein Einblick in die operative Kompetenz der Tester.

Im Zuge der Corona-Pandemie ging die Anzahl der TQAs generell zurück, und in den
wenigen Fällen, in denen dennoch ein TQA durchgeführt wurde, war dies aufgrund der
geltenden Vorschriften immer remote. Mit Wegfall des Remote-Zwangs ist der Anteil der
On-Site-TQA wieder deutlich gestiegen. Dennoch ist der Anteil der Remote-TQAs nun höher
als vor der Covid19-Pandemie. Gründe hierfür sind zum einen die positive Erfahrungen mit
Remote-TQAs (z.B. der Wegfall der Reisezeiten). Viele TQAs sind mittlerweile aber auch
Hybrid-TQAs, weil viele Lieferanten ihre Entwickler weltweit verteilt haben, und es oft
nicht sinnvoll ist, beispielsweise einen Kollegen aus dem Software-Unittest für nur einen
Agendapunkt um die halbe Welt reisen zu lassen. Das hybride TQA-Meeting findet immer
noch vor Ort statt, aber entfernte Entwicklungs- und Testteams sind per Videokonferenz
zugeschaltet.

Wenngleich ein TQA keine Aktivität ist, bei der die Erfüllung einer Norm überprüft wird,
ist zu beobachten, dass es vermehrt TQA-Anfragen aus dem unabhängigen QM-Bereich
bei Mercedes-Benz gibt, der die Entwicklungsprojekte begleitet. Der Treiber eines TQAs
ist in solchen Fällen oft nicht der Eindruck, dass Defizite beim Testen auf Lieferantenseite
vorliegen, sondern der Wunsch, alle zur Verfügung stehenden Audits und Bewertungen beim
Lieferanten anzuwenden. Aufgrund der eingeschränkten Verfügbarkeit von Gutachtern ist
die Anzahl an TQAs, die pro Jahr durchgeführt werden können, aber beschränkt. Wenn ein
Steuergerät also weder eine zentralle Rolle in einer Baureihe hat noch Hinweise auf Defizite
im Testen vorliegen, werden solche TQAs normalerweise nicht durchgeführt.

Der Bedarf an TQAs pro Jahr hängt zusammen mit dem Aktivitäten des OEM in der
Fahrzeugentwicklung. In manchen Baureihen ist die Anzahl an Neuentwicklungen höher
als in anderen Baureihen, bei denen mehr Steuergeräte aus anderen Baureihen übernommen
werden. Abbildung 2 zeigt die Anzahl der durchgeführten TQAs pro Jahr. Das Anwachsen
in den ersten Jahren ist durch die Einführung bedingt. Die Schwankungen in den Jahren
2011 bis 2019 erklärt sich durch die wechselnden Bedarfe in den Baureihen. Der Einbruch
in den frühen 2020er Jahren geht auf die Covid19-Pandemie zurück.

Als optimaler Zeitpunkt für die Durchführung eines TQA hat sich die Phase herausgestellt, in
der der Lieferant bereits Produktversionen an den OEM liefert, also bereits die Testprozesse
operativ lebt. Gleichzeitig muss die verbleibende Projektzeit aber noch lange genug sein,
um die im TQA identifizierten Empfehlungen auch noch umsetzen zu können. Vereinzelt
gab es natürlich Abweichungen von diesem Zeitpunkt. Wenn ein TQA zu früh angesetzt
wurde, konnten oft nur Pläne auf Folien-Ebene durchgesprochen werden. Wenn ein TQA zu
spät angesetzt wurde, konnten Empfehlungen oft nur noch in Folgeprojekten, aber nicht
mehr im Projekt selbst umgesetzt werden. Da ein konkretes Projekt betrachtet wird, sind
die erarbeiteten Empfehlungen auch erst einmal nur für das konkrete Projekte nutzbar.
Selbst andere Mercedes-Benz Projekte beim selben Lieferanten unterscheiden sich meist
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Abb. 2: Anzahl der durchgeführten TQAs pro Jahr

deutlich, so dass die Übertragbarkeit nicht gegeben ist. Die typische Entwicklungsphase der
betrachteten Projekte beträgt 3 bis 4 Jahre.

3.2 TQA-Ergebnisse

Es wurden mittlerweile mehr als 130 TQAs über einen Zeitraum von 15 Jahren durchgeführt.
Dabei wurden auch einige Veränderungen im Testing über die Zeit beobachtet:

• Nicht zuletzt aufgrund der vermehrten Durchführung von ASPICE-Assessments ist
zu beobachten, dass sich grundlegende Themen, wie die Verfügbarkeit notwendiger
Dokumente (z.B. Testpläne oder Testkonzepte), aber auch die Tracebility zwischen
den Requirements-Ebenen als auch zwischen Requirements und Testfällen verbessert
haben. Dies verhindert jedoch nicht, dass es immer noch Lücken gibt oder auch
strategische Fehler gemacht werden. Diese treten beispielsweise dort auf, wo ASPICE
keine harten Vorgaben macht. Ein Beispiel: ASPICE fordert Testkonzepte für die
Teststufen ein. Wir konnten in einem TQA beobachten, dass ein Lieferant für seine
neun Teststufen neun verschiedene, nicht aufeinander abgestimmte Testkonzepte
erstellt hatte. Hinweise, dass diese doch abgestimmt und miteinander verknüpft sein
sollten, wurden mit dem Hinweis, dass ASPICE dies nicht fordere, zurückgewiesen.

• Es ist zu beobachten, dass der Trend eindeutig in Richtung agile Software-Entwicklung
geht. Damit verbunden ist häufig die Forderung des OEM, Software-Stände in höherer
Taktung zu bekommen. Dies führt zu einem deutlichen Anwachsen der Testlast auf
Seiten des Lieferanten. Diese Last kann nicht immer bewältigt werden, mit der Kon-
sequenz dass ungetestete oder wenig getestete Stände beim OEM abgeliefert werden,
um die Abgabetermine halten zu können. Und selbst bei 100% Testautomatisierung,
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welche selten technisch und wirtschaftlich erreichbar ist, müssen ja die erzeugten
Berichte und Befunde beim Lieferanten noch von Hand analysiert werden.

• Bei Software-Unittests konnten immer wieder fragwürdige Vorgehensweisen beob-
achten werden: So gibt es Lieferanten, die die Erstellung von Testfälle für Software-
Unittest an Unterlieferanten auslagern. Die Tests werden auch durchgeführt und zur
Bewertung der Codeüberdeckung herangezogen. Allerdings werden für die Testfälle
keine Sollresultate aus den Anforderungen abgeleitet, sondern der Test wird entweder
immer als bestanden angesehen oder es werden wenige beobachtete Outputs zu
Soll-Ergebnissen erklärt. Somit weisen diese Tests bei der Erstdurchführung nur
nach, dass es keinen toten Code gibt und die Testdurchführung nicht zu Abstürzen
oder Speicherüberläufen führt. Eine andere Schwäche entsteht, wenn Testfälle für
Software-Unittest aus sehr detaillierten Architekturbeschreibungen (z.B. detaillierte
Flussdiagrammen) abgeleitet werden. Mit diesen Tests werden fast nie Fehler entdeckt
– was nicht überrascht, da die sehr detaillierte Architekturbeschreibung auch die
Vorgabe für den Implementierer ist. Über diesen Testansatz können nur Fehler im
Falle von Übertragungsfehlern von Flussdiagramm zu Code bzw. Flussdisagramm
zu Testfall ermittelt werden. Sinnvoller ist hier die Ableitung der Testfälle aus den
Anforderungen an die Software-Units.

• Viele Lieferanten versuchen, möglichst große Teile ihrer Testaktivitäten zu automati-
sieren. Oft ist dies sinvoll. Aber im Rahmen der TQAs konnten auch immer wieder
fragwürdige Vorgehensweisen identifiziert werden. Beispielsweise generierte ein
Lieferant aus seinen Matlab-Modellen über einen komplexen Prozess Testfälle, die
er gegen den aus den Matlab-Modellen automatisch generierten Code laufen ließ.
Am Ende konnte über diese Tests damit im Grunde nur nachgewiesen werden, dass
über die Codegenerierung keine Fehler entstanden sind. Logische Fehler im Modell
wurden natürlich sowohl in den Code als auch in die Testfälle übernommen. Der
Prozess selbst war aber so komplex, dass diese Einschränkungen selbst von vielen
Mitarbeitern beim Lieferanten nicht erkannt wurden.

• Ein wesentliches Element eines TQA ist immer auch die Einschätzung der Angemes-
senheit der gewählten Vorgehensweisen. Normen treffen generelle Aussagen. Die
Spiegelung an den konkreten Bedingungen eines Projektes sind aber mitzuberück-
sichtigen. Projektgröße, örtliche Verteilung, Charakteristiken des zu entwickelnden
Produktes – all diese Faktoren und noch einige mehr beeinflussen die Sinnhaftigkeit
und Ausgestaltung einzelner Testaktivitäten. Exemplarisch sei die Testumgebung
für Software-Unittests genannt. Wann ist es sinnvoll, diese Tests bereits auf der
Target-Hardware durchzuführen, und wann ist eine Software-in-the-Loop Umgebung
geeigneter? Im Rahmen eines TQAs wird insbesondere auch die Angemessenheit der
Vorgehensweisen im konkreten Projekt bewertet.

In dem Nachbesprechungen zu den TQAs wird dem TQA-Team immer wieder von den
Lieferanten zurückgemeldet, dass sich ein TQA deutlich anders anfühlt als ein klassisches
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Audit oder Assessment. Vor allem die zusätzliche Betrachtung der Angemessenheit, aber
auch die konkreten Empfehlungen werden durchgehend begrüßt.

4 Zusammenfassung und Ausblick

Das TQA hat sich über 15 Jahre als wichtiger Baustein für die Verbesserung der Zusammen-
arbeit von Mercedes-Benz mit seinen Zulieferern (intern und extern) im Bereich des Testens
etabliert. Es konnte dazu beitragen, konkrete Verbesserungen von Effektivität und Effizienz
der Testaktivitäten in Entwicklungsprojekten zu erreichen, sowohl bei den Projekten bei
den Lieferanten als auch bei Mercedes-Benz.

Die Erfahrung aus den durchgeführten TQAs zeigt, dass sich Testprozesse zwar besser
etabliert haben, aber Projekte auch zunehmend komplexer werden. Eine Herausforderung ist,
die für ein Endprodukt benötigten Testaktivitäten zu identifizieren und sinnvoll auf die Be-
standteile herunterzubrechen. Diese übergreifende Testdurchgängigkeit und -vollständigkeit
wird leider weder durch ASPICE noch durch andere gängige Standards sichergestellt. Es
gibt daher erste Überlegungen, das TQA um solche Fragestellungen zu erweitern und z.B.
die Verantwortungsmatrix im Bereich des Testens auf Vollständigkeit zu prüfen.

Durch den vermehrten Einzug der ASPICE-Assessments werden Projekte bereits in frühen
Phasen auf die grundlegenden Prozesse, Arbeitsprodukte und Verfolgbarkeit hingewiesen.
Das hat nicht nur auf die inhaltliche, sondern auch auf die zeitliche Planung des TQAs einen
direkten Einfluss. Der Zeitpunkt für die Durchführung eines TQA wird daher zukünftig
stärker von geplanten ASPICE-Assessments abhängen und tendenziell in etwas späteren
Projektphasen stattfinden, bei welchen die Teststrategie und ihre konkreten Umsetzung
schon reifer sind.

Die Bewertungsskala beim TQA muss genügend Spielraum zur Differenzierung der Aspekte
und Projekte bieten, gleichzeitig aber auch verständlich und nachvollziehbar sein. Die
bisherige Bewertung auf Basis der deutschen Schulnoten hat sich hierbei nicht vollständig
bewährt, vor allem da die negativen Extremwerte der Skala nur bei äußerst gravierenden
Testlücken in Betracht gezogen werden und der tatsächlich verwendete Wertebereich somit
stark eingeschränkt ist. Es bleibt also eine Aufgabe, hier eine noch bessere Lösung zu finden.
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Mode Management in Contract-Based Design
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Abstract: Nowadays, safety-critical systems are structured into several operating modes due to
their various functionality. To evade inconsistent states in the specification and design, it is essential
that these modes and their mode transitions are well defined. This entails a significant effort. This
paper proposes an approach to coordinate mode changes between different components using a mode
manager. Natural language patterns are designed to reduce the complexity of specifying mode changes.
An example system ACC is used to illustrate the concept and patterns.
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1 Introduction

Safety-critical systems operate in different environments and have various functionalities.
An established method for expressing different functionality is the use of modes [Be08]
which can also be used as a safety mechanism [Ka15]. Different functionalities, different
environments, and ever-increasing safety requirements makes systems complex. To deal with
this complexity at design time, the formal verification method of contract-based design has
been introduced [SVDP12, Be18], where requirements are specified in the form of contracts.
A contract consists of a pair of assumptions (A) and guarantees (G). In the assumptions, the
behavior of a valid environment, e.g. an expected input, is specified. The behavior of the
component under the valid environment is specified in the guarantees. By using modes in
the guarantees, the system behavior becomes mode-dependent, and by using modes in the
assumptions, the verification effort can be reduced because some inputs are only required
in individual modes [Kr23]. In general, components change their mode only under certain
conditions, e.g., at the request, in the occurrences of an error, or when the environment
changes. These mode changes confront us with a non-trivial challenge in the specification,
like e.g. coordination, consistency and correctness.

Components often rely on each other by responding to the outputs of previous components.
In contract specification, the outputs of a component are specified by guarantees, and the
inputs are specified by assumptions. If the specified guarantees of a component do not match
with the assumption of a following component, we get an inconsistency in the specification.
If both the guarantees of the first component and the assumptions of the following component
are mode-dependent, it is necessary that the second component knows about a mode change
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Fig. 1: System with components and different modes and transition times

of the first component. This allows it to adopt the assumptions about the behavior of the
first component to avoid a mismatch and an inconsistency in the specification at any time.

Mode transitions take time which varies from component to component and from mode to
mode. For example, the system in Figure 1 consists of the components Comp1 to Comp3
with different modes. The modes and the transition times are illustrated as automata in
the components. Comp1 receives the inputs of the system, the outputs of Comp1 go into
Comp2 and Comp3 as inputs. Comp3 also receives the outputs from Comp2 and provides
outputs to the system. Each component is specified by a contract and has mode-dependent
assumptions and guarantees. When Comp1 changes its mode, it must inform Comp2 and
Comp3 so that they also change mode. Since Comp2 and Comp3 need different times to
change modes and adapt, the information from Comp1 must be provided at different times.
In larger systems, this can quickly increase the specification size and complexity. In addition,
the development of these components requires knowledge of the internal behavior of other
components, which contradicts the principles of contract-based design.

One way to reduce the complexity of the specification is the introduction of a so-called
mode management component for coordinating the mode changes, as already required in
ISO/TR4804 [IS20]. The centralization of mode changes removes the responsibility for the
correct initiation of mode changes from the individual components, thereby reducing the
specification and encouraging further independent development of the components. This
also solves the question in which mode the higher-level system is. This must be clearly
defined regarding mode combination of the internal components. While mode combinations
can be specified by a table, a mode manager facilitates to directly integrate the mapping into
the specification, so that the mapping can be checked in addition to the existing specifications
using a virtual integration test (VIT).

As previously noted, components typically do not change modes randomly, but rather under
specific conditions. Up to now, it is only possible to specify these conditions in natural
language to a limited degree and with a high specification effort. To simplify the specification
and incorporate mode mapping, we rely on the works of [Bö17, Bö19, Kr22, Kr23]. Our
contribution introduces two new patterns in natural language contracts to i) express triggers
for mode changes based on observable behavior and ii) to express the mapping of modes in
the specification. Furthermore, the concept of a mode manager is integrated into an already
established contract-based design framework by using existing concepts to centralize mode
changes. Since mode changes are limited in time, we focus on their timing properties.
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2 Related Work

Many temporal logics such as Linear Temporal Logic (LTL) [Pn77], Metric Temporal Logic
(MTL) [Ko90], and Metric Interval Temporal Logic (MITL) [AFH96] are the basis of
specification to express timing behavior of systems. They differ mainly in their expressiveness
and the considered time domain and trace semantics. Temporal logics are preferably used to
express statements about the future behavior of a system. The authors of [HR04] extended
temporal logic with some metric construct to get quantitative temporal logic and introduced
a past operator. However, the syntax of these specifications is very impractical for engineers.
We therefore facilitate timing specification also through the use of natural language.

A method for clustering and specifying higher-level modes is provided by David Harel’s
state diagrams and superstates [Ha87]. We complement this operational view by declarative
approach more concisely covering contextual information before and after a mode change.
This interfaces directly with contract-based design principles, bringing mode management
into their purview.

Böde at al. [Bö17, Bö19] developed natural language patterns for specifying timing behavior
in contracts. They limited themselves to specifying periodically occurring events and
expressing a latency between related events. These patterns were extended by Kröger et
al. [Kr22, Kr23] with a mode-dependent approach. As a result, mode-dependent behavior
as well as mode changes can be specified with patterns. However, the main focus of these
previous works was on defining component behavior and specifying modes, leaving mode
change to be handled by the component. Until now, these patterns could only be used to
specify occurrences of events or latency between all occurred events. With our work, it
should be possible to react only to selected events. In addition, it was not possible to specify
the mode mapping between sub- and top-level components directly in the contracts.

AUTOSAR [AU22] already includes techniques that allow the integration of a mode manager.
The mode manager is considered to be a separate software component and provides services
for changing modes. A similar concept is to be used in the contract-based design framework.
However, AUTOSAR does not provide any contract-based specification.

3 Basic Concepts

In this paper, we build on the system model from [Kr22, Kr23], see Figure 1, where we
consider the system 𝑆 as a component model consisting of a hierarchically nested set of
components 𝐶. Each component 𝑐 ∈ 𝐶 is equipped with so-called ports, on which the
behavior of the component’s environment as well as its own behavior becomes visible.
We differentiate between the port types event and variable. Each component has a set
of event (P𝑒) and variable (P𝑣) ports, P = P𝑒 ∪ P𝑣 . We adhere to the definitions from
[Kr22, Kr23] which are described below. Only ports with identical types can be connected
in the component model.
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Event Ports: We partition the set of event ports P𝑒 into input and output ports, i.e.
P𝑒 = P𝑖 ∪ P𝑜. Each event port has a value domain Σ. Behaviors are observed in the form of
events that occur at event ports. We use dense time and define T = R≥0 as the time domain.
An event is a tuple 𝑒 = (𝜎, 𝑡) consisting of a value 𝜎 ∈ Σ and a time point 𝑡 ∈ T. The event
port has a value at certain points in time. At all times outside of designated events, the
event port has no value, which is denoted by the value ⊥. The semantics of event ports are
described using timed traces, as defined in [Bö19]. A timed trace of port 𝑝 is an infinite
sequence 𝜔𝑝 = (𝜎𝑖 , 𝑡𝑖)𝑖∈N where 𝜎𝑖 ∈ Σ𝑝 are elements of the value domain of port 𝑝 and
(𝑡𝑖)𝑖∈N forms a monotonic sequence of time instances that is non-zeno.

Variable Ports: Variable ports P𝑣 have a range of values 𝑉𝑝 , but they have a defined value
at each point in time 𝑡 ∈ T which can be changed at discrete points in time. The behavior of
a variable port is described by the function 𝑣𝑝 : T → 𝑉𝑝, which assigns a value to each
time point 𝑡 ∈ T. The variable port’s value can be changed by a 𝑠𝑒𝑡 (𝑝, 𝑣) event, where
𝑣 ∈ 𝑉𝑝 and 𝑝 ∈ P𝑣 . In order to respond to a change at the variable port, we can refer to a
𝑐ℎ𝑎𝑛𝑔𝑒(𝑝, 𝑣) event, which indicates a value change at 𝑝 ∈ P𝑣 to the value 𝑣 ∈ 𝑉𝑝 .

Modes: A mode represents a set of internal states of a component that are not visible to
other components. Externally, modes are an abstract view to enable the differentiation of
expression of different behaviors. This results in a structure that reduces the complexity
of the component. Additionally, modes can serve as a safety mechanism to enable basic
functionality in the case of errors. In any case, it is essential that mode changes are
appropriately specified in the form of transitions and do not lead to inconsistent or incorrect
behavior. In this work, the mode 𝑀 of a component 𝑐 ∈ 𝐶 is described by a variable port
𝑝𝑚𝑜𝑑𝑒 ∈ P𝑣 . The value of the mode port indicates the current component mode.

4 Mode Management

We now show how to integrate a mode management component into contract-based design. A
mode manager has the main task according to [IS20] to initiate coordinated, safe and correct
mode changes. With a mode manager, it is possible to map the modes of the lower-level
components to the modes of the top-level component according to the mode specification of
the mode manager. Firstly, we establish several constraints, namely that components can no
longer change their own mode. In the case that a mode management component exists, all
other components must send a request if they want to change their mode. After receiving
the request, the mode manager will change the mode of the component that sent the request
and, if necessary, of other affected components.

To realize a mode manager, we use the system model presented in [Kr22, Kr23] and make
appropriate adjustments. First we assign an extra event output port 𝑝𝑟𝑒𝑞 ∈ P𝑒 to each
component that can send a mode change request. It is quite conceivable that there are
components that have different modes, but are completely passive and are not able to request
a mode change. These components don’t have a 𝑝𝑟𝑒𝑞 port, but different modes. The request
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port of a component has the same value domain as their mode port 𝑝𝑚𝑜𝑑𝑒 ∈ P𝑣 , which
represent the current mode of this component, with Σ𝑝𝑟𝑒𝑞 = 𝑉𝑝𝑚𝑜𝑑𝑒

. The target mode for a
mode change is identified by the value of the request event.

Along with the addition of request ports, a new component is introduced to the system,
the mode manager. Figure 2 illustrates the new component model. The mode manager has
multiple variable (orange) and event ports (green) which are connected to the component
variable ports that represent the component’s mode. The event ports are connected to the
request ports of the component to get mode requests. The mode manager responds to
these requests and initiates a mode change for the affected components by changing the
value of the variable ports. In addition to the variable ports used for reading and changing
the component modes, the mode manager has its own mode port. The mode of the mode
manager is defined by the current modes of the components, and it reflects the mode of
the top-level component. For each variable port, we differentiate between whether it can
be modified by a component or is read-only. We specify that the value of a variable port,
which represents the mode of a component, can only be modified by the mode manager
component. As the mode manager’s variable ports are linked to the components’ mode
ports, the value is modified on the side of the component’s mode port. The mode port of the
mode manager is the only exception. This can be changed by the mode manager itself.

An important aspect of the mode manager is that it cannot simply reject component requests
without cause. It is required to respond to every request made by a component. Consequently,
components are contractually assured that their mode change requests will be carried out
in a specified time. The mode manager can only delay the mode change for a maximum
period of time, e.g. to change the mode of other components first, if otherwise consistency
problems would occur, or in order to finish open activities. This guarantees that the mode
change is not infinitely postponed or rejected, particularly in safety-critical scenarios. A
problem here is the occurrence of mode requests at the same time from components which
are dependent on each other. For instance, in Figure 2, Comp1 is in mode A while Comp2 is
in mode C. Comp1 sends a request to change from mode A to B, which requires Comp2 to
remain in mode C. However, at the same time, Comp2 requests to change from mode C
to D. In this case, the mode manager has to address both requests in accordance with the
guaranteed assurances.

There are different approaches to tackle that problem. The solution we assume here is a
resolution function to address potential collisions between mode changes. The resolution
function must specify how the mode manager should respond. On the specification side, it
is necessary to include this resolution function in the VIT but how the resolution function
looks like is not the scope of this paper.

A precise specification of the mode manager determines when it must change the mode
of the components and which mode it takes regarding the component modes at its level
of granularity. According to ISO-TR4804 [IS20], the mode manager possesses operating
mode awareness, which allows it to identify the mode of each component at its level. In a
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Fig. 2: Component model of the example system with mode manager

complex system, multiple mode managers exist at different levels of granularity. In this case,
the mode manager acts as a request generator for higher-level components by requesting a
mode change from the higher-level mode manager. After its mode is changed, it changes the
modes of the components at its level of granularity. When dealing with a mode manager
that is not at the highest level of granularity, it is important to take into account the dashed
connection in Figure 2 between the mode port of the mode manager and the system mode
port instead of the solid connection, as well as the dashed connection from the req port of
the mode manager.

5 Specification Pattern

Components typically modify their mode based on their inputs, which may result from
specific events, such as the activation of the component, or a particular sequence of events,
such as a sequence of values or a designated number of events within a defined time interval.
For instance, if inputs abruptly slow down or cease altogether, and the full functionality can
not guaranteed anymore, the component should degrade. To be able to specify this behavior,
we first need expressions to write conditions in the specifications based on observable.
This observable are our traces which represent the behavior of the component and the
environment.

Since the introduced concept from Section 4 requires components to request a mode change
through request events, it is essential to define the conditions for the request. Currently, we
can trigger a mode request in response to an event [Bö19, Kr22, Kr23], but this method
causes requests to occur at the same frequency as the triggering event. If we consider a
component’s inputs as triggering events, mode requests would occur at excessively high
frequencies, leading to an event overload and, therefore, wasted resources. Furthermore, we
only wish to initiate a request under specific circumstances.

To begin, we establish possible conditions that must be met in order to generate a request.
To define these conditions, we use MITL as described in [AFH96] because of a more
powerful expressiveness. Specifically, our approach involves an infinite trace of the form
𝜔 = (𝜎𝑖 , 𝑡𝑖)𝑖∈N previously described in Section 3. Using 𝜔(𝑡), we identify the corresponding
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event with value 𝜎 at time 𝑡. If the trace has no event at this point in time, we will receive
the value ⊥.

A time interval is represented as either [𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏], or (𝑎, 𝑏), with 𝑎, 𝑏 ∈ T. If we
have an (left/right) open interval, we can use the term 𝑙 (𝐼) for the lower bound and 𝑟 (𝐼) for
the upper bound of the interval 𝐼. Given an event trace of the form 𝜔 = (𝜎𝑖 , 𝑡𝑖)𝑖∈N and the
interval 𝐼 = [𝑎, 𝑏]. We define a monotonic subsequence of this trace in the interval 𝐼 by

𝜔 |𝑎𝑏=
〈
(𝜎𝑖 , 𝑡𝑖), (𝜎𝑖+1, 𝑡𝑖+1) · · · (𝜎𝑖+𝑘 , 𝑡𝑖+𝑘)

〉
(1)

with 𝑡𝑖 ≥ 𝑙 (𝐼) and 𝑡𝑖+𝑘 ≤ 𝑟 (𝐼) which contains all event tuples of the trace 𝜔 whose time 𝑡𝑖 is
within the interval 𝐼. In case of a closed interval 𝐼 we get 𝑙 (𝐼) = 𝑎 and 𝑟 (𝐼) = 𝑏. We consider
two special cases of this subsequence. The first is the subsequence 𝜔 |0𝑡 which describes
the whole prefix at time 𝑡 ∈ T of trace 𝜔. The second, 𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼 ) ,0)

𝑚𝑎𝑥 (𝑡−𝑙 (𝐼 ) ,0) identifies the partial
prefix of 𝜔 between 𝑡 − 𝑟 (𝐼) and 𝑡 − 𝑙 (𝐼). With 𝑚𝑎𝑥(𝑡 − 𝑟 (𝐼), 0) and 𝑚𝑎𝑥(𝑡 − 𝑙 (𝐼), 0) we
ensure that we only consider events that are within our time domain T = R≥0.

We use MITL formulas to express the conditions that must be fulfilled by a trace. When
using regular expressions in MITL or LTL, we always express the evolution of sequences or
traces in the future. However, as we intend to employ MITL to indicate whether a condition
in the trace has been fulfilled, we introduce the atomic past versions ♢− 𝐼 and ⊟𝐼 . Formally
we say a trace 𝜔 = (𝜎𝑖 , 𝑡𝑖)𝑖∈N fulfills the MITL formula 𝜙 := ♢− 𝐼𝜓 or 𝜙 := ⊟𝐼𝜓 at time point
𝑡 if we have a subsequence 𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼 ) ,0)

𝑚𝑎𝑥 (𝑡−𝑙 (𝐼 ) ,0) that fulfills 𝜙:

𝜔 |=𝑡 ♢− 𝐼𝜓 iff ∃𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼 ) ,0)
𝑚𝑎𝑥 (𝑡−𝑙 (𝐼 ) ,0) where somewhere 𝜓 holds

𝜔 |=𝑡 ⊟𝐼𝜓 iff ∃𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼 ) ,0)
𝑚𝑎𝑥 (𝑡−𝑙 (𝐼 ) ,0) where 𝜓 holds throughout

(2)

Generation pattern: After the introduction how we express a condition for a request,
we now want to show our pattern to generate an event based on a fulfilled condition. The
generation pattern that generates events based on an underlying condition 𝐶𝑜𝑛𝑑 ::= 𝜙 is
given by

Generate Event whenever Cond holds within 𝐼.

The pattern is semantically defined by the language 𝐿𝑔𝑒𝑛 (𝑒, 𝜙, 𝐼− , 𝐼+), with 𝑒 as the event
of the generation pattern, 𝜙 as the condition that must be satisfied by the corresponding
prefix, and the interval consisting of 𝐼− and 𝐼+:

𝐿𝑔𝑒𝑛 = {(𝜎𝑖 , 𝑡𝑖)𝑖∈N |∀(𝑒𝑖 , 𝑡𝑖)𝑖∈N : ∃𝑡 𝑗 : 𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼𝑐 ) ,0)
𝑚𝑎𝑥 (𝑡−𝑙 (𝐼𝑐 ) ,0) |= 𝜙 ∧ 𝑡𝑖 − 𝑡 𝑗 ∈ 𝐼}. (3)

This means that for all generation events (𝑒𝑖 , 𝑡𝑖)𝑖∈N in the event trace 𝜔 = (𝜎𝑖 , 𝑡𝑖)𝑖∈N the
following applies: it exists a 𝑡 𝑗 at which the subsequence 𝜔 |𝑡 𝑗−𝑟 (𝐼𝑐 )

𝑡 𝑗−𝑙 (𝐼𝑐 ) satisfies 𝜙 and the
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occurrence of the generation event is within the interval 𝐼. We denote the interval from the
condition as 𝐼𝑐. To make the pattern mode-based, we take the semantics from [Kr22, Kr23]
and extend the generation pattern accordingly with the mode-dependent semantics. The
specification pattern resulting from the extension in [Kr22, Kr23] is as follows:

Generate Event whenever Cond holds within 𝐼 in modeM .

The extension assigns the pattern with a set of states 𝑆 = {𝑝𝑟𝑒, 𝑜𝑛, 𝑝𝑜𝑠𝑡, 𝑜 𝑓 𝑓 }, where it is
on, off or in a transition phase (pre when turns on and post when turns off). Based on the
definition that mode changes trigger events, a state trace 𝑠𝑡 can be derived that contains
changes from the pattern states in form of events. The projection 𝑝𝑟𝑠𝑡 ,𝑆 of a timed trace
(𝜎𝑖 , 𝑡𝑖)𝑖∈N over a state trace 𝑠𝑡 and a set of pattern states 𝑆 returns all events that occurred
while the pattern was in state 𝑠 ∈ 𝑆. Note that because mode changes can occur at any time,
there is an infinite number of possible state traces 𝑠𝑡. We denote the set of these state traces
by 𝑆𝑡. The semantics of the mode-dependent generation pattern is defined by the following
language:

𝐿𝑀
𝑔𝑒𝑛 = {(𝜎𝑖 , 𝑡𝑖)𝑖∈N |∃𝑠𝑡 ∈ 𝑆𝑡∧

∀(𝑒𝑖 , 𝑡𝑖) ∈ 𝑝𝑟𝑠𝑡 ,{𝑜𝑛,𝑝𝑜𝑠𝑡 } ((𝑒𝑖 , 𝑡𝑖)𝑖∈N) :

∃𝑡 𝑗 : 𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼𝑐 ) ,0)
𝑚𝑎𝑥 (𝑡−𝑙 (𝐼𝑐 ) ,0) |= 𝜙

∧ ∀( 𝑓𝑖 , 𝑡𝑖) ∈ 𝜔 |𝑚𝑎𝑥 (𝑡−𝑟 (𝐼𝑐 ) ,0)
𝑚𝑎𝑥 (𝑡−𝑙 (𝐼𝑐 ) ,0) : (𝑒𝑖 , 𝑡𝑖) ∈ 𝑝𝑟𝑠𝑡 ,{𝑜𝑛,𝑝𝑜𝑠𝑡 }

∧ 𝑡𝑖 − 𝑡 𝑗 ∈ 𝐼}.

(4)

Mode mapping pattern: In our approach, we obtain a mapping of the modes between
sub and top-level components by mapping the values of the mode ports of the components
on the mode manager side to the value of the mode port of the mode manager. To express
this in a pattern, we introduce a simple mapping pattern that allows us to map the values
from multiple variable ports to the value of a single variable port. The pattern is as follows:

M whenever Portlist holds.

M describes the value of the component mode port 𝑝𝑚𝑜𝑑𝑒 ∈ P𝑣 to which we map
the values 𝑝𝑣 .𝑣𝑎𝑙𝑢𝑒 of the other variable ports 𝑝𝑣 ∈ P𝑣 which are written in a list
𝑃𝑜𝑟𝑡𝑙𝑖𝑠𝑡 ::= 𝑝𝑣𝑖 .𝑣𝑎𝑙𝑢𝑒[, 𝑃𝑜𝑟𝑡𝑙𝑖𝑠𝑡]? with 𝑖 ∈ N and 𝑝𝑚𝑜𝑑𝑒 ∉ 𝑃𝑜𝑟𝑡𝑙𝑖𝑠𝑡.

As described in Section 3, variable ports have values at all points in time. With the function
𝑣𝑝 : T → 𝑉𝑝 we can read the values of each variable port at time t, 𝑣𝑝𝑣 (𝑡) = 𝑣 with 𝑣 ∈ 𝑉𝑝 .
𝑀𝑐 describes the set of modes of a component 𝑐. Semantically, the pattern means:

𝑣𝑝𝑚𝑜𝑑𝑒
(𝑡) =

{
{𝑀} iff 𝑣𝑝𝑣 (𝑡) = 𝑝𝑣 .𝑣𝑎𝑙𝑢𝑒 for all 𝑝𝑣 ∈ P𝑣

𝑀𝑐 else
(5)
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Fig. 3: Component model of the Adaptive Cruise Control with mode management

Tab. 1: Top-Level specification of the ACC with mode management

A {D,LV} occurs every 40 ms with jitter 5 ms. 1

Req occurs every (0,∞) ms. 2

G Reaction(Req,set(Mode)) within (0, 5] ms in mode I. 3

Reaction({D,LV},set(Mode)) within (0, 5] ms in mode {C,F}. 4

Reaction(Req,set(Mode,I)) within (0, 5] ms in mode {C,F}. 5

The semantics of a set of mode mapping patterns is the intersection of the mode sets they
yield individually. The mode mapping functions are mode-independent since the mapping
must remain valid across all modes and remain unchanged despite mode changes.

6 Example

To illustrate the integration of a mode manager into our component model and a possible
contract specification of the mode manager, we consider an Adaptive Cruise Control (ACC)
similar to the one described in [Be20, Kr22, Kr23]. We will consider a simplified version
with two internal components, the ACCin and a Mode Manager. Our focus is on timing
specification for mode changes and the mode manager. For this reason, further specifications
have been omitted for simplicity. The component model of the ACC with an integrated mode
manager is given in Figure 3. An ACC is a driving assistance system with the modes Idle (I),
Cruise (C) and Follow (F). If there is a slower vehicle ahead, the ACC adjusts its own speed
by calculating appropriate control signals and adapt its speed to the vehicle in front with an
appropriate distance. If there is no slower vehicle ahead, it maintains the driver’s desired
speed. Initially, the ACC is in Idle mode. The ACC is activated by an incoming request event
(Req) and switches to Cruise (C) or Follow (F) mode depending on the situation.

In addition to the request, the inputs of the ACC are the distance (D) and the speed of the
vehicle ahead (LV). If the distance falls below a certain value which is indicated by the
occurrence of an input event D with value D.TLV (Distance.ThresholdLimitValue), the
ACC change to Follow. If the distance increases over the threshold, i.e. D.TLV no longer
occurs, the ACC changes back to Cruise. We specify that a mode change takes up to 5ms.
The top-level specification is shown in Table 1.

The ACC consists of two subcomponents, the ACCin and the Mode Manager. The ACCin
has the same modes as the ACC - Idle (I), Cruise (C) and Follow (F) - and calculates the
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Tab. 2: Specification of the component ACCin

A {D,LV} occurs every 40 ms with jitter 5 ms. 1

Req occurs every (0,∞) ms. 2

G Reaction(Req,MChange)) within (0, 2] ms in mode I. 3

Reaction(Req,MChange.I) within (0, 2] ms in mode {C,F}. 4

Generate MChange.F whenever ♢− [0,120] (D.TLV→ ♢[0,120] D.TLV ) holds within (0, 2] ms in mode C. 5

Generate MChange.C whenever ⊟[0,120] ¬D.TLV holds within (0, 2] ms in mode F. 6

Tab. 3: Specification of the component Mode Manager

A MChange occurs every (0,∞) ms. 1

G Reaction(MChange.I,set(ModeACC,Idle)) within (0, 3] ms . 2

Reaction(MChange.C,set(ModeACC,Cruise))) within (0, 3] ms. 3

Reaction(MChange.F,set(ModeACC,Follow))) within (0, 3] ms. 4

Idle whenever ModeACC.Idle holds. 5

Cruise whenever ModeACC.Cruise holds. 6

Follow whenever ModeACC.Follow holds. 7

corresponding control signals based on the inputs (D and LV). Based on the concept in
Section 4, the ACCin cannot change its mode on its own. It has to request a mode change
from the Mode Manager. The Mode Manager responds with a change of the mode of the
ACCin by changing the value of the variable port. Change requests are requested in the form
of events at the port MChange. When a Req event occurs, a mode change from or to Idle
is requested. If the ACCin is in Cruise mode, a mode change to Follow is requested if the
value D.TLV occurs twice within 120ms. In this case, the critical distance to the vehicle
in front was violated twice, requiring a mode change to avoid a collision with the vehicle
in front. If no D.TLV value is detected within 120ms in Follow mode, the vehicle changes
to Cruise. Each request takes between 0 and 2 ms. The mode change specification of the
ACCin is shown in Table 2.

The Mode Manager receives mode change requests from the ACCin via the MChange port in
the form of events. By changing the associated variable port ModeACC, which is connected
to the mode port of the ACCin, it sets the ACC to desired mode. The Mode Manager needs
up to 3 ms to change the variable port. The maximum time for the ACCin to send a request is
2 ms. This results in a maximum time for mode changes in 5 ms, as specified in the top-level
specification from Table 1. In addition to set the mode, the Mode Manager provides a unique
mapping of modes between lower-level and higher-level components, in this case between
the modes of the ACCin and the ACC. In this example, the mapping is one-to-one, so that the
modes of the ACCin correspond to the modes of the ACC. The Mode Manager specification
is shown in Table 3. Figure 4 shows example traces of the behavior of the specified ACC.
The ACC is immediately started by a Req event. The ACCin requests a change to Cruise
by a MChange.C. After receiving the Mode Manager change the ACCin into Cruise mode.
After a D.TLV occurred two times in 120 ms, the ACCin requests a change from Cruise to
Follow mode by a corresponding MChange.F event, see 𝑇 = 124 ms. After the change to
Follow, an MChange event to change to Cruise is generated after 120 ms at the earliest. This
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Fig. 4: Example trace of the Adaptive Cruise Control with mode management

is at time 𝑇 = 249. At time 𝑇 = 400 ms the ACC is changed back to Idle by a Req event. The
resulting dependencies and sequences are shown by arrows.

7 Conclusion

The presented approach reduces the specification complexity for multimodal systems by
introducing a central mode management component in contract-based design. Mode changes
are triggered by the respective components in the form of events triggered by conditions
specified in temporal logic. The events are received and handled by the mode management
component. The contract specification of the mode manager also provides a mapping
between the sub-level and top-level components. Our specifications are mostly based on
natural language patterns. Only the conditions triggering a mode change are expressed in
MITL for reasons of expressiveness.

This work has been funded by the Federal Ministry of Education and Research (BMBF) as
part of AutoDevSafeOps (01IS22087Q).
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A Universal Configuration Format for Avionics

Philipp Chrysalidis 1, Frank Thielecke1

Abstract: Avionics module configuration, especially in the face of advancing technologies, will
become more complex as computational demands rise. This requires a robust and automated approach
while adhering to industry standards. However, state-of-the-art configuration is still highly error-prone
and suffers from various stakeholders working with unsynchronized and decentralized data. This
causes unnecessary iterations, leading to delays in development. The Universal Configuration Format
for Avionics (UCoF), integrated into the AvioNET framework, presents a forward-looking solution.
UCoF, built upon a meta-model approach, strives to enhance the configuration process through
model-based methods. It meets essential configuration management requirements and offers versatility
by supporting the configuration of diverse avionic platforms. Combining essential data for configuring
real avionics device families, implementation targets and network design grants users access to a
comprehensive data set throughout the configuration process.

Keywords: Avionics; Configuration; MBSE

1 Introduction

The configuration of avionics modules is a complex and still highly error-prone process,
especially with new technologies on the horizon (e.g., single-pilot cockpit, smart cabin)
that demand higher computational capabilities. Moreover, a more robust and automated
configuration process is essential for efficiently implementing these new technologies.
However, aviation standards provide a well-defined framework for development, including
the configuration of Integrated Modular Avionics (IMA) modules as defined in ARINC 653
[Ae12]. Since IMA is integral to aviation, any configuration process must adhere to these
standards.
Furthermore, module and application development and testing are distributed and often
collaborative processes. These trends are likely to intensify, with advances in model-based
systems engineering (MBSE) leading to more virtual and hybrid testing. To ensure smooth
operations and minimize delays in development under these circumstances, transparency and
consistency of information are of utmost importance. Without these, faults may propagate
to later development phases, leading to time-consuming iteration loops. Meanwhile, there is
currently no common industry standard for avionics configuration, and stakeholders often
rely on proprietary formats.
To address this challenge, the Institute of Aircraft Systems Engineering (FST) at the Hamburg
1 Hamburg University of Technology, Institute of Aircraft Systems Engineering, Nesspriel 5, 21129 Hamburg,
Germany, firstname.lastname@tuhh.de
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University of Technology (TUHH) has developed the Avionics Next-Gen Engineering Tools
(AvioNET) framework [HT21]. AvioNET is a seamless end-to-end toolchain based on
generic MBSE methods, offering solutions for a more efficient design process throughout
all development phases. Key elements of AvioNET include Architecture, Configuration,
Simulation, Testing, Verification & Validation, Visualization, and Avionics Data Manage-
ment. Developing methodologies within this framework ensures immediate consideration
of all necessary interfaces for seamless information transfer during development. Utilizing
the AvioNET framework, an approach for automating the configuration process, has already
been implemented at FST. The model-based method outlined in [CHT23] automatically
derives the configuration for an avionics module from a set of requirements. However,
AvioNET’s scope extends to platform solutions, necessitating a more generic approach that
includes data management for data consistency.
The Universal Configuration Format for Avionics (UCoF), introduced in this paper, is
integrated into AvioNET. This approach enables model-based configuration not only for
avionics hardware but also for virtual and testing environments, facilitating Software-in-
the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing for continuous integration and
validation.
This paper will contextualize current research in section 2. Section 3 will lay out the re-
quirements regarding configuration management. Section 4 will present the UCoF approach.
Finally, the paper will be summarized in section 5, with an outlook for future research
provided.

2 Related Work

In 2010, Horváth et al. [HVS10] presented a framework for systematically designing
ARINC 653 configuration tables for the Wind River VxWorks Real-Time Operating System
(RTOS). Using meta-modeling as proposed by the ARINC 653 standard, they created a
data model from which specific design instances could be derived. To align the meta-model
with IMA development roles, the model was divided into four subgroups: Applications,
Health Monitoring, Communication, and Interface Control Document. This concept was
implemented in the Eclipse Modeling Framework (EMF) [Fo23], enabling the use of the
model in their overall design approach and toolchain. However, this approach heavily
focused on ARINC 653 implementation and lacked universal applicability.
Darif et al. [Da22] took a similar approach to embed a model-based approach into a tooling
environment for an RTOS. Their goal was to support multiple RTOS to reduce certification
costs by introducing a high degree of reusability with their concept. Additionally, their
tooling could generate certification data for ARINC, such as configuration tables and test
data.
In contrast to the previous works, Annighoefer [An19] employed a different approach to
configuration. Instead of replicating the ARINC 653 standard in a meta-model, they used a
generic avionics architecting model. This model aimed to perform on all levels of detail
during the design of avionics components, allowing for a wide range of modeling targets.
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Therefore, the model could be used for configuring proper ARINC 653 certified hardware
[An20].
Furthermore, a query language for meta-models expanded the generic capabilities and
enabled easy access to the model. By combining both the query language and the generic
avionics model, interfaces for data transfer from and to other formats could be easily created.
These methods facilitated highly automated processing of configuration data in tooling
environments, as seen in Mueller et al. [Mu23]. However, it’s worth noting that the very
generic approach has a significant disadvantage, since participants could interpret the model
differently, leading to compatibility issues.
Halle; Thielecke [HT09] presented the challenges faced during the configuration process
due to the involvement of various stakeholders while needing to maintain data consistency.
They introduced a meta-model approach, combining it with data management, to support
validation, continuous integration, extensibility of the format, and interfaces to other formats
or tools. UCoF builds strongly upon these works, further expanding on the presented
solutions and broadening the defined scope.

3 Model-Based Avionics Configuration Management

Considering more recent developments described by Martinen et al. [Ma17] and Uludağ
et al. [Ul23], information flow between stakeholders will become even more complex than
what was described in [HT09]. Test rigs will gain even more prominence in development
and may be locally distributed, communicating through long-range internet connections.
Examples of these concepts can be found in the works of Chrysalidis et al. [CHT22] and
Martinez et al. [MGG22]. In the latter case, the newly created standard by EUROCAE
[EU20] for distributed testing was successfully utilized, indicating the path toward future
developments. Information must be readily available across different locations with a
guarantee of uncompromised data.
The advances in virtual integration also allow for more reliable Software-in-the-Loop
(SIL) and Hardware-in-the-Loop (HIL) testing earlier in the process. However, the setup
of the required virtual or hybrid environments introduces an added layer of configuration
complexity. Increasing the efficiency of the configuration process, therefore, includes
solutions for these environments. The scope of UCoF encompasses the formalization and
standardization of the configuration of testing environments while still needing to guarantee
uncompromised data between all participating stakeholders.
Moreover, as standards evolve through updates and expansions, and new standards continue
to emerge, UCoF’s sustainability relies on its ability to readily accommodate these evolving
specifications.

3.1 Requirements for Configuration Management

Based on the outlined scope, we present the requirements for a configuration management
format capable of meeting future needs in Table 1.
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Requirement Description
Satisfy
Standards

The configuration format has to satisfy the most common and most important
standards and process requirements in avionics development.

Modularity Modularity is needed, so that different parts of the configuration can be completed
independently. It is also a strong basis for the reusability requirement.

Reusability An efficient process greatly profits from a high degree of reusability, ensuring
less redundant tasks.

Traceability Changes to the configuration need to be traced to both a time and a stakeholder.
This way, faults can be identified more clearly.

Accessibility Accessibility means both easy access to the model (i.e. open source) and intuitive
use. This means, that the usage domain must be clearly defined.

Generality The model must be as generic as possible, as to incorporate the maximum amount
of information for the maximum amount of systems, with the least amount of
redundant data.

Automatibility The format must be machine-readable and accessible through parsing.
Adaptability The configuration must be open to new technologies, while still maintaining

backwards compatibility, as to ensure smooth integration of new configuration
targets.

Information
Propagation

Information must flow bidirectionally throughout the configuration process,
meaning that both a source and a sink for information must be provided, including
corresponding interfaces.

Scalability Configurations need to be stored efficiently and accessible for all project sizes.

Tab. 1: Requirements for Configuration Management

4 Universal Configuration Format for Avionics

UCoF is built upon the requirements outlined in subsection 3.1 and aims to be a future-proof
solution for avionics configuration. UCoF is based on a meta-model which is implemented
using EMF [Fo23]. The process of creating a graphical user interface is streamlined through
the automation of code generation, allowing for the rapid assessment of the meta-model’s
effectiveness in specific instances.
The primary objective of UCoF is to expand the platform definition and incorporate
test systems in both hardware and software, providing swift and easy access to SIL and
HIL testing. By integrating these test systems as target platforms within the model, data
consistency is assured, with no information concealed within transformation scripts (see
Figure 1). This approach to transparency makes working with different hardware intuitive
and also allows for direct information links, aiding in the debugging processes.
Moreover, changes made to target configurations can be easily traced, enabling the reuse of
these configurations for different platform components. Thus, UCoF supports continuous
integration of avionics configurations throughout all stages of development.
Configuration data in UCoF is categorized into three primary groups: “Devices”, “Testing”
and “Network” (see Figure 2). The “Devices” group encompasses all configurations
for individual modules included in the platform. Module configuration is generic and
independent of the target, while implementation-specific configurations for real hardware,
test benches, and virtual environments are separated. Real hardware configuration is
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Fig. 1: UCoF Approach

also included in the “Device” group, while configurations for test benches and virtual
environments are found in the “Testing” group. The “Testing” group additionally includes
the definition of basic testing procedures. This allows for test bench configurations to
be included in the model through references, while maintaining a clear separation from
the proper avionics hardware configuration. Additionally, the definition of basic testing
procedures facilitates quick test case execution by providing a central information hub
through UCoF. Within the “Network"group, configurations for device communication, such
as switches and gateways, are specified. The generic configuration of gateways presents an
innovative strategy for tackling the challenges associated with test virtualization, as outlined
in section 3.

Platform

Devices NetworkTesting

Module
Configuration

Hardware
Configuration

Com-Device
Configuration

Database
Configuration

Test-Bench
Configuration

Virtual
Configuration

Test-Procedure
Configuration

Fig. 2: UCoF Structure
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4.1 Data Categorization in UCoF

Figure 3 demonstrates the categorization of data within UCoF through a simplified example.
As previously explained, data is categorized into master and target specific information. Both
datasets are stored separately but interconnected via references. Consequently, target-specific
configurations solely extend the provided master information, allowing for independent
addition of new targets. Most of the information is reused across all targets, minimizing
redundancy even when accommodating various implementations. Modifications to target-
specific data are isolated, while adjustments to master data resulting from tests can be
proposed and accepted by multiple stakeholders.
In this example, CAN bus data is defined for a test system and an ARINC 653-compliant
avionics device. General data comprises attributes like the identifier (CAN ID), data length
code (DLC), and baud rate, which remain constant across all implementations and are
shared among specific configurations. Target-specific configurations might involve assigning
channel sets and in-device termination for test systems or drivers and hardware ports for the
ARINC 653 device.
Alterations to the ARINC 653 driver or test system termination are isolated to their targets
and don’t affect the master configuration. However, should a too high baud rate be detected
during HIL testing with the test system, this change can be automatically applied to themaster
data and verified. UCoF’s integrated data connectivity facilitates subsequent reconfiguration
of the ARINC 653 device without necessitating additional user input, since the updated
data is referenced within the model. Consequently, this workflow significantly reduces the
likelihood of errors and ensures consistent behavior across different targets.

UCoF Meta-Model User Instance

CAN Bus
Data

Test System
Configuration

A653 Hardware
Configuration

Master
Data

Target
Specific

Data

CAN ID: 1
DLC: 1
Baud: 1 MBPS

Channel: 1
Terminated: true

Driver: CAN 1
Port: SP2

Use

Fig. 3: UCoF Data Categorization

The implementation of this approach in UCoF is demonstrated in Figure 4 in a simplified
excerpt of the meta-model. The UML classes are categorized into two main groups: master
and target-specific data, further segmented into “Devices”, “Network”, and “Testing”.
Focused on CAN communication, relevant classes in the model are consolidated as “classes”
to improve clarity
The modeled master device represents an ARINC 653 compliant module. In these, sampling
ports can be defined for communication with other modules. Configuring a sampling
port entails defining the respective communication protocol and payload. In UCoF, this
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data is stored separately in a database linked to the device, enabling a clear overview of
communication and facilitating data reusability.
However, to meet implementation requirements, information within the “Devices” and
“Network” sections needs expansion. To achieve this, the master device configurations
reference potential implementations. For instance, in the context of a test system, the CAN
configuration undergoes further specification through additional attributes. The generation
of the executable target configuration can only be automated with this specific, target-related
information.

Master Data

Devices Network

Target Specific Data

Testing

CAN Bus
+Baud: Int

CAN Message
+DLC: Int
+ID: Hex

A653 Device

Classes

Sampling Port
+Direction: Bool
+MaxMessageSize: Int
+RefreshPeriod: Int

Implementation

Test System
Configurations

Classes

Can Configuration

+CanChannel: String
+Terminated: Bool
+ModelAccess: Bool
+…

Fig. 4: Simplified UCoF UML Excerpt

Additionally, Figure 4 illustrates the benefits of UCoF’s modular approach. By linking
information through references, new configuration data can be seamlessly incorporated while
preserving the fundamental structure of the core elements. For instance, the configuration
of an ARINC 653 compliant device maintains an adherence to the established standard,
ensuring minimal structural alterations over time.
Conversely, configuring test systems proves more dynamic due to frequent updates within
proprietary configuration environments. This volatility necessitates a more flexible approach
to accommodate changes effectively. Moreover, the format’s capability to easily integrate
new, emerging implementation targets, underlines the required future-proof architecture of
the meta-model.

4.2 Working with UCoF

UCoF seamlessly integrates configuration information throughout the development cycle,
supporting not only individual devices, but also facilitating configuration for the entire
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avionics platform. To start, input for platform configuration, sourced either from a singular
or multiple sources (such as a platform architecture), is required.
This input is further specified by relevant stakeholders, for example the system integrator
defined in ARINC 653. As depicted in Figure 5, the master configuration data is derived
from this input and serves as the baseline for all target configurations.
Depending on the development stage, single devices or the already defined platform can be
configured for the respective targets. Early in development, when hardware might not yet be
available, the master configuration can be expanded to encompass configuration information
for a simulation environment. This enables a SIL approach early in the development, adding
further iteration cycles for the configuration data, without any redundant information.
Updates stemming from SIL testing can seamlessly be integrated into the model via
interfaces that enable information flow to the UCoF model.
Advancing through the development stages, the SIL approach may transition to HIL testing,
where available hardware and test systems come into play. Target specific configurations
for real hardware or test systems expand the master configuration data, greatly reducing
the configuration workload during this stage. The creation of executable code or other
configuration artifacts, such as proprietary project files for test systems, are created through
automation interfaces. These interfaces are set up bidirectional, allowing for changes to
be propagated back to the UCoF model. Therefore, the platform configuration can be
adapted dynamically with a minimal risk for errors. In instances where the platform remains
partially virtualized, the inclusion of gateways becomes essential to enable comprehensive
communication among all modules. With UCoF, the configurations of said gateways are
included in the same model and are part of the overall platform configuration, thereby
ensuring the holistic platform approach for all modules.
Upon the availability of actual hardware for the complete platform, expanding the master
configuration data simply involves specifying configurations for the finalized modules.
With automatic data updates and transfer, information continuity is preserved between
testing phases and the final implementation. The model’s traceability attributes ensure
comprehensive tracking of changes, guaranteeing data integrity throughout the process.

Simulation
Configuration

Test System
Configuration

Master Data

Development Time

Input
Data

Real Hardware
Configuration

UCoF
Legend

: Simulation
Environment

: Avionics
Device

: Emulated
Device

: Gateway
Interface

Fig. 5: UCoF during Development
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5 Conlusion and Outlook

Avionics module configuration is a complex process, exacerbated by higher demand in
computational power due to emerging technologies. This paper introduces the Universal
Configuration Format for Avionics (UCoF) within the AvioNET framework, aiming to
provide a future-proof solution. UCoF is based on a meta-model and enhances platform
configuration by unifying device, network and testing configurations within a single format,
ensuring data consistency and transparency through all development steps.
UCoF’s design adheres to key configuration management requirements such as adherence
to standards, modularity, reusability, traceability, accessibility, generality, automatibility,
adaptability, and bidirectional information flow. Moreover, UCoF’s segregation of master
and target-specific information ensures interconnectedness while offering a highly adaptive
model, enabling continuous integration. This categorization minimizes redundancy, enhanc-
ing efficiency and reliability across avionics development.
Future research will expand UCoF to encompass additional implementation targets. It will
also delve into developing generic automation methods to simplify the creation of interfaces
for input and output data. Furthermore, UCoF’s open-source project release is planned, once
a well-defined beta version is available, fostering collaborative development and broader
adoption.
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Enhancing DO-178C/DO-331 Based Process-Oriented Build
Tool: Integration of System Composer and Automated PIL
Simulation
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Abstract: The growing utilization of software in safety-critical systems can be attributed to
advancing technology and substantial interest within aerospace and space industries. However,
this increased reliance on software to enhance avionic system functionality raises crucial safety
questions, emphasizing the need for compliance with standards like DO-178C/DO-331. To facilitate
development, a process-oriented build tool was created in MATLAB/Simulink. This tool enhances
development efficiency and ensures adherence to established processes, offering benefits like modular
software management, systematic artifact handling with traceability, seamless integration with various
verification tools, automated model and code verification, and a well-defined design environment.
Recently, two new advancements have been made to the tool, integration of System Composer for
developing software architecture and automated processor-in-the-loop (PIL) verification using Trace32.
This paper presents these new developments along with examples.

Keywords: DO-178C; DO-331; model-based software; process-oriented; software architecture;
verification

1 Introduction

Systems whose malfunction can result in human harm, damage to individuals, or environ-
mental harm are classified as safety-critical systems. Instances of such systems span multiple
domains, including nuclear, medical, aerospace, military, automotive, and space. The
software within these systems necessitates extra safety considerations during development
and must adhere to specific standards. In the case of aerospace, safety-critical software
development must comply with the DO-178C process standard.

DO-178C document is an acceptable means of compliance to the regulations for developing
airborne software [DC11]. DO-331, a supplement to DO-178C, provides guidance for
model-based software development and verification [DO11]. These documents specify
numerous required objectives, activities, and artifacts for each software life cycle phase,
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from planning to certificate authorities. The number of objectives to meet depends on
the software’s criticality level, indicated by the Design Assurance Level (DAL). However,
these process standards demand rigorous methodologies, extensive documentation, strong
artifact traceability, and various verification activities. Implementing such resource-intensive
processes poses a challenge, particularly for small-scale industries. These methodologies
often diverge from agile practices, and changing requirements in later development stages
can lead to substantial cost and effort increases, known as the ‘big-freeze’ problem [Cl21].

To address these limitations, a process-oriented build tool Mrails has been developed and
employed in various safety-critical applications, such as flight controllers, battery controllers,
and motor controllers at the Institute for Aeronautical Engineering, University of the
Bundeswehr Munich, and the Institute of Flight System Dynamics, Technical University of
Munich. The tool’s application has significantly improved process conformance, streamlined
the development of complex modular software, and simplified artifact management and
traceability. Built using MATLAB/Simulink, this tool offers a development framework via
a user-friendly MATLAB command line interface.

The build tool Mrails is continuously being applied for several applications and is also
being improved in parallel. [Pa22b], [HMH19], [Pa23a], [Pa23c], [Pa22c] emphasizes on
the several applications like safety-critical flight controller and battery controller developed
using the build tool. [Pa22a] explains several modifications like the improvement in code
generation for complex software structure. An overview of this build tool is presented in
[Pa23b, Dm20] which explains the workflow along with all the features. In this paper, three
new automated jobs have been added to the tool: (i) to create skeleton software architecture
model in System Composer, (ii) to deploy the developed software architecture and (iii) to
execute requirements-based test cases in processor-in-the-loop (PIL) mode using Trace32
debuggers [La23]. The remainder of the paper is structured as follows: Section 2 explains
the complete software development process along DO-178C from requirements to software
verification and also the traceability concept. This section also explains the tool Mrails
briefly. Section 3 states the two aforementioned improvements of the build tool and finally,
section 4 concludes the paper and discusses future work.

2 DO-178C Based Software Development Toolchain

This section will present an overview of the complete software development toolchain with
the required tools. Implementing the widely recognized V-Model in software development
enhances software safety by enabling verification and validation at different developmental
stages. This approach aids in early defect detection and aligns with DO-178C/DO-331
standards. When combined with model-based software development, the V-Model not only
maximizes the benefits of a systematic approach but also provides the flexibility to integrate
models as requirements, visualize the software, facilitate automated code generation and
verification, and enhance collaboration within distributed development teams.
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Fig. 1: DO-178C/DO-331 based software development toolchain showcasing development phases
with the associated tools

The software is divided into two components: functional code (incorporating logic) and an
application framework (comprising interfaces and low-level driver code). The model-based
software development V-Model for the functional part is illustrated in Figure 1. The toolchain
is presented here to create a base for the research, for example, the improvements like the
addition of the software architecture is now a part of the build tool process. The toolchain
also opens several opportunities of automation in each stages of development and testing.

The process commences by defining stakeholder or customer requirements, which then
shape the project’s objectives and system requirements. Siemens Polarion PLM [Si04] is
utilized to document system requirements, software and hardware requirements, test cases,
software and hardware development plans, and change control and problem reporting.

Subsequently, the hardware development follows a similar process as software, but it’s
beyond the scope of this research. Software high-level requirements derived from the
system requirements are then linked to the software architecture model designed using
MathWorks System Composer. Software low-level requirements are in the form of design
models developed in MATLAB/Simulink. The development of design models utilizes
the process-oriented build tool Mrails, which offers a modular model-based development
framework in MATLAB/Simulink. It automates jobs using Embedded Coder to generate
code for the functional part in MATLAB, aligning with DO-331 guidelines and performing
static model analysis.

For the application software, low-level software requirements are stored in textual form in
Polarion, while the code for the application software part is manually written in Eclipse IDE
[NX23]. After code generation, static testing is conducted using Polyspace, and simulation
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testing is performed using Simulink Tests and VectorCAST [Ve23] for the functional and
application parts, respectively. The functional software is then integrated into the application
framework in the Eclipse project and tested in real-time using a hardware-in-the-loop (HIL)
testbench. The interfaces between software and hardware are managed in dBricks [dB23], an
interface management tool. Various tools ensure traceability from requirements to testing.

To maintain an agile workflow, Git is used for version control, and a structured workflow is
followed. A Jenkins based continuous integration server is set up for automated testing and
closed-loop requirements verification.

2.1 Process-Oriented Build Tool

The improvements presented in this paper are part of the build tool and hence it is necessary
to understand the background of the tool along with its features. The build tool not
only optimizes the design and verification tasks but also offers process-oriented features
throughout the software development cycle like design, test and traceability review checklists
derived from the DO-178C/DO-331 standards. Figure 2 shows the steps that are applied
when using the build tool.

Software Architecture

Create Model
Deploy Architecture

Code Verification

Inspect Code
Check Code Compliance

Code Defect Analysis
Code Proving

Code Coverage

Design Verification

Static Model Analysis
Design Error Detection

Model Review
Simulation Case Execution

Model Coverage

Build

Shared Code
Functional Code
Package Code

Models

Singleton
Reusable
Top-level

Interfaces

Buses
Parameters
Constants

Enums

Verify

Design

Software HLR

Software Modules 

Project References
Hardware Config

Fig. 2: Workflow of the process-oriented build tool along with the automated tasks provided by the
tool

Some of the key features are discussed below:

1. Defined Development Environment and Modular Software Structure: The tool estab-
lishes a development environment encompassing tool configuration, linking, version
consistency, modeling guidelines, coding guidelines, and standard naming conven-
tions. This fosters a modular software development process within distributed teams,
mitigating configuration mismatches and saving time and effort in software compo-
nent integration. The tool seamlessly manages dependencies and integrates multiple
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software components without incurring configuration mismatches or regenerating
artifacts.

2. Model Scaffolding: The build tool offers a set of pre-configured “creators"that enable
developers to easily create models, data dictionary items, such as bus elements and
constants, and Simulink tests. These actions occur without the need to worry about
configuration settings and storage directories.

3. Incremental Code Generation: Unlike the top-down approach of conventional code
generation processes (such as MathWorks Embedded Coder), where code for interfaces
like Simulink buses is rebuilt upon changes in other components, the build tool
follows a staged bottom-up code generation approach. This method generates code at
the module level before integrating it into the top level.

4. Automated Design and Code Verification and Testing Tasks: The build tool’s life
cycle package includes a list of automated design and code verification jobs, with
results accumulating in an incrementally generated status report.

5. Process-Oriented Review: In addition to automated tasks, the life cycle package
provides manual checklists for model, traceability, and simulation reviews. The build
tool offers a straightforward infrastructure to add these checklists in accordance with
established standards.

6. Artifacts Traceability: The tool ensures comprehensive traceability between artifacts.
For example, verification task results are stored in a web-based interface that provides
up-trace and down-trace links to trace artifacts like models, jobs, data dictionaries,
and more related to a specific task. Beyond verification tasks, the tool maintains
detailed traceability of build information after the code generation process.

The build tool has been successfully implemented in various projects, including the
development of flight controller software for hexacopters, quadcopters, battery controller
software for a multilevel battery management system, and motor controller software
development. Its adaptability and advantages are explored in depth in related research,
facilitating standard-compliant software development. Additionally, the tool is applied in
the development of flight control software for the PEGASUS project, focusing on an eVTOL
UAV system, based on the incremental nonlinear dynamic inversion principle [SZM22].
This project will be published in 2024.

3 Advancements of the Build Tool

One important aspect of the software certification is the software architecture. DO-178C
defines software architecture as: “The structure of the software selected to implement
the software requirements"[DC11, Ri17]. Since Mrails did not have any kind of software
architecture implementation previously and is based on MathWorks tools, it was justified to
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use the System Composer. On the other hand, during the development of battery controller
using Mrails for the hardware S32G274A, a need for integrating PIL capability was realized.
This originated from the tremendous efforts that were needed to configure the Simulink
models and test cases. To automate the execution of the requirements-based test cases in
PIL mode, a new task is developed in Mrails.

3.1 Software Architecture using System Composer

In accordance with DO-178C compliance, traceability must be established between the
software requirements and the software architecture. The architecture should encompass all
the requirements and be feasible for implementation. To address the “big-freeze"problem
and accommodate changes at a later stage, it is essential to create an architecture using
a tool capable of handling updates seamlessly. Since the low-level requirements, in this
case, the design models, are generated in Simulink, it enhances compatibility when linking
architecture models created in System Composer and making frequent updates without the
need to maintain the established traceability. As depicted in Figure 2, the process begins
by creating software high-level requirements in Polarion, followed by the creation of the
software architecture. This stage commences with the creation of an Mrails module in
MATLAB via the command line, using an additional argument ‘-a’. This argument assists
the build tool in distinguishing between a software design module and an architecture
module. The workflow from creating the software architecture module to its deployment is
illustrated in Figure 4.

The architecture project path includes the customized Mrails profile, featuring stereotypes
‘module’ and ‘model’. Figure 3 shows a snapshot of a software architecture deployed for
a flight controller for an eVTOL. The stereotypes are visible by the icons representing

Fig. 3: Snapshot of a software architecture model with Mrails modules and models
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modules and models. The subsequent step involves generating an architecture model (.slx)
using the command ‘create model-architecture’. This command creates a placeholder
software architecture model with the Mrails custom profile. Components are then added,
and stereotypes are assigned based on specific requirements. A Mrails module is a software
component which consists of several Mrails modules and/or models. For example, if a
component is intricate enough to warrant a separate project, it is assigned the ‘module’
stereotype. This stereotype necessitates properties like sample time, module ID, and whether
it is a top-level model. Components within a module can either serve as top-level models
or belong to another module. In the latter case, the top-level module is labeled with the
‘module’ stereotype. Interfaces are linked to ports using the ‘interface editor’. Software

Fig. 4: Workflow of the software architecture development using the process-oriented build tool
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components with the ‘model’ stereotype have properties specifying the model type, whether
it’s reusable, a singleton, or a top-level model.

The next phase involves deploying the created software architecture. To achieve this, a task
called Deploy Software Architecture is initiated. Upon execution, this task first retrieves
Gitlab data such as URL, access token, and group name from the user. It then analyzes the
architecture model, organizes it from the lowest to the highest level of the module hierarchy,
and initiates a parallel pool in MATLAB. This pool creates the necessary Mrails modules
and models, along with corresponding Git repositories and Gitlab projects with protected
branches. Each Mrails module comprises two repositories: one for development and another
for testing. The testing repository includes the development repository as submodules. Any

Fig. 5: Outcomes of the software architecture deployment process
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Mrails module within another module is added as a Git submodule, as illustrated in Figure 4.
Components with the ‘model’ stereotype are then generated using the command create
model-<top/singleton/reusable>[Pa23b]. These models incorporate configuration settings
in compliance with standards and project data dictionaries.

In this manner, the software architecture is not only deployed locally but also remotely with
submodules. Figure 5 shows outcomes of the software architecture deployment process
like Gitlab projects and respective Git submodules. The Gitlab projects contain MATLAB
projects and derived Simulink models.

3.2 Processor-in-the-Loop Simulation using Trace32

Mrails already offers seamless automation for executing software-in-the-loop (SIL) simula-
tions of requirements-based test cases. SIL is employed to assess the numerical equivalence
between the model and the generated code. Executing requirements-based test cases in
SIL simulation enables the calculation of an essential testing aspect—structural coverage.

Fig. 6: Workflow of the Processor-in-the-Loop (PIL) Automation along with the build tool tasks and
results
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Mrails aggregates the results and presents them in an HTML web-based status report
[Pa23c]. DO-178C specifies that structural coverage, when collected from the source code,
is sufficient; however, it mandates a clear comparison between the source code and the
object code.

During SIL testing, the source code is compiled for the host computer, which often differs
from the production hardware. In PIL testing, the object code (instrumented) is cross-
compiled for the production hardware and executed directly on the target in non-real-time.
Simulink’s PIL testing capability generates coverage results and code execution profiling.
While some hardware, like the C2000 microcontroller [Ma23a], is readily supported, many
targets require a custom target package. In such cases, Lauterbach Integration for Simulink
[La23, Ma23b] comes into play. This tool facilitates running Simulink models directly
on the target with the necessary configuration settings, producing coverage and execution
profiling results.

Leveraging the framework provided by Mrails, the automation of PIL simulations for test
cases has been achieved. The workflow for this task is illustrated in Figure 6. After verifying
the test cases in normal simulation mode, PIL testing is conducted. The command mrails
piltestcaseexecution is used to initiate the PIL testing task. To compare the numerical
equivalence between normal simulation results and PIL results, it is crucial to check if the
Simulation Case Execution job has been executed. Subsequently, the configuration settings
of the models are adjusted to be compatible with the Trace32 XIL settings.

For execution profiling, a hardware timer is also necessary, and this feature is already
integrated into the Mrails tool. The hardware timer for the M7 processor is added as a code
replacement library in the configuration settings. The test cases are then executed in PIL
mode, after which the Trace32 integration tool takes over. The results are sent back to the
‘Test Manager’ where they are compared with the simulation results to ensure equivalence.

4 Conclusion and Future Work

This paper outlines the new enhancements incorporated into a DO-178C process-oriented
build tool. Among the two features introduced, one involves the implementation of software
architecture, and the other pertains to the execution of PIL tests on S32G274A-M7 hardware.
The research primarily delves into a specific component within the comprehensive DO-
178C-based software development toolchain. To lay the groundwork for these enhancements,
the software development toolchain is briefly introduced, followed by an overview of the
Mrails build tool.

Enabling the implementation of software architecture and deploying this structure, both
locally and remotely, offers several advantages to the team. Firstly, it ensures consistency
since the structure is committed to Git. Secondly, the System Composer tool simplifies the
linking of software requirements to the architecture model. As changes are inevitable, the
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task analyzes whether the software component has already been deployed or requires action,
proceeding accordingly.

It is essential to note that this feature is relatively new and holds potential for further
improvement. Interfaces tend to undergo fewer changes than functionality, thus saving
time and effort in creating separate software components for interfaces. The development,
building, and verification of the interface module are considered future enhancements for this
feature. To do so, a stereotype can be defined for the interfaces and ports. These interfaces
can origin from interface management tool like dBricks. Another potential improvement
involves adding additional stereotypes and properties to the profile to enhance flexibility. For
instance, defining hardware stereotypes to automatically integrate the required configuration
settings for specific hardware in the case of PIL simulation. Auto-commit and push practices
run counter to the best practices of software development and can potentially disrupt remote
repositories. To mitigate this, future plans include the addition of an extra argument to
distinguish between auto-commit and manual commit.

Regarding the PIL automation feature described in this paper, the task essentially verifies
the hardware node specified during project creation and, based on this, loads the relevant
configuration settings onto the project. Currently, only S32G274A-M7 hardware is supported,
but future expansion to accommodate other hardware is envisaged. During this research, an
issue arose when enabling both coverage settings and execution profiling simultaneously.
The cause of this issue remains unknown, and it constitutes an area for future investigation.

Managing the design and code configuration process is very tedious and leads towards
inconsistency during the software development process. This mitigates to the verification
phase and then finally creates a ruckus at integration level. The advancements presented in
this research are a stepping stone towards automating the software development process
and reducing human errors resulting into fast and efficient software development. Although
the advancements do not directly achieve the DO-178C/DO-331 objectives but presents an
efficient way to achieve them. For example, the software architecture can also be developed
as simple diagram in a tool like Polarion, however, there is no such feature to deploy the
architecture directly to Simulink. Deployment of the architecture models to Simulink include
creation of the project, interfaces in data dictionary and template models.

In the context of PIL testing, no such automation task was available till now which can
configure the model settings according to the target and run the requirements-based test
cases on the target. The build tool Mrails is also continuously being improved in other areas,
with new features constantly being added, such as recursive execution of jobs, accumulating
code metrics, and implementing continuous integration server to test the development of
the tool and its applications. Parallel execution of jobs and automation of possible manual
checks are some of the future development topics. The feature presented in this paper to
automate the PIL testing has now made it possible to run extensive tests on continuous
integration server. This research has aimed at facilitating the use of model-based software
development technology and leverage its advantages when seeking for certification along
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the DO-178C/DO-331 standards. The process-oriented build tool is currently being applied
to develop battery controller, motor controller and flight controller for electric motor glider
and eVTOLs.
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Case Study: Securing MMU-less Linux Using CHERI
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Abstract:

MMU-less Linux variant lacks security because it does not have protection or isolation mechanisms.
It also does not use MPUs as they do not fit with its software model because of the design drawbacks
of MPUs (i. e. coarse-grained protection with fixed number of protected regions). We secure the
existing MMU-less Linux version of the RISC-V port using CHERI. CHERI is a hardware-software
capability-based system that extends the ISA, toolchain, programming languages, operating systems,
and applications in order to provide complete pointer and memory safety. We believe that CHERI
could provide significant security guarantees for high-end dynamic MMU-less embedded systems at
lower costs, compared to MMUs and MPUs, by: 1) building the entire software stack in pure-capability
CHERI C mode which provides complete spatial memory safety at the kernel and user-level, 2)
isolating user programs as separate ELFs, each with its own CHERI-based capability table; this
provides spatial memory safety similar to what the MMU offers (i. e. user programs cannot access
each other’s memory), 3) isolating user programs from the kernel as the kernel has its own capability
table from the users and vice versa, and 4) compartmentalising kernel modules using CompartOS’
linkage-based compartmentalisation. This offers a new security front that is not possible using
the current MMU-based Linux, where vulnerable/malicious kernel modules (e. g. device drivers)
executing in the kernel space would not compromise or take down the entire system. These are the four
main contributions of this paper, presenting novel CHERI-based mechanisms to secure MMU-less
embedded Linux.

Keywords: Linux; CHERI; security; memory safety; compartmentalization; embedded systems;
operating systems

1 Introduction

Linux is the most widely deployed Operating System (OS) in the world. It is the base of
Android, cloud computing, and millions of Internet of Things (IoT) devices. The current
MMU-less embedded Linux variant lacks security because either the underlying processor
does not have an Memory Managment Unit (MMU) or it does have it but some systems
intentionally do not make use of it due to determinism, power, and simplicity requirements
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(typically in real-time systems). There exists other protection technologies such as TrustZone
and Memory Protection Unit (MPU)s, but they are still not widely-used in MMU-less Linux
because of their coarse-grained security features [Zh19] that are not suitable for embedded
Linux. Capability Hardware Enhanced RISC Instructions (CHERI) tries to fill this gap by
providing fine-grained security at lower overhead. In this paper, we try to enhance MMU-less
Linux’s security by having three main goals: first, complete spatial memory safety at the
pointers level, and second, spatial compartmentalisation of user programs, libraries, and
kernel modules. Pointer safety protects against 70% of software vulnerabilities [Ci19] (even
in MMU-based systems), while compartmentalisation helps limit the “future, unknown”
attack effects to the compromised compartment instead of the entire system. The third goal
is source-code compatibility which ensures minimum to no changes to the C code. This
is vital for high-end, MMU-less embedded systems that are already written in millions
of Lines of Code (LoC) like Linux and its userspace. We achieve these goals by building
on CHERI as the sole hardware feature to secure MMU-less Linux with four different
approaches:

1. Building the entire software stack in CHERI C to provide complete spatial pointer
safety at the kernel and user space.

2. Isolating user programs from each other by restricting access for each ELF to what it
can reference through a restricted capability table.

3. Isolating user programs from the kernel by taking away system permissions from user
capabilities and having separate capability tables for the kernel and user applications.

4. Compartmentalising kernel modules within the kernel itself (which cannot be realised
even with an MMU), by implementing the CompartOS model [Al22a, Al22b].

We evaluate these approaches by porting MMU-less Linux to CHERI-RISC-V [Al23b] (a
CHERI implementation on top of the RISC-V hardware and software ecosystem) along with
userspace that contains Busybox [Al23a], a simple run-time linker called uldso [Al23d], and
the uclibc-ng [Al23c] C library. All of our work is open-source. We report our experiences
porting MMU-less Linux and its components to CHERI and applying the CompartOS
compartmentalisation model [Al22a, Al22b] to isolate user programs and kernel modules.

The porting is still a work-in-progress and is not covering the entire Linux kernel, configu-
rations, and code execution paths. However, it is a best-effort starting point with minimal
configurations enabled that are able to run Busybox’s shell utilities, load simple kernel
modules, and run user applications, all in CHERI C (pure-capability mode, which guarantees
complete spatial memory safety). This could serve as a future reference or base for those
who want to secure other (embedded or MMU-less) operating systems using CHERI. We
hope this paper gives insights to what it takes to secure complex and high-end embedded
operating systems using CHERI, and the most common software subsystems that require
modifications.
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2 Background

In this section, we give a brief overview of CHERI and what security challenges it is trying
to address, mainly pointer and memory safety and software compartmentalisation. We also
describe capability-based security that CHERI brings and its advantages over traditional
Access Control List (ACL) and MMU-based systems that exist in UNIX systems (including
Linux).

2.1 Memory Safety

Memory-safety software vulnerabilities have arguably been the most prevalent type of
bugs in the history of computers and software in general. In their Eternal War in Memory
paper [Sz13], Szekeres et al. argue that memory corruption bugs are one of the oldest
problems in computing and still are, regardless of the efforts spent to come up with memory-
safe languages and hardware security architectures. Stack and buffer overflows [On96] have
been one of the most crucial bugs that can be exploited to affect the integrity, confidentiality,
and availability of a computer system. Memory safety is thus a vital attack vector in
both general-purpose OSes and embedded software systems that are mostly written in
memory-unsafe languages such as C/C++ for performance and fine-grained hardware control
purposes. For example, Microsoft has recently revealed [Ci19] that 70% of security software
bugs in their systems (e. g. Microsoft Windows written in C/C++) are memory-safety related,
which include spatial and temporal memory safety. This issue does not appear to be only
specific to general-purpose OSes such as Windows, but also in the embedded software
systems. Papp et al. have done a sound security analysis in embedded systems [PMB15]
and found out that memory-safety and programming error attacks on embedded operating
systems and firmware are the most frequent and critical.

Some countermeasures against memory safety attacks in embedded systems have been
proposed [PW08]. These include hardware architecture support, static and dynamic analysis
tools, compiler support, the use of memory-safe languages, and software compartmentali-
sation. For example, guard pages [Co98] rely on the MMU to detect buffer overflows in
general-purpose OSes. As our target OSes do not usually use the MMU, they tend to go for
lighter-weight software stack protection solutions. For instance, stack canaries [Wi22a] can
be optionally enabled by the compiler toolchain to detect stack overflows. Similarly, some
embedded operating systems such as RTEMS and FreeRTOS implement their own stack
overflow detection in software [Frb, RTa]. However, such solutions are coarse-grained (i. e.
only protect the stack of a task, rather than smaller buffers or global objects) and can be
bypassed [Ri02].
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2.2 Software Compartmentalisation

Software compartmentalisation [Wa15, Gu15, Ka87, PFH03, Ki03, Wa10] is a technique
to split up a large monolithic software into smaller compartments in order to reduce
the attack vector and limit the effects of a successful attack only to the compromised
compartment. Unlike vulnerability mitigation techniques, software compartmentalisation
assumes that zero-day unknown vulnerabilities always exist and acts accordingly. The
measures that are taken to apply software compartmentalisation follow the principle of least
privilege [SS75] by only giving the very minimum privileges to each compartment required
to perform a service. This reduces privilege escalation attacks due to the ambient authority
problem [La73] and, thus, maintains the integrity and confidentiality of the whole system.

Traditionally, OSes compartmentalise applications into threads or processes. Each could
be isolated from each other by the MMU or MPU. However, the recent attacks require
more scalable and fine-grained form of compartmentalisation within the same address
space (e. g. in a single process or kernel). This could be linkage modules (e. g. kernel
modules, device drivers, or third-party libraries) or even down to each pointer or function.
Compartmentalising such smaller components within the same address space not only
includes spatial and temporal memory safety, but also fault isolation (to maintain availability).

2.3 Capability-based Systems

A capability, in general, is an unforgeable token to an object in the system that authorises
its holder to access that object with a set of permissions embedded in the capability itself.
Thus, a capability serves as both an identification (unlike ACL systems e. g. UNIX in which
identities are separate from resources in the access lists) and an authorisation mechanism
within a protected system. The capability system itself is only responsible for the integrity
of capabilities (i. e. they cannot be forged) and serving requests to create, copy, and revoke
capabilities. The properties of a capability give it some advantages over the ACL systems.
Capability-based systems address some of the issues like the size of the table and the
requirement to have a list of resources for each domain, which ACL systems fail to achieve.
Furthermore, capabilities inherently adopt the notion of intentionality; an entity (such as a
process) that has a capability to an object is only allowed to access this object with limited
access permissions to do its job. This solves challenging issues in ACL systems such as
the confinement [La73] and confused deputy [Ha88] problems. Overall, capability-based
systems give some practical solutions to security and protection issues such as, the confused
deputy, the confinement problem, scalable access control management and fine-grained
access control.

There have been significant efforts to build capability-based systems in software, hardware,
programming languages, or a combination of them; most of which are introduced in Levy’s
capability-based systems book [Le84]. Hydra [Wu74] was the first general-purpose object-
based capability system. It was developed at Carnegie Mellon University. The primary
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motivation for Hydra was to allow operating systems research and extensibility. Some of the
design choices like putting drivers in userspace and separating policies from mechanisms
in the kernel found their way to microkernel designs [Li95] and are still being adopted
in modern L4 microkernels such as seL4 [Kl09] and Fiasco.OC [L4]. Hydra provided a
new system abstraction at the time, making everything in a computer system an object.
EROS [SSF99] introduced a new idea of revoking capabilities by versioning objects and
capabilities pointing to them. To revoke access to an object, the version of the object would
be changed, and consequently, the mismatched versions (during a dereference) will trigger a
fault. Capabilities in EROS are represented as nodes. A protection domain consists of a tree
of nodes of capabilities. Each node has a fixed size of thirty-two capabilities. Unlike seL4
(described next), EROS tries to map pages on virtual memory faults, and if it fails, it calls a
user-level fault handler in a capability. seL4 always redirects faults to the fault handler in
userspace. seL4 is a modern microkernel with a focus on security within embedded systems.
The authors of the 2009 seL4 paper claimed it is the first general-purpose operating system
to be formally verified [Kl09]. This means that the high-level kernel specification matches
the C code (and in later versions, the binary itself). With the assumption that the assembly
code and the hardware are correct, seL4 is claimed to be bug-free and would never crash.
This comes with a few caveats and assumptions [sP]. For instance, seL4 does not currently
protect against timing channels, DMA-related attacks, or further exploitable hardware
vulnerabilities. It also only proves the integrity and confidentially of the system with those
caveats. Adopting microkernel principles, seL4 embraces simplicity in its design and
implementation. This enabled the trusted codebase to be small enough (less than 10K LoC)
that complete formal verification of the kernel behaviour in every possible path is performed
and reasoned about to be bug-free. This effort narrowed the gap of having a trustworthy
software system. The downside, still, is that the hardware is assumed to be correct, which
is not usually the case. For example, the verified seL4 code is vulnerable to recent covert
channel attacks such as Spectre [Ko18]. Furthermore, seL4 relies on conventional MMU
to provide isolation, which largely lacks determinism and have coarse-grained memory
protection granularity of 4 KiB. That is, seL4 will not be a good fit for embedded systems
that require determinism and small size protection units (e. g. 4 bytes Memory Mapped
Input Output (MMIO) registers).

2.4 CHERI Overview

CHERI is a modern capability-based Reduced Instruction Set Computer (RISC) architecture
that is being developed by the University of Cambridge and SRI International. It is both
hardware (as an Instruction Set Architecture (ISA) extension) and software (toolchain,
programming languages, operating systems, and applications).

The main principles CHERI is designed around are:

• Principle of least privilege: which motivates the idea of reducing privilege rights to a
piece of software as much as possible.
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• Principle of intentional use: by naming the privilege a software application uses,
rather than giving it full privilege accesses and let it choose what privileges to use
implicitly.

CHERI is designed with these principles in mind such that a software application that
runs on top of CHERI inherently maintains capability attributes. This helps in reducing
the access rights an attacker has and consequently minimises the attack surface. There are
two main protection models in CHERI: pointer safety and software compartmentalisation.
Pointer safety is the primary application of CHERI in C/C++ languages. This mostly relies
on the compiler toolchain to map C/C++ pointers into CHERI’s memory capabilities. In the
current implementation of CHERI, the toolchain is LLVM/Clang. There are two main modes
a CHERI-aware C/C++ code can be compiled in: compatible (or hybrid) and pure-capability
modes (or simply CHERI C). Hybrid mode enables users to manually select pointers to
protect, while CHERI C automatically protects all pointers.

The CHERI hardware uses a fat-pointer representation for capabilities, along with a
hardware-managed tag bit that determines whether the capability is valid. In particular, a
CHERI capability encodes the base and top of the region in which the capability can be
dereferenced. A number of permission bits determine how the capability can be used (e. g.
read-only, read-write, etc.). Tagged memory is used to maintain the tag bit for capabilities
stored in memory. The architecture uses the tag bit to enforce the CHERI capability integrity
and provenance validity properties. The ISA maintains the capability monotonicity property,
whereby instructions can only narrow the permissions and bounds of any given capability.
CHERI hardware capabilities form the primitive upon which it is possible to implement
language-level spatial memory safety and software compartmentalisation models.

Apart from pointer safety, CHERI provides the flexibility for software developers to
define their own representation of a software compartment in order to logically split large
monolithic software systems into smaller compartments. For example, CHERI could be
used to compartmentalise processes, linkage-modules, static or shared libraries, OSes and
applications, etc.

MMU CHERI/CompartOS

Pointer safety ✗ "

Compartmentalisation " "

Virtualisation " ✗

Capability-based protection ✗ "

In-address-space isolation ✗ "
Protection granularity 4 KiB 1 Byte

Isolated memory resources User processes and kernel User processes, kernel,
libraries, kernel modules, and pointers.

Tab. 1: MMU vs CHERI comparison.
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CHERI is fundamentally different than MMU. MMUs are implemented in hardware and
managed by the OS to provide both protection and virtualisation at 4 KiB granularity.
CHERI, on the other hand, is an ISA extension that is implemented also in hardware, but
could be managed by the OS, programming languages, linkers and loader, and applications
in order to provide fine-grained pointer safety and memory protection (e. g. 1 byte) and
scalable software compartmentalisation (e. g. isolating processes, libraries, or modules).
The main differences between CHERI and MMUs are shown in Table 1. In this paper, we
deploy two main applications of CHERI: 1) fine-grained memory safety in C/C++, and 2)
software compartmentalisation.

CHERI is capable of replacing the MMU in terms of protection and isolation between
processes. However, this is only one contribution of this paper (contribution number 2
in Section 1). CHERI and CompartOS offer more security features than MMUs. MMUs
cannot provide pointer and memory safety at the programming languages level as CHERI
does because of their coarse-grained page size granularity. Furthermore, CHERI and
CompartOS allow in-address-space protection; two different pointers, user applications,
or kernel modules can be isolated from each other. Arguably speaking, this cannot be
done via MMUs unless the entire design and implementation of the Linux kernel and
applications are going to be changed. As shown later, it takes minimal effort to do so using
CHERI/CompartOS in terms of LoC changes, embracing source-code compatibility. All
in all, CHERI/CompartOS provide more security, scalability, compatibility in embedded
systems against recent attacks even compared to MMUs.

2.5 MMU-less Linux

MMU-less Linux is a variant of the mainstream Linux targeting embedded applications.
It is a configuration option to enable building and running smaller and customised Linux
subsystems. Systems choose not to use the MMU for two main reasons: 1) either the
underlying hardware does not have an MMU unit, or 2) there exists an MMU, but
managing it adds extra complexity, size, or does not meet some requirements such as real-
time, determinism, power consumption, etc. MMU-less Linux could have coarse-grained
privilege-separation between the kernel and user. However, there is no spatial memory
protection among user programs, kernel modules, and the kernel. MMU-less Linux uses
light-weight binary formats for ELFs. Historically, FLAT-ELF was mostly used but comes
with restrictions such as limited number of shared libraries, and no support for dynamic
loading via dlopen. ELF-FDPIC format tries to overcome such limitations and gets all of
the usual ELF features, but the code has to be all position independent (PIC). This allows
different load segments to be independently located in memory while still being able to
share the text segment, but not necessarily data segments. In this paper, we use RISC-V as
a base for MMU-less Linux, which does not use MMU or MPU/PMP. We further choose
ELF-FDPIC which works best for our CHERI-based compartmentalisation in embedded
systems.
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2.6 Potential Applications in Avionics

While CHERI and CompartOS can be applied to mainstream baremetal and tiny embedded
systems (at a cost), it aims to secure the high-end range of mainstream embedded operating
systems (including Real Time Operating System (RTOS)es), such as Linux. By mainstream,
we mean traditional embedded (operating) systems that are mostly unprotected and shy
away from using MPUs and MMUs as they do not meet their requirements. This is in
contrast to using new security architectures that target small systems (e. g. TockOS [Le17]
and ACES [Cl18]) and require existing applications to be (re)written on top of them.
Traditional embedded operating systems are facing security concerns and need some form
of protection while continuing to meet their real-time and safety-critical requirements such
as partitioning, bounded processing, high determinism and high throughput. Developers
either try to use the MPU in MCUs that provide it, but that is not scalable or fine-grained
enough for complex applications, or they go for general-purpose processors (e. g. A-class
Arm processors) that have MMUs (that are not frequently used due to complexity and
performance non-determinism) and rather use the MPU. The area those systems fit in
is safety-critical avionics and automotive. For example, FreeRTOS or RTEMS run on
Raspberry Pi [Wi22b] or Beagle [Wi21a] boards (embedded with Arm A-class processors)
without an MMU-based process or protection model. CompartOS mainly targets the low-end
A-class category. Example deployed systems are:

• Amazon’s FreeRTOS with WiFi, TCP/IP, and Bluetooth stacks running on high-end
M-class processors (Amazon Web Services (AWS) Reference Integrations [Fra]) and
used for feature-rich IoT.

• Primus Epic Avionics: Deos and ARINC 653, running on x86 and Arm’s A-class [DI].

• VxWorks CERT EDITION, running on NXP QorIQ [Wi21c] for automotive and
avionics [WRS].

• RTEMS used in NASA’s Magnetosphere Multiscale (MMS) Mission [NA, RTb]
running on the Coldfire CPU [Wi21b].

On the application use cases, some safety-critical standards such as ARINC 653 could
greatly fit with the CompartOS model. Most ARINC 653 implementations, however, are
proprietary and closed source. While we mainly apply CHERI and CompartOS models to
Linux in this paper, we believe that they have been also applied to other avionics systems
such as RTEMS and FreeRTOS, and could easily be applied to VxWorks and ARINC 653
implementations to provide partitioning, bound processing, and availability.

3 Design

The main motivation for this work is to take an unsecure monolithic MMU-less Linux and
secure it using CHERI as in Figure 1. In an MMU-less Linux, there is only privilege-level
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Fig. 1: Secured MMU-less Linux using CHERI. All build and run in CHERI C. Grey boxes represent
different types of compartments such as kernel modules (.ko) and ELF-FDPIC programs (.elf and .so).
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Fig. 2: The process of securing MMU-less Linux using CHERI is divided up into CHERI C and
compartmentalisation stages for each software component.
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separation between the kernel and userspace. There is no memory safety or separation
within or among user applications or kernel modules. Malicious user applications or
modules can spy on (no confidentiality) or affect the functionality of one another (no
integrity), or take down the entire system (no availability). CHERI-based memory safety
and compartmentalisation provide some form of confidentiality, integrity, and availability.

The process of doing that is divided up into steps shown in Figure 2. Securing MMU-less
Linux is done in two steps: CHERIfying the code and enforcing a compartmentalisation
model. CHERIfying means that we port the existing C code into CHERI C (or pure-capability
mode) where every pointer is a capability. The source-code has to be available to re-compile.
This provides complete spatial memory safety within the entire software stack. It helps with
the confidentiality and integrity of the software system. However, it does not necessary
help with availability; a CHERI security violation in the kernel may still bring down the
whole system. That is where compartmentalisation is important. Compartmentalisation
divides up the entire monolithic kernel (and userspace) into smaller compartments; each
compartment is contained. A fault in one compartment does not affect the rest of the system.
This is crucial for third-party (and likely untrusted) user libraries and kernel modules such
as device drivers.

For CHERI C, each software subsystems in the kernel and userspace needs modifications in
the following areas:

1. Build system: necessary changes to provide the proper toolchain flags to enforce
CHERI C memory safety.

2. Low-level: mostly architecture-dependent code such as booting, handling traps,
atomics, etc.

3. Pointers: some/most C/C++ projects mix using integer types (e. g. int and long) to
store both integers and pointers and do computations and arithmetic on them, as this
is allowed by C. This could lead to out-of-bounds memory safety bugs. CHERI C is
strict and it differentiates between normal integers and address pointers as CHERI
capabilities.

4. Provenance: every capability has to be derived from another valid capability with the
same or less bounds and permissions (monotonicity attribute). There are subsystems
in the OS that need to manually create capabilities. For instance, the boot code creates
capabilities for global objects and functions from DDC (root data capability) and
PCC (root code capability), respectively. Similarly, new capabilities for MMIO need
to be created for device drivers.

5. Allocators: dynamic memory allocators (e. g. malloc()) need to be modified to return
valid bounded capabilities with the correct permissions. Extra changes could also be
applied to ensure temporal memory safety (e. g. revocation, memory zeroing, etc).

For compartmentalisation, the following subsystems need to be changed:
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Linux Kernel uldso uclibc-ng Busybox

Build system 3/3 1 0 6
Low-level 1926/893 16 309/67 5
Pointers 324/280 0 0 0
Syscalls 553/543 0 37/37 0
Provenance 26/13 0 0 0
Misc 46/36 0 219 0
Compartmentalisation 468/28 80 0 0
Allocators 0 0 18 0

Tab. 2: Number of inserted/deleted lines to secure embedded MMU-less Linux using CHERI.

1. Build system: necessary changes to provide the proper toolchain flags to enforce
CompartOS compartmentalisation for compartments.

2. Start-up: to be able to build a capability table for each compartment representing its
protection domain and interface with other compartments.

3. Cross-compartment calls: to create capabilities that perform inter-compartment
calls, grant them to callers, and emit necessary trampolines to perform compartment
and protection domain switches.

4. Fault handling and recovery: an implemented custom policy to handle CHERI C
security violations per compartment.

In the following section, we discuss the implementation details of the specific MMU-less
Linux software subsystems we worked with.

4 Implementation

We have used the upstream Linux (version 6.1) and the RISC-V port without MMU as a
baseline. Userspace consists of Busybox [Bu] and a simple run-time linker [Unb], along
with uclibc-ng [una] as a user C library. We run the complete software stack on QEMU.
This gets us a shell and all Busybox utilities. Table 2 demonstrates the modified systems and
the LoC changes for each.

4.1 Kernel

Low-level: The boot code which is usually written in assembly is the first subsystem that
needs to be modified. First, PCC and DDC permissions need to be restricted (i. e. not to
include execute and/or load/store permissions). Furthermore, the instructions and registers
need to be modified to deal with capability registers rather than integer registers. This
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Fig. 3: A runtime example of a compartmentalised Linux kernel system and a protection domain
switch. Each compartment is this case is a kernel module. Filled lines are capability references, while
dashed lines are operations. Numbered edges denote the sequence to perform an external call to
another compartment, which triggers a domain switch. The switch starts with a function call that
references a capability from the externals capability list (#1). If the external capability is present and
valid, it points to a small, read-only trampoline (#2) that performs compartment switches by setting
the new captable and compartment ID (#3 and #4) after storing the caller’s context. It then jumps via
the interface capability (#5) provided by the target compartment. This interface capability points to
the function within its associated compartment (#6). Upon its return (#7), the trampoline restores the
caller’s context, captable and ID, then returns back to the caller function (#8).
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Fig. 4: A runtime example of a compartmentalised Busybox userspace. The keys are capabilities.
Solid lines/curves represent program transfer flow. Capabilities on these lines are passed as register
arguments. Dashed lines show what object each capability holds an authority to.

includes atomic instructions as well. The code starts in hybrid mode, then the capability
table is written for all the global pointers in the Linux kernel. These are driven from PCC
(for code capabilities like functions) and DDC (for data capabilities like variables, arrays,
and any other data objects). The exception table and trap register also need to be set up to be
capability-aware. Finally, the kernel jumps to the C code in pure-capability mode. Exception
code is also written in assembly, but only instructions and registers need to be modified to
deal with capabilities. There are other higher-level changes in the architecture dependent
code, still. For example, the types and sizes of the registers, pointer variables, stack pointer,
program counter, return address, frame pointers, etc., all needed to be capabilities instead
of integers. Similar changes in the memory management code that converts Page Frame
Number (PFN) to virtual/physical addresses also needed to be return capabilities.

System calls: Generic Linux system calls macros treated all arguments and return values as
type long. This needed to be changed to be pointers or capabilities. There are some specific
system calls (used by Busybox) that also needed to be changed. For instance, ioctl system
calls and their kernel functions receive an argument from the user that could hold pointers.
Even though we changed the lowest level of the system call macros to receive capabilities,
further ioctl handler functions still had the argument type as long. This was a bit disruptive
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xPortCompartmentEnterTrampoline :
% Metadata
. Lfunc : . zero CAP_SIZE % Callee ' s function capabil i ty
. Lcaptable : . zero CAP_SIZE % Callee ' s capabil i ty table
.Lcompid: . zero CAP_SIZE % Callee ' s compartment ID
/ / Compartment /Domain Switch
Save cal ler ' s context ( reg is te r set , GP, compid)
Setup new GP/ captable
Set currentCompartmentID = Lcompid
(Optional ) Restr ic t /bound the callee ' s stack
Call the destination function
Restore cal ler ' s context ( reg is te r set , GP, compid)
Return to the ca l le r compartment

List. 1: Compartment trampoline pseudo code

to change the functions prototypes and implementations from long to pointers (uintptr_t,
which could hold a pointer or an integer). Similarly, prctl and clone system calls.

Another important system call that needed to be changed is mmap. For MMU-less Linux, it
is mainly being used to allocate memory; it does not use any virtual mappings as there is no
paging. Unlike the previous system calls, mmap returns a pointer to an allocated memory.
The return type needed to also be changed from long to a pointer type that could hold a
bounded valid capability (if memory allocation is successful). We also mapped Linux’s
VM permissions passed to mmap (e. g. RWX) to CHERI permissions and disabled access to
system registers for returned mmap capabilities. Such permission flags passed to mmap are
ignored in MMU-less Linux.

Pointers: This is architecture independent code that is confusing integers with pointers and
addresses. The code usually uses long as a type (or casts to it) instead of using proper types
such as pointers (e. g. char * or intptr_t) when dealing with addresses and pointers (e. g.
defining base and end addresses or performing pointer arithmetic) that get de-referenced later.
This causes capabilities to lose their metadata (including tags), and thus, trigger security
violations when accessed later. Example code is the memory management subsystem that
allocates and frees pages and defines memory regions and blocks (with base addresses and
sizes). Another example is data structures such as radix-tree, rbtree, and maple-tree where
they perform casting operations to retrieve parents from nodes, or convert nodes to entries
(and vice versa) and perform some masking on pointers. File handling code also needed to
be changed a bit. Functions that take file descriptors as arguments and return a buffer or
struct addresses needed to return capabilities instead of long integers.

Provenance: First, drivers that deal with MMIO devices need to create capabilities for each
region. For MMU-less Linux, this was in the FDT code where it gets the base addresses
of devices and their MMIO sizes from the Flattened Device Tree (FDT) nodes. We then
create CHERI capabilities for those which are returned and held in their drivers as pointers.
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Similarly, ioremap needed to be changed to return new valid capabilities. Second, we needed
to create capabilities on the fly for some ELF loading code. The current ELF specification
uses long types to hold addresses/pointers (e. g. Elf64_Phdr.p_vaddr that holds addresses
of program headers and segments). We do not want to change the ELF specification itself
in this occasion, so we had to create data capabilities for the code that is offsetting ELF
segments while loading ELF binaries.

Misc: This includes some changes that are not part of the above categories. For instance,
Linux sometimes uses reserved unused variables for padding within some structs. The
number (or types) of such unused variables needed to change to meet the required alignment,
offsets, or padding. We also needed to use our own versions of string functions such as
memcpy, memmove, memcmp to preserve tags. Other string-related functions such as strscpy
and strncpy (from user), and strlen did out-of-bounds reads as well for lengths shorter than
the size of long, so this needed to be fixed to read byte-by-byte.

Compartmentalisation in the kernel is done on loadable modules. Each kernel module
could be built as a compartment by providing a new compiler flag in order to reference
all function and variable references GP-relative, instead of PC-relative, as discussed in
the CompartOS paper [Al22b]. Furthermore, each module has its own capability table,
separate from the kernel’s. External symbols referenced within the modules that belong
to the kernel or other external modules are created and added to the module’s capability
table in its external capability section (see Figure 3 and Listing 1). References to external
symbols trigger a protection domain switch as shown in Figure 3. The LoC changes to
support the CompartOS compartmentalisation model in the kernel are shown in Table 2.
This also includes handling new CompartOS GP-relative ELF relocations.

Compartmentalisation in userspace is realised by the fact that each CHERI C ELF-FDPIC
program has its own separate capability table; communication between different ELFs and
processes is left to Linux IPC mechanisms, and is not linkage-based external capabilities
(as in CompartOS). The compartmentalised userspace is shown as in Figure 4. The kernel’s
ELF-FDPIC loader sets up the process environment and memory. It allocates a single
chunk of memory for each ELF image, including uldso and Busybox. It then transfers the
program flow to userspace along with restricted number of capabilities passed as arguments.
For uldso, the ELF-FDPIC loader hands over capabilities to the dynamic ELF section in
order to perform the required ELF relocations. This includes relocations to normal ELF
symbols and CHERI capabilities. It also gives uldso a capability to the ELF-FDPIC’s load
map structure, which itself includes subset capabilities to Busybox’s loaded ELF segments.
Once the relocation process is completed by uldso, the program flow transfers to Busybox
with another set of restricted capabilities. The first capability is the root capability that
only covers the entire Busybox’s ELF loaded memory segments. The root capability gets
used later (at process startup) to derive fine-grained capabilities for all global variables
and functions and populates a confined capability table for Busybox and uclibc-ng; similar
to the Linux’s boot code. The second capability is the stack pointer which points to the
process’ arguments, ELF auxv, envp, etc., as expected by the POSIX environment. This
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stack capability is set up by the ELF-FDPIC loader and gets passed to uldso which hands it
over to Busybox as it is. Thus, each user process is only restricted by these two capabilities
and cannot access anything else (e. g. other processes’ memories).

4.2 Userspace

For the userspace, we use Busybox which is widely used in embedded MMU-less Linux to
provide some embedded UNIX/POSIX utilities. We also use uclibc-ng as a C library for
simplicity, which is also widely used in MMU-less Linux. Finally, a simple run-time linker
was used called uldso.

4.2.1 uldso

uldso is a very simple and light-weight dynamic linker. It relies on Linux’s ELF-FDPIC
loader which is used for MMU-less systems. uldso assumes that the code is compiled
position-independent with the PIE flag and the ELF-FDPIC loader has set up some registers
and process segments at process startup. It then uses this information to fix up dynamic
relocations. CHERIfying uldso enables both CHERI C user applications, and ELF-based
compartmentalisation (user programs and libraries). The CHERI-LLVM toolchain emits
a capability table and a relocation ELF section per ELF. Thus, this effectively sandboxes
or compartmentalises each loaded ELF, and isolates it from one another; which gets us
spatial memory isolation among ELFs, similar to what the MMU provides. Furthermore,
supporting CHERI C ELFs gets us in-address-space spatial memory safety that MMU-based
processes cannot have. The code changes to support CHERI are quite minimal. Startup
RISC-V assembly code needed to deal with capability registers instead of integer registers,
before jumping to the C’s linker code. The linker simply needed to be taught about a new
CHERI relocation section and its entries, and it then relocates each relocation entry with the
run-time load address of the symbol’s loaded segment in memory. This relocation section
gets used later when the actual ELF bootstraps during the CHERI C initialisation process,
which basically populates the capability table with valid capabilities.

4.2.2 uclibc-ng

The low-level part of this is quite similar to the Linux kernel. The capability table is
populated at start-up, using the capability relocation info, fixed up by uldso. Atomics,
context switching, setjump/longjump, also needed to deal with capability registers. There
are also some low-level system calls parts in RISC-V assembly (e. g. vfork and clone)
that needed to be modified to pass and return CHERI capability registers. The system
call changes were minimal, and basically required to change the assumption and types of
registers, arguments, and return values from integers and longs to capability registers (see
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−long syscal l ( long sysnum, . . . )
+uintpt r_ t syscal l ( long sysnum, . . . )
{

− unsigned long arg1 , arg2 , arg3 , arg4 , arg5 , arg6 ;
+ uintpt r_ t arg1 , arg2 , arg3 , arg4 , arg5 , arg6 ;

va_l is t arg ;
va_start ( arg , sysnum) ;

− arg1 = va_arg ( arg , unsigned long ) ;
− arg2 = va_arg ( arg , unsigned long ) ;
− arg3 = va_arg ( arg , unsigned long ) ;
− arg4 = va_arg ( arg , unsigned long ) ;
− arg5 = va_arg ( arg , unsigned long ) ;
− arg6 = va_arg ( arg , unsigned long ) ;
+ arg1 = va_arg ( arg , u intpt r_ t ) ;
+ arg2 = va_arg ( arg , u intpt r_ t ) ;
+ arg3 = va_arg ( arg , u intpt r_ t ) ;
+ arg4 = va_arg ( arg , u intpt r_ t ) ;
+ arg5 = va_arg ( arg , u intpt r_ t ) ;
+ arg6 = va_arg ( arg , u intpt r_ t ) ;

List. 2: Git diff of the uclibc-ng common system call function

Listing 2). Minor changes to malloc were also required to enforce pointer-sized alignments
and granularity. Furthermore, internal malloc code was using integer types for blocks and
their arithmetic, that needed to be changed to capabilities as well.

The part that required most additions is libc’s string functions. This includes memcpy
family, and str* functions. They were copied from Linux. memcpy and memmove needed
to perform capability-aware operations to preserve tags. str* functions were mostly doing
out-of-bounds accesses, trying to aggressively optimise performance by reading word-sized
chunks of memory. We used byte-based versions of those that are less optimised but do not
perform out-of-bounds accesses.

4.3 Busybox

Busybox was quite cleanly written, meaning that almost no changes were required at all
to build and run it in CHERI C mode. Minor changes to low-level assembly code were
required to read capability variables instead of integers. Most importantly, we can use
insmod command and friends to load kernel modules as CompartOS compartments.

5 Future Work

This work is still in progress and has been only evaluated on QEMU for functional correctness
and applicability. We plan to keep enhancing it by cleaning up the code and enabling more
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Linux features (e. g. networking, VirtIO, devices, etc). We will also aim to run on actual
CHERI-RISC-V and/or Morello hardware in order to perform performance evaluation and
run stock benchmarks, similar to CheriFreeRTOS [Al22b]. On the security side, we will
aim to reproduce some of the Linux memory safety CVEs and see if CHERI could protect
against them, in terms of integrity, confidentiality, and availability. As Linux in general
is a demanding high-end system, evaluating scalability in terms of the number of user
programs, libraries, and kernel modules would also be on our future work. We have not
attempted to use CHERI sub-object bounds enforcement. This is an alternative compilation
mode that automatically narrows capability bounds for pointers to individual structure
members and arrays, restricting the possibility of intra-object memory corruption. Consider,
for example, the C structure in Figure 5. In a pure-capability program, a pointer to struct
sensitive_data produced by an allocator is mapped to a capability bounded to the size of
the object (i. e. the length of the capability is sizeof(struct sensitive_data)). In the
default CHERI compilation mode, pointers to sub-object members inherit the bounds of the
object capability. This means that the capability for the buffer field has the same bounds as
the parent structure. As a result, a buffer overflow of the buffer array is not detected as
long as it remains within the bounds of the parent structure. This is clearly a limitation as
intra-object memory safety is not provided.

struct sensitive_data {
int some_value;
char buffer[128];
struct sensitive_data *next;

};

struct sentitive_data *p;
// Does not trigger a fault without sub-object bounds
p->buffer[130] = 'a';
// Triggers a fault with and without sub-object bounds
p->buffer[200] = 'a';

Fig. 5: Example of a structure that benefits from CHERI sub-object bounds enforcement. Note that,
without sub-object bounds enforcement, buffer overflows (and underflows) via the p->buffer pointer
are not prevented as long as they remain within the bounds of struct sensitive_data.

The sub-object bounds compilation mode provides superior security properties, however
it exhibits larger friction for porting existing code bases [Ri20] due to some problematic
C-language idioms. It should be noted that the CheriBSD pure-capability kernel already
provides sub-object bounds enforcement, therefore there is reason to believe that the
same level of support can be achieved in Linux. Previous experience with the CheriBSD
pure-capability kernel has found that the majority of the portability issues arise from the
use of containerof() patterns, where a pointer to the container structure is constructed
from a pointer to a member. These kinds of patterns break in the presence of sub-object
bounds, however CheriBSD has shown that it is feasible to annotate these problematic cases
to selectively opt-out of sub-object bounds while maintaining the security benefits for most
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of the code-base. Future work will evaluate the use of sub-object bounds to improve upon
the base CHERI spatial memory safety guarantees.

Finally, we have not tried to support or evaluate temporal safety yet. Future work will
significantly enhance security by applying some of the CHERI-based temporal safety
techniques such as CherIvoke [Xi19] or CapRevoke [Fi20].

6 Related Work

ACES [Cl18] is an MPU-based software compartmentalisation approach that aims to
automatically create compartments at build time by statically analysing the source code
and an input security policy. It relies on off-the-shelf MPUs to enforce memory protection
and instruments the final binary with MPU-based compartment switches. However, ACES
only targets simple static systems, and would not scale to dynamic and high-end embedded
systems like embedded Linux.

MINION [Ki18] is an MPU-based software security architecture for embedded systems that
provides memory isolation between processes while optimising performance by avoiding
performing frequent systems calls that are often associated with multi-privilege rings
and MPUs. The paper argues that frequent system calls usually violate real-time system
constraints and responsiveness. It shares the same limitations as MPU-based techniques as
with ACES.

uVisor [AR] also uses Arm’s MPUs and is similar to MINION as it can run an RTOS
and other compartments in an unprivileged ring. However, it is different from MINION
as it dynamically loads and creates compartments at runtime and is able to place different
software entities in a compartment such as interrupt handlers or linkage-based modules,
besides threads. Thus, it is not only a task-based compartmentalisation approach.

CHERI has been under research in UNIX-based environments with MMU, prototyped in
the CheriBSD OS (a CHERI-enabled fork of the FreeBSD OS). CheriABI [Da19] is an
application-level software compartmentalisation technique in CheriBSD. The main software
application in CheriABI is C/C++ language pointer safety at the user level with a few
modifications to the FreeBSD kernel. Two compilation modes are supported for CHERI:
hybrid and pure-capability modes. In hybrid mode, pointers are integers as usual, and only
those annotated with __capability keywords are protected by CHERI. CheriABI falls in the
pure-capability category where user processes are compiled to have all pointers, system
call arguments and allocated C objects (such as malloc and TLS) represented as CHERI
capabilities. This significantly enhances spatial memory safety in UNIX while it is still being
compatible with native UNIX processes that are not aware of CHERI. There is still ongoing
research to have the FreeBSD kernel itself making full use of CHERI to compartmentalise
the kernel components and enforce pointer safety. This is known as a pure-capability
CheriBSD kernel. The CheriBSD kernel makes extensive use of CHERI memory safety
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features, including spatial and referential memory safety, as well as sub-object bounds. In
particular, new abstractions for virtual memory management are necessary to ensure the
representability of mappings. Similarly, kernel allocators enforce representable bounds. The
use of sub-object bounds shows promising results to protect from intra-object memory
corruption.

CheriRTOS [Xi] is an early exploration of CHERI in small embedded systems. Unlike
CheriABI (that targets UNIX-based systems), CheriRTOS targets microcontrollers to offer
hardware protection using 64-bit compressed CHERI-MIPS capabilities. The paper shows
how fine-grained memory protection, task isolation, secure heap management, and secure
cross-domain transition can be implemented on CHERI. The authors also argue that the
MPU, which is usually being used for memory protection in safety-critical embedded
systems, is impractical as it does not meet the fine-grained memory protection requirements.
Configuring the MPU takes a considerable number of cycles in kernel mode and is inefficient
when it comes to the power consumption and die area.

CHERIoT [Am23] is targeting low-end IoT devices and aims to secure them using CHERI.
It uses similar GP-relative addressing to CompartOS, however, CHERIoT is not designed
for dynamic systems or high-end embedded systems such as embedded Linux.

Huawei’s CheriLinux [cl], though completely separate, is the closest to our work, specifically
only to our first contribution (CHERI C Linux). They target MMU-based server-class Linux,
unlike our work here which targets MMU-less Linux. Furthermore, they only support
CHERI C systems without software compartmentalisation at all, which we provide as three
separate contributions.

7 Conclusion

We have shown how MMU-less Linux, one of the most advanced high-end operating systems,
could be secured using two CHERI protection models: CHERI C and compartmentalisation.
CHERI C works at the language level by protecting every pointer in the kernel and userspace.
This provides complete spatial pointer safety. Compartmentalisation splits up a monolithic
system such as the kernel and userspace into smaller and isolated logical compartments
such as kernel modules in the kernel, and user applications and libraries in userspace. This
reduces the effects of future unknown attacks.

We have demonstrated the effort it took in order to secure the upstream RISC-V MMU-less
Linux, Busybox and uclibc-ng sysetms. The LoC changes were quite minimal for such large
code bases written in millions LoC, which emphasises the practicality and compatibility of
securing low-level software using CHERI with minimum effort. This completely relies on
CHERI as the sole hardware protection mechanism. We further show that the CompartOS
model [Al22b, Al22a] is applicable to large high-end embedded systems such as Linux.
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Abstract: Many safety critical domains require certification of a product before it can be released to
the market. On the one hand, simulations and digital methods allow for cheaper and faster assurance of
properties. On the other hand, the new and different methodology implies completely new requirements.
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direction.
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1 Introduction

Certification is a critical step in the development of novel aircraft. The current certification
process requires the iterative construction of physical prototypes of the aircraft, which
then undergoes numerous tests to ensure its airworthiness. Each iteration is a waterfall
process comprised of design, prototype construction and tests. Only after a successful test a
certification can be obtained. If the test fails the whole iteration has to be redone which
lengthens the time from initial design to final market-ready product.

A major research trend in aerospace engineering is the digital transformation of the aircraft
development process, which includes the certification of the aircraft [Ma21; Ma22]. The
authors are working at the Virtual Product House (VPH), an initiative of German Aerospace
Center (DLR) which aims to develop novel methods and processes for virtual aircraft
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development. This includes the development of higher fidelity simulation methods, the
development of composite simulations that simulate the aircraft manufacturing process,
and the development of methods for long-term storage of simulated data. During this work
we have observed that a number of requirements towards this newly developed methods
are independent of the aviation domain, e. g., the requirement to record the provenance of
simulation data, or the necessity to store these data over the life-time of the product. Similarly,
some of the newly developed methods are also independent of the aviation domain. This
includes, for example, the visualization of the execution of composite simulations [MSW23],
or the integration of such composite simulations with a data management system [Dr22].

Based on this observation, we suspect that similar developments are currently taking place
in other regulated domains where safety-critical products are certified before entering the
market. These include, for example, the space industry, the automotive industry, and the
medical industry. Our initial goal is to determine the current state of the art in digital
transformation of the product development and certification process across multiple domains.
This is complicated by the fact that the digital transformation of the engineering process is
still a nascent field, with very few cross-domain standards developed to date.

Even within aviation, work related to digital transformation is sometimes discussed under
the term “virtual development and certification” and sometimes under the term “certification
by analysis.” The latter term implicitly includes simulation-based aircraft development.

Our goal is to identify research groups, existing results, and nomenclature across domains.
This will facilitate the reuse of results and methods. To this end, we plan several activities:

• First, we identify researchers working towards virtual certification and ask them
to answer a few standardized questions regarding the state of the art of virtual
certification in their respective domain.

• Second, we use the results of the first step to identify key contributors to the topic of
virtual certification and conduct in-depth interviews with these contributors.

• Third, we use the results of the in-depth interviews to conduct a structured literature
review to gain a broader understanding of current research trends in different domains.

In this work, we present preliminary results of the first stage of this research plan. In Section 2,
we give an overview over the digital transformation of the aircraft development process as it
is understood at VPH. There, we moreover identify open questions in virtual certification
for aircraft, which we believe to be important in other domains as well. Afterwards, we
describe our research plan for the questionnaire in greater depth in Section 3. Subsequently,
we give an overview over preliminary results of the initial phase in Section 4. Finally, we
discuss our next steps in Section 5.
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2 Virtual Certification at VPH

The VPH [Ge] is a research collaboration comprised of research institutes as well as aviation
industry partners, and members of the European Union Aviation Safety Agency (EASA).

It focuses on the enhancement of digital methods for aircraft development, testing, and
certification. The long-term goal of VPH is to develop methods that allow for a completely
virtual certification of aircraft and aircraft parts. The intended development and certification
process is mapped to a digital tool-chain containing abilities from various aviation-related
disciplines.

In VPH the whole process is seen as a digital end-to-end process, starting with requirements
over virtual manufacturing to a virtually tested and certified product; Rädel et al. [Rä21]
and Lange et al. [La21] give an in-depth description of this process. This process is realized
using the workflow engine Remote Component Environment (RCE), which allows engineers
to design and execute highly distributed tool-chains. For RCE, refer to Boden et al. [Bo21]
for a technical description and Flink et al. [Fl22] for a user-focused introduction. The VPH
tool-chain comprises several discipline-specific capabilities, such as virtual methods for
testing an actuation system due to Hollmann et al. [Ho22], aerodynamic simulations due to
Zakrzewski et al. [ZLH22], or automated aircraft model generation and sizing due to Führer
et al. [Fü16].

The VPH follows the long term goal of virtual certification. Hence, a necessary subgoal is
the credibility of our data and its processing within the VPH tool-chain. Thus we research
how provenance data, i. e., information about the origin of data, has to be created and stored
during and after the execution of the tool-chain [MSW23]. A data-driven view on this topic
is given by Dressel et al. [DD21] and Dressel et al. [Dr22].

To be able to use simulation data for development and certification, engineers have to
approve that their results map to a physical test, i. e., they have to ascertain the validity of
the simulated result. Thus we aim to determine whether domains other than aviation use
quality criteria or even a metric for validating their simulation results.

While working on the topic of data provenance at VPH, we observed that many data-related
research questions are not specifically related to aviation. Therefore, these research questions
related to data provenance are likely to either be addressed or to be of use in other domains.
We already showed in previous work how provenance data is generated and stored in the
current VPH tool-chain [DD21; Dr22]. Our current solution, however, has not yet been
shown to scale to larger tool-chains. Furthermore we aim to investigate methods that allow
data to be stored together with its provenance for the lifetime of the developed product.
Since the lifetime of an individual product line in aviation often reaches several decades,
this is decidedly non-trivial.

No model will ever exactly reflect the real-world situation. For certification, we need to
quantify the difference between the model’s prediction and the real-world phenomena. Thus,
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quantifying the uncertainty of model results and the models’ robustness against minor
deviations in the input data become an important topic. We are interested in how other
domains deal with this matter.

3 Methodology

To gain initial insight into the processes used in domains that are supposed to use simulations
for development and certification (not only limited to aviation), we created a questionnaire
asking respondents to give an overview over the use of simulations for product development
in their respective domain. As this is performed in the initial stage of our research we only
asked high-level questions to gain a broad insight into this field. We show that questionnaire
in Table 1. We sent out a questionnaire to ∼30 experts from the domains automotive,
aviation, space, biotechnology and maritime and received the answers of ten researchers
in the automotive domain. Moreover, we answered the questionnaire ourselves to obtain
comparable answers from the aviation domain. We show detailed information about the
participants’ demographics in Table 2.

Q1 What terms are used in your domain to address simulation-based development or
certification?
Mit welchen Begriffen wird in Ihrer Domäne die simulationsbasierte Entwicklung oder Zertifizierung adressiert?

Q2 How are simulations used in your domain for product development or product certification?
You may name a representative process.
Wie werden in Ihrer Domäne Simulationen zur Produktentwicklung oder -zertifizierung eingesetzt? Nennen Sie
gern einen repräsentativen Prozess.

Q3 Where do you see the largest need for research and development in the area of simulation-
supported development and certification?
Wo sehen Sie den größten Forschungs- und Entwicklungsbedarf im Bereich der simulationsunterstützten
Entwicklung und Zertifizierung?

Q4 By which institution (certification agency, standardization body, internal regulations, . . . )
are those requirements defined whose satisfaction is indicated via the simulations?
Durch welche Instanz (Zulassungsbehörde, Standardisierungsgremium, interne Vorgaben, . . . ) werden die
Requirements vorgegeben, deren Erfüllung die Simulationen anzeigen?

Q5 Which metrics / criteria of quality are used for simulation-based verification methods?
Welche Gütekriterien / Qualitätsmetriken werden für simulationsunterstützte Nachweismethoden verwendet?

Q6 Which stakeholders are involved in simulation-based development or certification?
Welche Stakeholder sind an der simulationsunterstützten Entwicklung oder Zertifizierung beteiligt?

Q7 Please state your current job title or your domain of work, respectively, as well as the
duration of your experience in this job and associated training.
Bitte nennen Sie Ihren aktuellen Beruf bzw. Ihre Branche sowie die Dauer Ihrer Berufs- und Ausbildungserfahrung
in Ihrem Bereich.

Tab. 1: The questions posed in our initial E-Mail survey (original German formulation shown in small
print).
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Domain Job Title Experience

Aviation Scientific Researcher 1 year
Automotive Scientific Researcher 10 years
Automotive Team of Scientific Researchers (9 Members) 3 to 20 years

Tab. 2: The demographics of the respondents to our initial survey.

In this initial step we aimed to keep the barrier to entry for the researchers as low as possible.
Hence, we only posed a few brief questions. We moreover chose to conduct the survey via
email instead of a more sophisticated survey tool, again to keep the barrier to entry as low
as possible.

This questionnaire contained seven open questions, one of which only queried for demo-
graphic information. The other six questions are mapping to our research questions. Since
all researchers identified spoke German fluently, we posed the questions in German.

We subsequently consolidated the answers from all participants and used them to evaluate
our initial hypothesis and to inform our future research directions. We discuss these results
in the following section.

4 Initial Results

We show the results of our preliminary and non-representative survey in Table 3. Where
original answers were given in German, we have translated them into English.

We see that the answer to Q1 (Terms Used) directly supports our assumption that the digital
transformation of the product development is discussed both in aviation as well as in the
automotive domain. In fact, even though we only gathered data from two domains we
obtained 19 different terms that are used in those domains to refer to simulation-based
development or certification. Hence, we conclude that even within individual domains, no
generally-agreed upon nomenclature has been established. Nevertheless we classified the
answers to Q1 into the following non-distinct categories: a) In-the-Loop Testing b) Digital
/ Virtual Twin c) Simulations d) User-centric approaches e) Scenario-focused analyses
f) Others

Moreover, we observe significant overlap between the individual terms given, both within
and across the domains. In the automotive domain, e. g., both “User Study in Virtual Reality”
and “User Study in the Driving Simulator” were named by researchers as types of user
studies used in digital development processes. The common term “user study”, in contrast,
refers to user studies without relevance to virtual development and is unfit as a characterizing
term for the field. Similarly, the terms “Virtual Testing” and “Scenario-based Verification /
Testing” were given by researchers from the aviation domain and the automotive domain,
respectively.
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Q1
(Terms Used)

User Study in Virtual Reality; User Study in the Driving Simulator;
Safeguarding in the Digital Twin; Virtual Twin; Verification, Validation,
Certification; Scenario-based Verification / Validation; Scenario-based
Safety Assurance; Safeguarding / Testing / Engineering; xIL testing;
Software-in-the-Loop (SiL) Testing; Hardware-in-the-Loop (HiL)
Testing; Rare Event Simulation; Scenario-based Testing with the Aid
of Driving Simulations; Traffic Planning and Optimization using Traffic
Flow Simulations; Simulation-based virtual Integration Tests; Virtual
Development; Virtual Certification; Virtual Testing; Certification by
Analysis (CbA)

Q2
(Use Cases)

Feasibility Studies; Virtual Tests; User Studies; Recreation of equal
Test Situations; Early error detection; Certification; Proof-of-concept
in logistics; Virtual Integration Tests; Simulation of Surrounding Area;
Demonstration of novel Interaction Concepts;

Q3
(Research Needs)

Validity of Simulations; Uncertainty Quantification; Robust Simula-
tions

Q4
(Requirement Givers)

EASA; United Nations Economic Commission for Europe (UNECE);
Regulation of the European Union; Users; Municipalities; Traffic
Planners

Q5
(Quality Metrics)

Similarity to Validation Tests; Sharpness of the confidence estimate for
the residual risk; Acceptance Criteria (ALARP, MEM,. . . ); Criticality
Metrics for Automated Driving

Q6
(Stakeholders)

OEMs; Tier 1 supplier; Approval authority; Vendors for Software
Development Tools; Standardization Committees; Ministries (e. g.
Transport Ministry); Urban Planners; Automotive Engineers; Research
Institutes; Aircraft manufacturers

Tab. 3: Results from our initial survey

These observations show that we are unlikely to determine a fixed set of search terms or
categories for a literature survey that allows us to obtain a comprehensive list of published
works in this field across domains. Instead, we will most likely have to perform individual
literature reviews per domain and consolidate the results to obtain a cross-domain review of
the state of the art.

The answers to Q2 (Use Cases) show that the researchers expect various benefits from
the digital transformation of the product development, ranging from earlier simplified
demonstration of novel concepts, over error detection, to simplified certification. This is
relatively unsurprising, as new developments are often met with major expectations of
their usefulness once fully developed and deployed. These expectations often remain unmet
during continued development [Ga].

Researchers’ expectations contrast with their perceived requirement for future research,
which we queried in Q3 (Research Needs). They identified the validity of simulations,
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uncertainty quantification, and the robustness of simulations as the most important future
research fields for the digital transformation of product development. Researchers identified
not only a gap between the results of simulations and the results of real-world tests when
using current methods, but also different behavior of human test subjects when working with
physical objects and when working with their simulated counterparts. Hence, we believe
that future research in this field should not be limited to engineering disciplines with the aim
to improve the fidelity of simulations, but that it should also include psychological research
into the interaction of humans with simulations. We believe that this human-focused research
is essential to retain the validity of product evaluations during the digital transformation.

Clearly, the digital transformation of the product development process involves the devel-
opment, deployment and use of bespoke software. Typically, when developing software,
developers are advised to focus on the requirements of the end-user to obtain an optimal
software product [SC17]. The responses to Q4 (Requirement Givers) and Q6 (Stakeholders)
show, however, that for the digital transformation of product development a bespoke design
process may be required, as there exist numerous stakeholders and requirement providers
that are not end users of the developed process. Moreover, the number of stakeholders
already appears to be too large to involve all of them in an agile development process. In
our opinion, this observation should inform future efforts towards digital transformation
of product development. Research projects should consciously work towards involving a
representative subset of stakeholders, which may not coincide with the direct users of the
research results.

The answers to Q5 (Quality Metrics) show that there is a lack of a criteria to decide whether
a simulation is sufficient. We see that researchers conduct physical tests to validate the
simulation results. They also mention the “sharpness of the confidence estimate” as a quality
indicator. The questionnaire participants also mention acceptance criteria. The acceptance
criteria mentioned, however, have the aim of determining acceptable risk. In our case, this
amounts to deciding whether the risk of a potentially inadequate simulation is acceptable.
This does not include judgements about the quality of the simulation. The same applies
to criticality metrics as they give information about the consequences of a wrong quality
estimation.

5 Conclusion and Future Work

In this work we have presented a research plan for investigating the state of the art in
the digital transformation of the product development and product certification process in
the aviation domain and the automotive domain. We moreover have presented hypotheses
based on the results of an initial survey across researchers from the aviation domain as
well as the automotive domain. Finally, we have gathered and presented initial data via
this preliminary survey that allows us to conduct an in-depth elicitation of the state of the
art of virtual certification across multiple domains. The results of our survey support the
hypotheses set out in our research assumptions that a) the same research goals are pursued
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in different domains, and that b) researchers in different domains use different nomenclature
to refer to identical or very similar procedures and aims. In particular, we found that the
automotive domain faces the same challenges with regards to the fidelity of simulations and
their validation as the aviation domain. Moreover, researchers in the automotive domain
already consider the challenge of different behavior of human test subjects in virtual and
physical environments, which has not yet been considered at VPH. We moreover found that
aviation researchers and automotive researchers identified virtually identical research needs:
The topics of simulation validity, uncertainty quantification, and robustness of simulations
with respect to minor disturbances in the input data appear to be of equal importance
to researchers in both domains. Finally, we found that the surveyed researchers did not
explicitly mention the need for trustworthiness of simulated data or its long-term storage. In
previous work, in contrast, we found both topics to be highly relevant to certifying agencies
in aviation and assume that they will be relevant in other regulated domains as well.

We believe that our results indicate that research towards simulation-based development and
certification for digital aircraft design can immensely benefit from increased cooperation
with other domains. One example of a topic where aviation research can benefit is the
human behavior in simulated and physical environments. While this topic is already being
researched in the automotive domain, it is not yet under investigation in aircraft development.
We believe, however, that this topic will eventually become relevant as a building block for
the digital end-to-end process developed at VPH (Section 2).

In future work, we aim to widen our research questions to other topics like software timing
performance or human interaction to systematically investigate the state of the art in the
digital transformation of product development and certification. In contrast to our initial
survey, we aim to address additional safety-critical domains in which products are regulated
and subject to certification. This includes, e. g., the space domain, the development of
medical hardware, and the ship-building industry. For these domains, we will elicit the
state of the art in virtual product development and certification via a) conducting in-depth
interviews with selected researchers working in regulated domains and via b) performing a
systematic literature review of existing work.

When conducting the in-depth interviews our aim is two-fold: First, we aim to determine
the nomenclature commonly used in the respective domains when referring to virtual
certification. As our initial survey shows, relevant topics are addressed under different names
in different domains. By determining relevant nomenclature prior to the literature review, we
can ensure that we include all relevant information in the review. Furthermore we can gain
deeper insights regarding our research questions, e. g. the research needs, by interactively
enquiring additional information. Secondly, we aim to identify the primary publication venues
for the digital transformation of product development and certification in the respective
domains via the interviews. Our experience from aviation shows that relevant literature is
often published as gray literature, i. e., as technical reports [Ma21] or as memoranda issued
by certification authorities [EA20]. Hence, determining relevant publication channels in the
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respective domains will again allow us to ensure to comprehensively determine the state of
the art in these domains.
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Towards COTS component synchronization for low SWaP-C
flight control systems

Franz Sax 1, Florian Holzapfel2

Abstract: The rise of innovative and novel fly-by-wire air vehicles like e-VTOLs for Advanced
Air Mobility demands flight control systems whose components are low size, weight, power and
cost (SWaP-C), but nevertheless offer high performance. One approach towards this mismatch is to
use COTS components from e.g. the automotive sector and use their extensive features to enhance
performance in a given system architecture. This paper describes one method of minimizing the latency
in the communication between two COTS components by using an easily realizable algorithm with
minimal memory, code and computation requirements for relative synchronization of the execution
cycles of the components. A description of the resulting control problem, as well as simulation results
from a dedicated MATLAB simulation environment are given. Those are then compared with an
implementation on a representative set of devices from the EPUCOR flight control system.

Keywords: Synchronization; time-triggered; event-triggered; latencies; real time system; low level
software; timing; drift

1 Introduction

Typical Commercial off-the-shelf (COTS) - based digital flight control systems for pro-
totypical novel air vehicles are asynchronous. This means that the different components
periodically perform their tasks - but in a way that the execution period of one device does
not have a well defined relation to the execution period of other devices in the system
architecture.

With the following small example, the situation shall be explained: In the flight control
system for a 600kg unmanned helicopter [B.22], the main Inertial Navigation System (INS)
sensor is directly connected to the primary Flight Control Computer (FCC) using a single
A429 connection. This sensor’s data is the most important one for the essential task of
stabilizing the aircraft in flight. With a period of 20ms, the sensor transmits data packets
with the newest measured data. The COTS flight control computer also performs all of its
actions in a 20ms-loop: collecting and parsing input data, executing the controller algorithm
and finally packing and sending the computed data and commands. The execution time of
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the control algorithm and I/O handling is such, that there is a certain idle time after sending
out the commands. In this time, other lower priority tasks are executed by the implemented
real time operating system (RTOS).

INS Sensor FCC

Sensor data

20ms

Input
Parse

Compute

Output
Send

Idle

Command data

Fig. 1: Overview over the relevant part of an exemplary system architecture. The sensor sends new
data every 20ms and the FCC also restart its execution cycle every 20ms

However, the 20ms-cycles of the two devices do - after turning on the system - initialize in a
random offset relation and further will drift relative to each other, coming from the fact
that the internal timing sources, given by e.g. micro-electromechanical systems (MEMS) or
crystal oscillators, in sensor and FCC do not have the exact same frequency. Also in general,
the advertised 20ms cycles of the devices are not exact with respect to physical time (as
defined by the SI second): when the device “thinks” (by counting internal oscillator cycles)
that 20ms have passed, in reality (1 + 𝛼) · 20ms have passed, where 𝛼 is a small number
with |𝛼 | ⪅ 10−5. [Mi17] If the components’ value of 𝛼 are not by chance exactly the same,
drifting occurs.

In the plot of sensor-sending and FCC-cycle start events below it can be seen, that typically
data from the sensor is not immediately processed by the FCC, as the respective events are
not synchronized in any way. Instead, the data is put into some receive buffer at the FCC but
is used only some time later, thereby introducing an avoidable dead time into the control
loop.
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Sensor send events

FCC cycle start event

~20ms

~20ms

Dead-time

Time

Fig. 2: The drift (resulting in the fact that the dead time is in this case increasing over time) is
exaggerated. The duration of the sending of the sensor data packages is idealized to a single event, in
reality, this also takes some time.

This leads to reduced stability margins, degrades the control loop performance and
additionally introduces an element of uncertainty, as the initial dead time as well as its drift
over time is unknown to the controller and has to be dealt with in a “worst-case-way” i.e.
always assuming the worst case dead time.

Ideally, the FCC would start its cycle directly after new data from the sensor is received
and ready to be used. This would result in a purely event-triggered real-time system [H.11],
where the paradigm is that successful reception of a new data package of the sensor directly
triggers an interrupt that then starts the execution cycle. However, this is in some applications
not a viable solution:

• It could be that the sensor has a considerable amount of jitter or an other type of
irregular sending behaviour - however still maintaining the 20ms update rate on
average. This irregularity would then directly propagate further into the timing of the
control loop. ([M.21], chapter 4).

• From experience, most existing flight control software infrastucture is based on the
time-triggered principle and employ some form of RTOS that relies on a 1ms timer.
To change the paradigm to event-triggered would be a major undertaking on the
existing code base. Also related to certification, the lesser direct external influence
there is on the computing hardware, the more deterministic behaviour can be expected
from the system.

• In some FCC architectures, there is a dedicated I/O processor or FPGA as well as a
number-cruncher, that executes the algorithm. Those two units are not connected via
an interrupt line and so the main processor can not be immediately notified about a
reception event. However, timing data can be forwarded from the I/O processor and
the number-cruncher can from that calculate the dead time, which is the only relevant
data for the proposed algorithm.

Other proposals to deal with this problem are to inform the controller about the current value
of the dead time [P.01] and afterwards adjust the controller parameters on a per-cycle-basis.
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Some sensors also offer the possibility to request a new data package via a dedicated
Sync-line input. [Ve17] However, for typical COTS components, this is not the case and
typical sensors asynchronously broadcast their data.

Another solution to this problem would be the use of a global time triggered architecture,
where all devices agree with a high precision on a global time base and perform their
actions completely synchronous to each other. This involves exchanging dedicated messages
whose only purpose is the synchronization of time. [H.11] Also, all devices have to support
this kind of architecture by offering respective hardware and software interfaces. This is
generally not the case for COTS components.

This paper describes the current development state of the pragmatic method used to solve
this problem in flight control systems developed at the Institute of Flight System Dynamics
at the Technical University of Munich.

In section 2, the main idea for the proposed algorithm is described in a simplified
setting, section 3 presents the simulation framework and results. Section 4 talks about the
experimental implementation and section 5 gives an outlook on further work to do.

2 Relative synchronization algorithm

Pictorially speaking, the algorithm will execute on the FCC and make out of fig. 2 the
following, while still keeping up the time-triggered software structure:

~20ms

Time

Small,
constant

dead time

Sensor send events

FCC cycle start event

Fig. 3: Situation with synchronization: the dead time is small and constant over time

Properties of the algorithm will be

• “Minimal invasive”: The existing code base does not have to be extensively manip-
ulated, only two additional functions have to be added: One interrupt and a small
function that executes directly before the controller and performs the synchronization
task. As no extra dependencies are introduced, this almost feels like “free lunch”.

• Easily adaptable and applicable to a multitude of hardware environments (processors,
interface chips, COTS internal architecture, data buses).
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• Fail passive: The algorithm can seamlessly deactivate its influence on timing and by
that revert to the usual way of scheduling when unexpected behaviour arises. Now,
any unexpected behaviour in the reception of relevant sensor data is an indication of a
critical problem in the communication between sensor and FCC and is by itself a reason
to deactivate the high-performance flight control law. So this information should be
passed directly to the functional input monitoring on the FCC and appropriate action
has to be triggered, for example switching to a backup flight control lane that uses
a different set of hardware units as well as a simpler emergency flight control law.
This is the typical structure of system architectures developed at FSD. Deactivation
of the algorithm guarantees that the FCC continues its execution cycles seamlessly,
providing its remaining functions and output (like forwarding that the sensor has
failed), although not being control of the aircraft anymore.

The main principle is the following: A free running timer is activated on the FCC. Its
prescaler is set such that the granularity is in the range of some 𝜇𝑠. As explained above,
the FCC-internal notion of time does not coincide with the SI-definition of time. Instead,
in a good approximation, the physical time Δ𝑡ph that has passed when the FCC-measured
oscillator time Δ𝑡FCC has passed is different by a factor of 1 + 𝛼FCC. The same holds for the
sensor.

Δ𝑡ph = Δ𝑡FCC · (1 + 𝛼FCC) Δ𝑡ph = Δ𝑡sensor · (1 + 𝛼sensor) (1)

Further, an interrupt that will be entered when a relevant message from the sensor has been
received, will be installed. The interrupt handler is very short: only the value in the timer
register at the moment of the interrupt will be noted down, as well as the fact that a message
was received. Then, at the beginning of the FCC cycle, the time of the last reception of a
message and the current time is compared (this is the dead time in FCC-internal time units)
and then a control problem is solved: control this value to a small constant.

The relevant control variable is related to the way the FCC together with the time-triggered
RTOS keeps track of its internal 20ms cycle. On the processor, there typically is a dedicated
periodic interrupt timer that every 1ms generates an interrupt and in it increases the system
time and possibly schedules a task that after the time tick has now highest priority. This
“train of interrupts” is derived from the internal high speed processor clock which is after
prescaling fed into a periodic interrupt timer. At every prescaled clock event, the timer
value is increased and when it reaches a certain value 𝐾0, it is reset to zero and an interrupt
is triggered. The constant 𝐾0 is chosen such that together with the fixed prescaling, an
interrupt is triggered every 1ms.

By changing 𝐾0 by small amounts in the range below 1% to some other value 𝐾 = 𝐾0 +Δ𝐾

the duration of a time tick on the FCC can be adjusted, while being completely transparent
to the rest of the software. Note that the internal oscillator frequency will (and can) not be
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changed, only the construction of the internal timing variable from this oscillator will be
adjusted.

Time

Counter
Value

K0 K

~1ms <~1ms

Interrupts

Fig. 4: Internals of the periodic interrupt timer: the discrete nature of the counter value is not displayed
in this figure, but typical values for 𝐾 are in the range of 1e6. The adjustment of 𝐾 is also exaggerated

In formulas, the physical time that passes between two FCC cycles dependent on 𝐾 is

Δ𝑡ph = (1 + 𝛼FCC) · 20𝑚𝑠
𝐾

𝐾0
(2)

For explanation simplicity, we now assume, that there is no jitter in the system, that the
parameters 𝛼FCC and 𝛼sensor are constant over time and the situation is always such, that the
sensor receive event always happens “in the middle” between two FCC cycles.

To get an explicit equation that describes the behaviour of the dead time under the influence
of the control variable 𝐾 , we have a zoomed in look at the left part of fig. 2:

Time

10 2 3
4

5

Sensor send event

FCC cycle start event

K = K0+ K
K < K0

K > K0

t1dead

t4dead

Fig. 5: By changing the constant K, the next FCC cycle start can be adjusted and by that the next dead
time can be changed.
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Let’s assume that the FCC is currently at time 1 and the cycle has just started. The last
sensor send event at time 0 was timestamped at the FCC by the interrupt and the current
time 1 can be read in the internal timer register. So the FCC measures the most recent dead
time at time 1 to be

t1dead =
𝑡1 − 𝑡0

1 + 𝛼FCC
(3)

If there is a correction applied to K by the FCC, the next cycle will start at time 𝑡4 which is
by (2) related to 𝑡1 via

𝑡4 = 𝑡1 + (1 + 𝛼FCC) · 20ms
𝐾

𝐾0
(4)

By setting 𝐾 = 𝐾0 + Δ𝐾 , this can be rewritten as

𝑡4 = 𝑡1 + (1 + 𝛼FCC) · 20ms
𝐾

𝐾0
= 𝑡1 + (1 + 𝛼FCC) · 20ms + (1 + 𝛼FCC) · 20ms

Δ𝐾

𝐾0
(5)

By (1), the next sensor send event will happen at 𝑡2

𝑡2 = 𝑡0 + (1 + 𝛼sensor) · 20ms (6)

So the next dead time measured by the FCC at time 4 will be

t4dead =
𝑡4 − 𝑡2

1 + 𝛼FCC
(7)

By plugging in the expressions for 𝑡2 and 𝑡4 obtained above, this evaluates to

t4dead =
1

1 + 𝛼FCC

(
𝑡1 − 𝑡0 + (𝛼FCC − 𝛼sensor) · 20ms + (1 + 𝛼FCC) · 20ms

Δ𝐾

𝐾0

)
(8)

and finally by using the definition of 𝑡1dead:

t4dead = t1dead +
𝛼FCC − 𝛼sensor

1 + 𝛼FCC
· 20ms + Δ𝐾

𝐾0
20ms (9)
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The contribution 𝛼FCC−𝛼sensor
1+𝛼FCC

· 20ms comes from the relative drift of the two devices, while
the contribution 20msΔ𝐾

𝐾0
is something the FCC can influence. So the control problem for

𝑡dead has the following simple form:

𝑥𝑛+1 = 𝑥𝑛 + 𝐷 + 𝑢𝑛, where 𝐷 =
𝛼FCC − 𝛼sensor

1 + 𝛼FCC
20ms and 𝑢𝑛 =

Δ𝐾𝑛

𝐾0
20ms (10)

Now, different suitable control algorithms can be thought of, including for example PID-type
controllers (with appropriate bounding of Δ𝐾𝑛 to stay within ±1% of 𝐾0) or constant
Δ𝐾𝑛 controllers to reach the desired set point of the dead time. To minimize jitter in the
synchronized state, 𝑢𝑛 can then also be chosen to be −𝐷, then the FCC and sensor have in
fact synchronized their execution cycles.

To calculate the control, the parameter 𝐷 has to be known with reasonable precision. To
achieve this, the algorithm performs an on-line real time estimation from reception timing
data gathered from the sensor. In easy words, because a relative drift D results in the 20ms
cycles of the 2 devices not being the same, measuring the resulting duration of a “20ms
sensor cycle” in local FCC time should make it possible to make a statement about the value
of the drift. And indeed that is true:

By (6) the physical time difference between two sensor send events isΔ𝑡𝑠ph = (1+𝛼sensor)20ms.
Because each of those triggers an interrupt on the FCC, where the respective timestamps
of the reception are taken, the FCC can in every cycle obtain a measurement of Δ𝑡𝑠ph by
subtracting the last reception time from the most recent one. In terms of fig. (5), at time
𝑡4, the FCC subtracts its measured values of 𝑡2 and 𝑡0. Again, by (1), the difference time
measured on the FCC will be

Δ𝑡𝑠FCC =
𝑡2 − 𝑡0

1 + 𝛼FCC
=

1 + 𝛼sensor
1 + 𝛼FCC

20ms (11)

By subtracting this value from the expected 20ms, the FCC can in every cycle compute a
candidate for D:

20ms − Δ𝑡𝑠FCC = 20ms − 1 + 𝛼sensor
1 + 𝛼FCC

20ms =
𝛼FCC − 𝛼sensor

1 + 𝛼FCC
20ms = 𝐷 (12)

This computation will be done in every FCC cycle to get:

𝐷𝑚𝑖 = 20𝑚𝑠 −
(
Δ𝑡𝑠FCC

) 𝑖 (13)

As some amount of jitter is involved in a real system however, the obtained values 𝐷𝑚
𝑖

will
be different in every cycle 𝑖. However, taking the mean of a large number of measurements
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will improve the quality of the estimate. A suitable algorithm with low demands on memory
is the exponential moving average algorithm, where the estimate 𝐷𝑒 for 𝐷 is updated
according to

𝐷𝑒0 = 𝐷𝑚0
𝐷𝑒𝑖+1 = 𝜆𝐷𝑒𝑖 + (1 − 𝜆)𝐷𝑚𝑖

(14)

with some “forgetting factor” 0 < 𝜆 < 1. In the end, the respective 𝛼 parameters don’t have
to be known, but luckily their relevant combination - the parameter 𝐷 - can directly be
measured.

3 Simulation

A simulation framework that helps to test, assess and validate a candidate algorithm in
different settings (also accounting for facts that were ignored above, like jitter) was developed
in MATLAB. For this, the timing behaviour of sensor and FCC can be specified by their
parameters 𝛼, the magnitude of the jitter involved, and an initial offset between the two
devices. The simulation framework emulates the hardware behaviour of the components
with their clocks and calculates e.g. the counter values of the reception events at the FCC as
well as the correction to the value K using a certain type of controller for (10) that is also
implemented in MATLAB. Plots of the evolution of different properties over time can then
be created. As an exemplary output, here we see the evolution of the dead time when there
is significant drift and jitter in the sensor:

Towards COTS component synchronization for low SWaP-C flight control systems 111



10 Franz Sax, Florian Holzapfel
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Fig. 6: Simulated evolution of the dead time. Up until cycle number 1500, only the drift estimation
module was active, while afterwards, the synchronization controller was activated. Here a simple
P-controller was used. The dead time is afterwards stable at the small value of 3.5ms

Furthermore, graphic output like in figures (2) or (3) can also be created.

The simulation environment is planned to have an interface to Simulink System Composer,
such that relevant device and interconnection information can be extracted from a system
architecture at the design stage. Further, the environment allows for connection of multiple
sensors to one FCC, as well as e.g. the mutual connection of three redundant FCCs that
should synchronize to each other. Also, a cascaded scheme can be created, which is for
example needed, when the FCC forwards its data to an actuator interface unit, which should
also be synchronized to the FCC. As another future step, device fault conditions (like a
reboot that changes the cycle offsets and clears the drift filter states, or device malfunctions
that result in no messages sent at all) will be included.

4 Implementation

In the flight control system for the EPUCOR helicopter [B.22], there is a COTS-type flight
control computer that is directly connected to a COTS-type INS sensor, as described in fig.
1. The relevant part of the FCC consists of a STM32F405ZG microprocessor [ST19] and an
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external A429-Interface chip, a HOLT3210 [HO17]. Instead of using the real INS sensor
from the FCS - an AHR 150A from Archangel [Ar17] - a mockup device was used. By that,
parameters like jitter and drift of the sending unit can be easily set and manipulated to test
the performance of the algorithm.

The message structure of the AHR 150A is such, that a number A429-Labels are sent directly
after each other. Then the bus is idle until the 20ms cycle starts over. The transmission cycle
always begins with labels 331, 332, 333, 327, 326, and 330. These happen to be the angular
rates and specific forces - the immediately most relevant for flight control.

331
332
333
327
326
330
324

270
350

Bus Idle

331
332
333
327
326
330
324

20ms

immediately
relevant

part of data
sent

Fig. 7: Packet structure of the AHR 150A

For time recording purposes on the FCC, the basic timer TIM6 is used. The FCC’s timing
source itself is a 8 MHz Quartz Crystal, whose frequency is upscaled to 168MHz with a
PLL. Via the configurable prescaler for TIM6, the uint16-counter increases its value by 1
every 𝜇s and reloads to zero at the next tick when it has reached its maximal value 216 − 1.

The HOLT 3210 offers the possibility to signal an interrupt to the Microcontroller on
the reception of a certain label that is configurable in an interrupt table. By setting the
corresponding entry for label 330 to 1, the time where a full relevant INS message is
available will be automatically noted down.

The timer that creates the 1ms interrupt for the RTOS directly comes from the processor-
integrated SysTickTimer that counts with a frequency of 168MHz, where the nominal value
of 𝐾 is 168000.

The integration into the already implemented periodic control task is achieved by calling
the synchronization function directly before the input parsing:
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while(1)

{

wait_for_20ms_cycle_start();

estimate_D();

calculate_and_set_new_K();

parse_inputs();

execute_controller();

send_outputs();

put_task_to_inactive();

}

The relevant part estimate_D() essentially consists of equations (13) and (14), whereas
calculate_and_set_new_K() implements some controller for the problem (10). This
procedure is very general and demonstrates the universality and easy realization of the
proposed algorithm.

For demonstration, as in the simulation in fig. (6), a P-controller and a set point of 3.5ms
was chosen. In the plot of the dead time over execution cycle, a comparison between the
simulation and the real implementation shows a excellent agreement and tells that the
simulation is of very high fidelity and suitable to further continue the development process
based on the digital twin.
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Fig. 8: Experimental data taken from the implementation. From execution cycle 1500 on, the controller
was activated. Note the similarity to fig. (6)
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5 Conclusion and Outlook

In this short paper, the need for an easy to realize synchronization for COTS components
was illustrated. In the end, this task can be accomplished by solving the control problem 10.
The comparison between a real implementation and simulation in a dedicated environment
shows very good agreement. The algorithm is adaptable to many different hardware settings
and up to now successful implementations have been demonstrated using three different
further FCCs that are currently used at the institute of flight system dynamics at TUM,
with different interfaces like CAN and RS-422 and also using different interface chips or
integrated processor peripherals. Also, instead of using the “mockup-device” as sender, an
AHR 150A as well as a VectorNav VN310 were used - the synchronization results were as
expected.

Compared to existing solutions for the general problem of “time synchronization in
distributed systems”, the main differences are

• Hardware: No dedicated hardware that goes beyond “standard equipment” is needed.
Compare that to time triggered system architectures, where special interface chips are
needed, like e.g. the AS8202B for TTP or the NXP MFR4310a for FlexRay. Further,
no elements whose sole purpose is to establish synchronization have to be introduced
into the system architecture, as it is for example the case for the sync-lines in the space
shuttle flight control system [Jo89]. This allows for subsequent updates of existing
flight control systems.

• Algorithm: For the majority of established existing clock synchronization algorithms
(examples being [J.88], [Ma95], or the network time protocol NTP) their purpose is
to construct from the local times of the components a global time that is within some
bound the same for all involved components. This is done by adding to the respective
local times some correction values that represent the offset to the global time . For that,
dedicated messages have to be exchanged and a so-called “convergence function” is
applied to locally compute the correction. In the approach described in this paper, the
main goal is not to obtain a common notion of absolute time on different components,
but rather to synchronize their execution cycles to minimize dead times. This is
mainly done by adjusting the clock rate and not by adding correction values. Also, no
dedicated messages are used, but the relative timing information is obtained from the
ordinary communication that takes place.

However, In the discussion above, there were some points that were for the sake of simplicity
ignored. For example, the effect of jitter and dead times near zero lead to the fact, that in
some FCC cycles no messages at all are received, while in the adjacent cycles, 2 messages
are received or a very big naively calculated value for the dead time is obtained. This
corresponds to the thick vertical lines in fig. 8.
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Sensor send events
~20ms

FCC cycle start events

two
messages
in a cylce

no
messages
in a cylce

seemingly
big dead

time

Fig. 9: Behaviour under the influence of jitter in an “almost” synchronized state

Future investigations that deal with this fact will be conducted and the overall goal is
to prove robustness properties of the unconditional stability of the algorithm either by
mathematically analyzing the control problem or using formal methods like NuSMV, where
some unconditionally true results could already be obtained.
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Enhancing System-model Quality: Evaluation of the
MontiBelle Approach with the Avionics Case Study on a Data
Link Uplink Feed System
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Abstract: Software quality is often related directly to the quality of the models used throughout the
development phases. Assuring model quality can thus be an important aspect for assuring the quality
of the final product. Measuring model quality is done via different quality indicators. In this article,
we investigate the influence of our holistic systems engineering methodology on model quality. An
avionics case study was previously conducted using our methodology. The developed SysML v2 model
artifacts are evaluated in this paper regarding internal and external model quality, as well as model
notation quality. In total, the positive impact on 26 model quality indicators from our previous work is
argued. These indicators are divided into intra-model (single artifact) quality indicators and inter-model
(across model artifact) quality indicators. The inter-model quality indicators are further classified into
indicators for models at the same granularity level (horizontal) and across several granularity levels
(vertical). Multiple quality indicators are positively affected by the modeling language’s capabilities
and the underlying mathematical semantics. Other indicators depend on methodological guidelines
that steer the engineering process. The evaluation of model-quality properties leads towards maturing
a holistic systems engineering methodology that facilitates high model quality and thus indicates high
product quality.

Keywords: Model Quality; Design Methodology; Theorem Prover; Formal Verification

1 Introduction

1.1 Model Development in Computer Science

It can be observed that the size of software increases continuously [Le97]. Additionally, the degree of its
complexity grows. These developments make the full understanding of software systems more difficult.
In order to maintain control over such complex software systems, adequate mechanisms are necessary.
These include, e.g., approaches according to the principle divide et impera (Latin) or a suitable
model usage. Model building represents the essential foundation of the tasks of computer science
[BS04, Br19, Br23], since the representable, processable, storable and transferable representation
(syntax) of information must always be subjected to interpretation in order to derive the intended
semantics. To achieve this, syntactic representations abstractly represent the object of consideration,
in order to represent the characteristics relevant for the application purpose. Accordingly, models
usually exhibit the following properties [St73]:
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• Mapping: Models are always related to an original, which they depict.

• Reduction: Models generally do not capture all attributes of the original represented by them,
but abstract from them as required for the respective purpose or use case.

• Pragmatism: Models are not uniquely mapped to their originals per se, rather they fulfill their
substitution function for certain subjects under certain restrictions (purpose and boundary
conditions of the model construction). Thus models are subject to variability with respect to
the mentioned aspects.

Furthermore, models can be differentiated according to their purpose:

• A descriptive model describes an original for understanding or analysis (e.g., a city map).

• A prescriptive model describes the way of making of an original (e.g., a construction plan).

In addition, significant value is placed on the visualization of models. This is supported by the
wide acceptance of semi-formal modeling languages in both the academic and industrial domains.
Examples are UML for software or SysML for systems development. The introduction of such
models alone will not be able to make the desired contribution to mastering complexity, unless the
models have the quality properties relevant to the development project at hand. A model is the most
important artifact of model-based development, and its quality thus contributes decisively to the
success of the project [FHR08]. For this reason, quality assurance guidelines such as those in the
IEC 61508 standard [IE10] rightly demand adequate quality of models in the development process. In
particular, quality requirements for models also include requirements for the modeling notation in use.
In Tab. 1, quality properties for models according to [FHR08] are summarized and explained. This
taxonomy forms the basis for the evaluation (see Sect. 3) of the MontiBelle approach for model-based
development and formal verification presented in Sect. 2.

Tab. 1: Overview of quality properties for models [FHR08, p. 416-420] with extensions of vertical
quality properties redundancy and controlled redundancy, as well as additional quality properties
verifiability and transformability

Intra-model quality properties
Representation Representation measures how easily information can cognitively be compre-

hended. A better representation yields better understanding. Aesthetically
pleasing and well-structured models are easier to understand.

Precision Precision measures whether all relevant properties of the modeled system have
been captured. Precision addresses the reduction of information as a result of
modeling.

Universality Universality measures whether only relevant details are modeled. A low univer-
sality could result from unnecessarily fixing platform-specific details in early
design phases and could, e.g., induce a complex solution in hardware later on.

Simplicity Simplicity measures whether relevant details are not modeled any more complex
than necessary. Simplicity can be increased without losing any information
content, e.g., by reformulating, restructuring, and using abstraction.

Semantical
adequacy

Semantical adequacy expresses the suitability of a model to purposefully
represent desired information. For example, entity-relationship-models are well
suited to represent entities and their relations. They are less suited to model the
behavior of software components.

Continued on next page
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Tab. 1 – Continued from previous page
Consistency Internal Consistency measures the absence of errors within a single model. A

typical consistency check verifies that variables are defined before their use.
Conceptual
integrity or
uniformity

Conceptual integrity or uniformity aims at providing similar solutions to
similar problems. This quality indicator measures the similarity of modeled
solutions within single models. Conceptual integrity can be achieved by applying
repeatable rules, patterns, and principles.

Conformance Conformance measures the level of application of standards and norms to models.
Conceptual integrity can thus be a consequence of conformance, assuming the
standards and norms have relatively tight boundaries. Typically, project specific
guidelines are required to achieve conceptual integrity from conformance.

Language-
specific,
semantical
quality proper-
ties

These quality properties include any additional quality indicators that the
specific modeling language provides. Examples include completeness of state
charts or liveness in Petri nets [Re85].

Horizontal inter-model quality properties
Consistency,
conceptual
integrity,
language-
specific,
semantical
quality proper-
ties

Intra-model quality properties in the inter-model perspective. For example,
matching interfaces, i.e., the description of visibility along with management
and transfer of interface elements, are necessary.

Downward
completeness

Downward complete models must contain all necessary information for devel-
oping model artifacts of the next development step in the model-chain.

Cohesion For cohesive models, interrelated parts and facts must be modeled in closely
related model artifacts.

Modularity Modular models must represent single aspects to facilitate re-usage of model
artifacts.

Freedom from
redundancies

Even though complete redundancy-free modeling is not possible or desired (see
controlled redundancy), redundancy between models must be minimized.

Controlled
redundancy

Allowing purposeful redundancies in models can be leveraged , e.g., for different
views of system parts or facts [Gr08].

Vertical inter-model quality properties
Correctness Correctness measures whether a model implements requirements from previous

artifacts in the model chain rightly. This could include that requirements of
previous stages are developed towards a correct implementation.

Downward
correctness

A granularity level of models is downward correct, if all requirements of this
level’s artifacts are refined in subsequent granularity levels.

Upward
completeness

Upwards completeness measures how complete the requirements of a previous
development phase were adhered to. Upwards completeness is highly related to
correctness, as only correct derivations may result in completeness. However,
correctness does not induce completeness. Consider requirements of a previous
stage to be implemented in multiple new models. Correctness can be measured for
each new model individually. In contrasct, completeness requires consideration
of the whole model set.

Continued on next page
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Tab. 1 – Continued from previous page
Traceability Traceability measures the ability to track which information from one model

was used to create (parts of) a new model in a subsequent development phase.
Modifiability Modifiability measures the ability to maintain (for correcting and for evolving),

extend, and re-use models or model elements.
Freedom from
redundancies

To achieve freedom from redundancies over subsequent granularity level’s
artifacts, subsequently developed models should not model previously modeled
information again.

Controlled
redundancy

Introducing controlled redundancies over multiple granularity levels, i.e., mod-
eling the same properties or behaviors in different ways, allows checking
semantical consistency of requirements between successively developed model
artifacts.

Quality properties for modeling notation
Degree of
formalization

The degree of formalization measures whether and to which extent the models
adhere to a formal language. An increased extent of formalization increases the
ability to analyze, simulate, or generate artifacts from models. Later development
phases generally require higher extent of formalization.

Adequacy for
the application
domain

Measures whether and how well a modeling notation can be used to model
typical domain concepts. Models should generally be clear and compact, while
still maintaining the ability to model even complex domain specific concepts.
Non adequate notations typically lead to unnecessarily complex models or even
non modelable concepts.

Other model quality properties
Verifiability Verifiability determines if and how well modeled properties can be verified re-

garding their correctness. Verifiability requires a certain extent of formalization,
as models and their properties need clear semantics for verification to take place.
A special case of verification is testing, which requires an executable model.

Transformability Transformability measures whether and how easily models can be processed
and transformed, typically but not necessarily by machines. Transformations
can be used to derive simulations or other (formal) analysis.

1.2 Contribution

As described in Sect. 1.1 model-based development provides an indispensable means for mastering
increasing complexity of software in general and in particular in the avionics domain. This in turn
has a positive impact on the product quality. Since the product quality is determined by the models’
quality, we have to provide guidance on how to reach said quality.

Bansiya and Davis [BD02] developed an approach for quantitative assessment of the design properties
in object-oriented designs. From the corresponding metrics they calculate the high-level quality
attributes. However, the approach is valid for object-oriented systems, while model-based development
is the more general approach, which we are targeting in this contribution.

In addition, since some system properties cannot be verified exhaustively by testing only and others are
amenable to verification only by the deployment of formal methods, the model-based approach needs
to cover the integration of formal methods, as well. To the best of our knowledge, no such method has
been presented yet. The contribution of this paper is answering the following research questions:

• RQ (1): Which quality attributes of models are relevant for determining the product’s quality?
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• RQ (2): To which extent does the selected model-based approach with formal underpinning
for precise semantics support the development of models of high quality?

1.3 Structure

RQ (1) has been answered with the proposal of the attributes described in Tab. 1, where these are
applicable to any model-based development approach. Sect. 2 covers the MontiBelle approach. This
provides the required semantical underpinning via Focus, offers a tool chain, includes a development
methodology for mitigating the risks of formal verification, and increases the success rates of such a
verification. Using an avionics case study in Sect. 3 we evaluate to which extent MontiBelle addresses
the identified model quality properties. This answers RQ (2). We conclude in Sect. 4 and describe
needs for future development in Sect. 5.

2 MontiBelle Approach

The approach under evaluation in this paper is MontiBelle [Ka20b]. It provides a framework for model-
based formal verification. The framework consists of (1) Focus [BR07] as a semantic foundation for
the interpretation of system models, (2) a methodology for system development, and (3) a tool chain.

2.1 Focus

In the formal specification language Focus, distributed and interactive systems consist of components
that exchange messages over unidirectional channels. The semantics of a component is a (set of) stream
processing functions, each of which represents one potential behavior. The refinement of a component’s
behavior is represented by set inclusion (⊆) between the original and current components’ semantics.
Concurrency is represented by an appropriate composition operator that connects channels. The most
important reason for using Focus is the property that refinement is fully compositional [BR07, Ka20b].
This means that if a system has been decomposed and the parts were refined separately, then the
reassembled refined parts are by design a correct refinement of the system before its refinement.

2.2 Methodology

The MontiBelle methodology is a development approach derived from SPES [Bö21] and
SpesML [Ge23]. It fulfills the requirements of EUROCAE ED-216, which describes the use of
formal verification in the development of software systems for the avionics domain. The MontiBelle
methodology aims at providing users with the necessary guidelines to intuitively and successfully
apply formal verification to system engineering tasks. MontiBelle uses model-driven concepts to
enable abstraction where possible. At the same time, formal specification techniques allow fine-grained
control over system specifications where necessary. The MontiBelle approach covers the early stages
of development, as well. As such, it provides means to ensure conformance, consistency, verifiability,
and traceability between system requirements (SRs), high-level requirements (HLRs), and software
architecture design and low-level requirements (LLRs).
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First, typically informal SRs are formalized in HLRs as declarative specifications over communication
histories. We use input-output relations in assumption-guarantee-style3. Designing a system is,
in accordance with EUROCAE ED-216, divided into two activities: deriving an architecture and
developing LLRs. The MontiBelle approach proposes to decompose HLRs into communication
architectures of more detailed and specialized HLRs, until a fine-grained enough architecture is reached.
When refining declarative specifications to either other declarative specifications or to architectures
[PR97], then meeting the resulting proof obligation typically entails showing the implication between
(potentially multiple and coupled) logic predicates. The compositionality of refinement in Focus
and MontiBelle’s toolchain automates the proof-finding. The LLRs are formalized using prescriptive
models. MontiBelle suggests event-driven automata [PR94, Ka23] to model LLRs as they are
implementation-oriented and specifically fitting for software-intensive systems. One of their most
important properties is the fact that they are implementable by construction. Lastly, architecture and
LLRs are combined into a system design. This is achieved by refining the final HLR architecture to an
equally structured architecture composed from LLR. The proof for correctness of the refinements
follows directly from the compositionality of Focus and is fully automated.

2.3 Avionics Case Study

The development of an avionics data link was previously conducted using the MontiBelle approach
[Ka22, Ka23]. This Data Link Uplink Feed (DLUF) system is representative for software systems in
the avionics domain and will be used to evaluate the claim of increased model quality. The DLUF
system should enable components using a wireless connection (e.g. between an Unmanned Aerial
Vehicle (UAV) and its ground station) to transfer prioritized data packets. The objective was to develop
a system that adheres to a set of 18 system requirements. It required to formally verify (instead of just
demonstrating the correct functionality with non exhaustive tests), that these properties hold for the
overall system (instead of just subsystems) in every scenario (instead of just best case scenarios). One
of the requirements, the non-starvation (or liveness) property, required the use of formal methods
to ensure a correct DLUF system. This property could not be tested for, as it required checking an
unknown and potentially infinitely long time frame. It had to hold for the overall system and could not
be sufficiently verified by only checking properties of the system’s parts, but required the integration
of all artifacts into a single coherent claim.

According to the MontiBelle methodology, the non-starvation requirement was encoded in a descriptive
model using the textual notation of SysML v2. The specification is contained in a SysML part definition.
The interface is modeled using port usages of a custom type called Packets. The HLR shown in List. 1
is expressed using a (descriptive) requirement which groups four SysML constraint usages, three of
which as assumptions and the last as guarantee, designated with the require keyword.

3 A style of specification, that asserts certain properties (the guarantees), if certain preconditions (the assumptions),
hold.
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1 part def DLUF_HLR1 {
2 port input: ∼Packets[4]; port output: Packets[4];
3
4 satisfy requirement 'non-starvation' {
5 assumes 'infinitely long timeframe' {
6 ∀i∈{1,2,3,4}. input[i].length() = ∞
7 }
8 assumes 'message for each interval' {
9 ∀i ∈ {1,2,3,4}, t:nat: input[i].atTime(t).length() > 0

10 }
11 assumes 'individual packet size below max. capacity' {
12 ∀i ∈ {1,2,3,4}: ∀v ∈ input[i].values(): v < maxCap[i]
13 }
14 require 'infinitely many outputs on all channels' {
15 ∀i ∈ {1,2,3,4}: output[i].messages().length() = ∞
16 } } }

List. 1: Descriptive ’non-starvation’ HLR formally modeled in SysML v2’s textual notation.

From the HLR, we developed fine grained specifications using decomposition. All subsystem
specifications at this stage are described using descriptive models similar to the one in List. 1. This
approach is in accordance with EUROCAE ED-216 where from System Requirememts, HLRs are
developed. Traceability is achieved using a derivative of the general SysML specialization relation
called refinement, denoted by the refines keyword. Once we reached a suitable decomposition level, we
developed prescriptive (LLR) models for each non decomposed (atomic) subsystem. The descriptive
models are traced to their prescriptive counterparts using refinement relations. The LLRs are eight
total subsystems, four buffering components and four capacity gates. A prescriptive buffer specification
is shown in Fig. 1, using SysML v2’s graphical representation for better readability:

«state»
S

entry assign [ ] to b

attributes
value b: List<Packet>

i [ b.isEmpty() ] / assign b := b.append(i), send i to o

i [ b.isNotEmpty() ] / assign b := b.append(i)

ctrl [ b.length() >= 2 ] / assign b := b.tail(), send b.tail().head() to o

ctrl [ b.length() <= 1 ] / assign b := b.tail()Tick [ !b.isEmpty() ] / send b.head() to o

Fig. 1: SysML v2 graphical representation of the prescriptive Buffer model.

The single state contains a list of %02:4CB, modeled using SysML v2’s attributes. The list stores
incoming messages. The transitions handle behavior, i.e., processing incoming messages (top),
incoming control directives (bottom right and bottom middle), as well as time passing. Similarly, the
capacity gate is shown in Fig. 2.
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Fig. 2: SysML v2 graphical representation representation of the prescriptive capacity gates.

The capacity gate has two internal states, Send and Block. The current state shows, whether the current
time slice has remaining capacity to send messages. As long as remaining capacity, modeled as the
attribute cap, is sufficient, messages are forwarded. Once the capacity threshold is reached, messages
are blocked until time passes. A control message #02: is sent to inform the buffer component about
the blockage. Operation continues, once capacity becomes available. The prescriptive models are
assembled into an LLR of the entire system via composition. There are four scheduler subsystems of
buffer and capacity gates. A graphical representation of the first subsystem is shown in Fig. 3:

Scheduler1

Buffer1 Capacity1

Fig. 3: Graphical representation of a scheduler subsystem from buffer and capacity gate.

The method of decomposing descriptive models and refining them to prescriptive models leads to a
tree-structure that describes both the development path, as well as the certification artifacts (proof
obligations) required for verification. As part of the case study, all these proof obligations where met
in an automated way. Fig. 5 visualizes the tracing relation tree for the DLUF case study.

2.4 Tool Chain

Models of a SysML v2 profile named MontiBelleML describe systems of different granularity or
abstraction levels. Between the systems at different abstraction levels, modeled refinement relations
indicate proof obligations. A generator translates these models and refinement relations into the syntax
of a theorem prover, Isabelle [NPW02]. Isabelle enables machine-assisted and automated proof search.
In particular, we use the generated theories together with the general theories (Focus encodings) to
perform formal verification of the refinement relations. The verification can function autonomously
using automation scripts. The result consists of machine-verifiable certificates of correctness or, in
cases of errors, counterexamples. The tool chain is depicted in Fig. 4.
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Fig. 4: MontiBelle tool chain overview.

2.5 Related Work

The MontiBelle approach has been applied to case studies from domains such as automotive and
aerospace. In [Kr19] time-synchronous modeling was evaluated on an automotive case study. The
Isabelle backend was connected to the frontend modeling language MontiArc from the chair of
Software Engineering at RWTH Aachen University. MontiArc and a synchronous time model were
used again in [Ka20b] for verifying properties of a deterministic pilot flying system from a NASA
case study [CM14]. A non deterministic variant of the pilot flying system was refined step by step and
proven correct in [Ka20a] using MontiArc and its synchronous time model. Next, SysML was used as
frontend to specify the pilot flying system in the synchronous time model [Ka21b], which is more
commonly used for hardware modeling. An event-driven modeling approach for distributed software
applications was applied in [Ka21a], where the pilot flying system was modeled again using SysML.
Using event-driven modeling, another case study from the aerospace domain, the DLUF system, was
modeled with SysML and verified by a mapping to Isabelle [Ka22]. Finally, in [Ka23] the DLUF case
study was also modeled in MontiArc, where the foundations of event-driven processing using Focus
were also elaborated.

Formalisms such as Communicating Sequential Processes (CSP) ([Ho85], as used in e.g. [ML09]),
Calculus of Communicating Systems (CCS) [Mi82], c-calculus [Pa01], Ptolemy [Le16], Temporal
Logic of Actions (TLA) [AL94], Petri nets [Re85] or Focus [BR07] are usually used as mathematical
underpinning for reasoning. They are typically chosen, because they support non determinism,
underspecification, and a notion of behavioral refinement. They further enable the treatment of
time-sensitive specifications and hierarchical decomposition. In particular, decomposition is badly
needed in general, otherwise the verification of a complex atomic component can quickly become
unfeasible because of the computational effort caused by state explosion. This in turn requires
compositional4 verification, which is provided by Focus.

Modeling languages can be used to abstract from the complexity of the mathematical formalisms.
A number of modeling languages such as Esterel [Be00] or Lustre [Ca87] (and its dialect SCADE)
have been created for the development of reactive systems. They are, however, rather suited for the
description of hardware systems due to their time-synchronous paradigm. Further methodologies and
accompanying tools for specifying distributed systems have been developed, such as the Palladio

4 Compositionality is introduced by Carnab as Frege’s principle [Ca47, p. 120-121].
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Component Model [BKR09], MechatronicUML [Dz16], AutoFocus [VZ14] or Ptolemy [Le16].
Neither of them supports event-driven specifications or the latest version of SysML, an industry
proven and approved modeling language. We chose SysML [Sy23], because it is prominently used in
the aerospace and automotive industry for systems engineering.

Lastly, integrating formal verification, particularly deductive methods and modeling languages is not
new. The modeling language RSML−4 has been combined with the theorem prover PVS [RJH03]
via a code generator similarly to our approach. However, the modeling paradigm is synchronous and
not event-driven. The modeling language is not an industry standard such as SysML. There exists no
automations, as the proving process is manual.

3 Evaluation

The following sections evaluate the MontiBelle approach in regards to our previously introduced
quality indicators. We will determine what quality properties are covered by the MontiBelle approach
and how so.

3.1 Inner Quality

This section evaluates model quality indicators that are defined for each model individually. Those
indicators are called inner quality indicators, because they are defined for single model artifacts. In
Sect. 3.2 and Sect. 3.3 quality indicators spanning multiple model artifacts are assessed.

Presentation The MontiBelle methodology suggests the usage of decomposition of specifications.
MontiBelle also suggest the use of abstraction and underspecification. Both lead to simpler and more
managable model artifacts as demonstrated by the decomposed Scheduler in Fig. 3. Furthermore, the
MontiBelle approach indirectly increases the cognitive perceptiveness, because instead of proprietary
languages, the industry standard language SysML v2 is used. The textual syntax allows adequate
structuring by supporting arbitrary formatting. A graphical representation is also offered.

Precision Together with decomposing a system into subsystems and sub-aspects, MontiBelle’s
stream expressions [Ka22] for specifying requirements allow concisely and separately formulating
distinct facts as depicted in List. 1. Besides the signature, there are no additional model artifacts
necessary to fully specify systems and their requirements. For close-to-implementation specifications
an event-driven, state-based specification technique is provided, which is especially suitable for
software-intensive, and time-sensitive systems [KRK13].

Universality MontiBelle suggests strictly history-oriented specifications in the earlier development
phases. Besides the system signature and an expected input and output relation, no further assumptions
regarding the system’s implementation are made. Every implementation that fulfills the input output
relation is then conform to the system’s specification. Thus, it is ensured that no platform dependencies
are introduced. Even in later development phases, MontiBelle recommends abstract (platform
independent) state machines as depicted in Fig. 1 and Fig. 2. From these state machines code for any
chosen platform that produces output depending on system’s states and inputs can be generated by using
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a suitable generator. Furthermore, MontiBelle is capable of handling underspecification in models.
Underspecification in a specification implies that multiple, potentially infinitely many realizations
exist that still fulfill the history- or state-based requirements of the models. Thus, MontiBelle supports
variability and management of product-lines.

Simplicity MontiBelle can be actively used to increase simplicity of models. It allows formally
verifying semantical compliance of a simpler model (to a previous more complex one), and thus enables
correct reformulation and refactoring. Using MontiBelle’s underspecification capabilities, refactoring
steps permit refinement as well as abstraction of previous models. One example is the refinement and
decomposition of the scheduler component into a simpler buffer and capacity component depicted
in Fig. 3. Additionally, the approach is at its core syntax agnostic [Ka21b, Ka23]. For domains with
assumptions regarding the form of representation of complex properties, a domain-specific adaptation
or interchanging the modeling language facilitates domain dependent simplicity (e.g., by requiring a
special security keyword to encrypt the transmission, or by using a timing keyword to limit the time
delay).

Semantical Adequacy MontiBelle is semantically adequate for developing modern software
systems with a focus on safety-critical applications and time-sensitive systems. Since software-systems
usually exchange data over a long period of time, the mathematical framework Focus is well-suited
for depicting such communication histories. The non-starvation requirement of DLUF shows, that
liveness properties can be formulated with the MontiBelle approach. Time-critical systems demand
specification and analysis of time. For this, timed communication histories and event-driven processing
are specially adapted for software-intensive and time-sensitive systems (see [KRK13] for remarks on
precision).

Consistency MontiBelle uses the language workbench MontiCore [HKR21] for model processing
and consistency analysis. MontiCore offers the possibility to check models for syntax correctness
and supports the development of further analyses. Such analyses include checks for compliance
with conventions (e.g., naming conventions), reference checks (e.g., existence and visibility of
referenced model elements such as system states), and type checks (e.g., type-correct expressions over
communication histories, so called stream expressions). The DLUF models are automatically checked
in regards to type and interface consistencies.

Conceptual Integrity/Uniformity MontiBelle provides internal conceptual integrity/uniformity
through the use of a domain-specific profile for the industry known system modeling language SysML
v2. The profile restricts the use of model elements to those that have a semantic foundation in Focus,
e.g., requirements modeled in List. 1 and state charts modeled in Fig. 1. Of course, it is not sufficient
to consider only internal conceptual integrity/uniformity. When the subsystems and views of those
subsystems come together, the conceptual integrity/uniformity plays a vital role again. The SysML v2
profile therefore is also relevant in Sect. 3.2. Nonetheless, the foundation for this is already laid here.

Conformance MontiBelle requires conformance to the concepts already explained above. Thus,
models always consist of the signature of the (sub)system and its behavior, be it descriptive or
prescriptive in nature. However, its particular strength lies in the refinement relation between models
and the verifiability of those models. For example, MontiBelle achieves conformity of models with
respect to EUROCAE ED-216 by external, i.e., cross-model, features (compare Sect. 3.2).
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Language-specific, Semantical Quality properties This is one of the core competencies of
MontiBelle. By building upon a suitable semantical foundation and mapping models into theorem
prover code, MontiBelle achieves semantic analyzability of model artifacts, including abstract,
history-oriented specifications and underspecification. This is showcased through the verification of
the modeled DLUF system in regards to its non-starvation property. Even complex systems can be
formally analyzed by leveraging decomposition in Focus and its compatibility with refinement. This
verification further enhances model quality.

3.2 Horizontal Inter-model Quality Properties

In the following sections, we address inter-model quality indicators at one granularity level. Granularity
levels emerge in the iterative system development process as soon as the system is described at
a different level of abstraction. According to the MontiBelle methodology, underspecification is
decreased across granularity levels, while decomposition is increased.

Consistency, Conceptual Integrity, Language-specific, Semantical Quality Properties
These properties can often be assessed only across models. The MontiBelle SysML profile allows
system engineers to model refinement dependencies across model artifacts and the modeled system
parts. In DLUF, 19 refinement relations (compare Fig. 5) are traced. These refinement relations
between models are statically and semantically verifiable. Static verification is a well established model
analysis approach. MontiBelle, for example, checks the compatibility of refined interfaces. These
checks are made possible by MontiCore’s [HKR21] language infrastructure. Semantic verification,
however, is only possible with a suitable semantic domain. MontiBelle uses Focus to facilitate the
formal verification of horizontal inter-model conformity and conceptual integrity. All refinement
relations of DLUF were proven in the case study [Ka22].

Downward Completeness Following the MontiBelle methodology, downward completeness is
inherently reached, once the current granularity level’s specifications fulfill the requirements from the
previous level. This is because MontiBelle is able to verify the correct specification of underspecified
systems, as shown multiple times for the DLUF case study granularity levels in Fig. 5. Furthermore,
MontiBelle promotes the use of decomposition and refinement to gain more granular and eventually
less abstract specifications. Fulfillment of previous specifications can be formally verified, as the
paragraph about correctness explains. Downward completeness is thus highly related to correctness
and upward completeness in the MontiBelle approach.

Cohesion (De)composition supports both cohesion and modularity of models. According to the
MontiBelle methodology, interrelated system aspects are modeled as individual subsystems, because
this facilitates verification. In the DLUF models this is exemplary shown in the scheduler component.
A strong cohesion between the buffer (see Fig. 1) and capacity models (see Fig. 2) exists, since
together they specify the scheduler (see Fig. 3). The scheduler model is individually well-defined and
can be understood without any other models. Through the methodical application of the MontiBelle
approach, closely related system parts of the DLUF system are cohesively modeled.

Modularity (De)composition (see Fig. 5) is arguably even more important for modularity than it is
for cohesion. By decomposing a system into multiple subsystems, the system and its models get more
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Fig. 5: Hierarchical decomposition of the DLUF case study including tracing and decomposition.

and more modular, since the models of subsystems only model single aspects. This modularity allows
independent development into new granularity levels including verifying refinement relations. The
independently developed models’ interfaces are correct in regard to the system, because the refinement
of a subsystem directly implies the refinement of the whole system in Focus. The buffer component
in the DLUF system can independently be developed further without having any implication on the
scheduler component or the whole DLUF system.

Freedom from Redundancies For systems modeled according to the MontiBelle approach, a
granularity level reduces redundancies by importing and re-using models. The scheduler composition
in Fig. 3 does not define the buffer’s or capacity’s interfaces and behavior. Instead, model artifacts are
referenced for the composition. Furthermore, additional redundancies are removed in MontiBelle
by facilitating parametric models. Only one capacity model is enough to specify the four different
scheduler components of DLUF [Ka22]. However, completely redundancy free modeling is impossible,
e.g., when referencing other model artifacts a model name is used. If this model name is changed,
the references to this model must also be changed5. Additional well-defined tooling mitigates this
problem.

Controlled Redundancy By decomposing the system into individual models, thus introducing
controlled redundancy, these models can be independently developed. Model redundancies, when
referencing models, allow statically checking type and structural correctness of compositions.
Verification coverage is given, since MontiBelle formally verifies the correctness of a granularity level.
In DLUF, different system engineers specify and refine different models.

5 Name changes can automatically be handled by renaming all references. MontiCore [HKR21] provides a symbol
infrastructure for this purpose, enabling tracing named references across all model files.
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3.3 Vertical Inter-model Quality Properties

In the following sections cross-model and cross-granularity level quality properties are evaluated
for the MontiBelle methodology. These quality indicators can be assessed, once model artifacts of
systems are iteratively developed.

Correctness For correctness, the requirements from the previous level must have been correctly
implemented in the following level. MontiBelle allows the modeling and correctness checking through
the refinement relation of the Focus theory. This is done in a machine-supported and automated way.
For DLUF, all system specifications of all granularity layers and all refinement relations between
them are automatically translated into theorem prover syntax. Then all proof obligations are met
by automatic solvers and machine checked [Ka22]. In summary, this verified, that the architecture
and LLR are correct regarding the top level HLR. MontiBelle not only verifies this quality attribute,
but also supports the development of models in this direction. Counterexamples can be found and
extracted as test cases, which can facilitate revisions of the models.

Upward Completeness Orthogonal to correctness, this property requires, that all requirements
from the level above have been fulfilled. The reasoning therefore follows in large parts that of the
previous paragraph. A particularly important feature of MontiBelle’s underlying Focus theory is
the compositionality of refinement. Due to Focus, the global consideration of requirements and
development steps is reduced to many small, local refinement proofs, which are illustrated in Fig. 5.
As a result, the complexity of proof finding is decreased, reusability is stimulated, and engineering
productivity can be increased through parallelization.

Traceability MontiBelle ensures traceability through refinement relations. Refinement relations
can be continuously checked and thus improve traceability compared to unchecked tracing relations.
The continuous verification of the refinement relations is possible locally, for example in an Integrated
Development Environment (IDE) like environment. It is also possible to verify the refinement relations
in batch mode, for example in GitLab© CI/CD or GitHub© Actions. This is particularly important when
multiple subsystems are integrated into an overall architecture. Changing a requirement immediately
leads to updated proof obligations. These proof obligations are automatically encoded in a theorem
prover via a code generator. The proof obligations can be checked automatically through automation
of proof finders and tactics [Bü20]. Furthermore, because traceability is a key indicator for upwards
completeness, the same reasoning as to why MontiBelle increases upwards completeness apply here.
Particularly, the compositionality of refinements allows us to automatically conclude refinement of
complete systems from refinement of individual subsystems as depicted in Fig. 5. Plainly put, this
increases the value of those individual refinement relations. By increasing their value and encouraging
their methodological usage, MontiBelle increases the traceability.

Modifiability Modifiability can be divided into the three aspects (1) maintainability, (2) ex-
tensibility, and (3) reusability [FHR08]. We will argue each aspect individually in the following
paragraphs.

MontiBelle improves maintainability by assuring correctness of changes induced by maintenance
work to existing requirements. By using MontiBelle, the semantics of the original and the changed
specification can be compared. It can thus be formally verified, that the maintenance work had the
intended effect on the system specification. Additionally, relations to other system specifications (for
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example refinement to hardware- pecific requirements) can continuously be verified, as well. It is
important to note, that MontiBelle is able to verify underspecified system specifications, thus can be
used to maintain even early and relatively vague system specifications. The verification results can
be used to steer the maintenance work. This enables semantic oriented maintenance with formally
assured outcome.

Extensibility is improved analogously. With MontiBelle, extended system specifications can be
semantically verified regarding old and new requirements or compared to the original system
specification. The use of underspecification in early development phases enables proving the correctness
of or deliver counterexamples for extended system specifications. As an example, assume a system
specification was developed from safety and security constraints. Now assume the system specification
is extended in such a way as to save resources. For example, subsystems might be merged to deliver
multiple functionalities and thus save costs. Communication channels might be reduced to save cable
runs and thus weight. Such optimizations might be unsafe as merging multiple systems might introduce
unsafe behavior or reduced cable runs could decrease fault tolerances. For safe systems, MontiBelle is
able to provide assurances in the form of formal safety proofs. If the extended system specification
is not safe, then MontiBelle can be used to produce and check potential counterexamples. Use of
underspecification enables modeling and verification of such optimizations at early development
stages.

MontiBelle promotes model reusability by allowing models to be placed in a refinement hierarchy.
More abstract requirements can serve as the starting point for a tree of developed system specifications.
Each developed system specification might be an independent subset of the specification. This enables
the creation (and maintenance, see above) of product families. The hierarchical tree structure allows
verification artifacts to be reused. Assume an avionics data transmission system specification was
developed from a set of regulatory requirements. An overview of the development artifacts is shown
in Fig. 6. The requirements leave some fixed maximum tolerance to the transmission delay. The
developed specification must adhere to those tolerances, but is still underspecified regarding the exact
delay. A top-of-the-line system was developed from those specifications, having a delay of at most 1
ms. For a less mission critical application, a cheaper system with a higher delay tolerance can now be
developed from the same underspecified system specification. With MontiBelle, it suffices to show
the correct development of this cheaper system from the intermediary specification. This reduces the
overall costs of product families.

Freedom of Redundancies The DLUF system case study includes a buffer HLR [Ka22] and a
buffer LLR model. These specify the behavior of a buffer in different abstraction levels. Changing the
behavior or interface of one of the models may cause the other model to need to be modified, as well.
Thus, the MontiBelle methodology is not free of redundancies. However, this problem is mitigated
by specifying the refinement relation. Should redundant information be inconsistent syntactically,
MontiBelle provides model analysis tools to find these inconsistencies. If the inconsistencies are
of semantical nature, then MontiBelle automatically attempts a re-verification. If this verification
is successful, the change is re-verified (see Modifiability). If it fails, MontiBelle can provide the
system engineer with a counterexample regarding the refinement relation. The redundancy in behavior
description is desirable and is therefore not a defect of the methodology.

Controlled Redundancies Controlled redundancies in the MontiBelle approach give the pos-
sibility to specify behavior both descriptively and prescriptively [Ka23]. Descriptive specifications,
in the form of HLRs, are represented by history-based specifications. Prescriptive specifications
(LLRs) are represented as state-based specifications by event automata. These redundancies allow for
correctness and consistency checks between the speficiations, ultimately increasing correctness of the
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Fig. 6: Exemplary development of an avionics data transmission system with delay constraints.
An integrator would have to prove its specifications to be safe regarding some regulatory body’s
requirements (left). Supplier A would have to prove its system’s correctness regarding the integrator’s
specifications.

developed system. Models can also be provided in a reader-oriented manner by (de)composition. A
requirements manager may need a more abstract view of the system and thus considers a descriptive
specification of a composed system (e.g., DLUF HLR in List. 1) [Ka22]. A software developer of
a specific subsystem meanwhile is more interested in the prescriptive, state-based behavior of the
respective subsystem (e.g., buffer LLR in Fig. 1).

3.4 Quality Properties for Modeling Notation

Some model quality indicators go beyond measuring individual models and rather measure the
modeling notation itself.

Degree of Formalization Using MontiBelle increases the level of formalization in two ways.
First, the SysML v2 profile requires a minimum level of formalization. The interfaces of the systems
and subsystems and their interconnections must be specified. It is permitted to adapt the interfaces and
structures in later developmemt steps, but one development step is not complete, until the structure of
the system specification has been defined at this step and thus granularity level. Further, behavioral
specifications cannot be described informally at will, but must be done in one of three ways. These
are: history-oriented (abstract), state-oriented (implementation-oriented) and decomposition-oriented
(structural). Beyond this minimal degree of formalization, MontiBelle allows arbitrary underspecified
behavior, which remains at most the same or is refined with each development step. Thus, after a
refinement step the specificity increases and the solution space becomes smaller.

Adequacy for the Application Domain First, MontiBelle is language agnostic in terms of
concrete syntax. As shown in [Ka21b, Ka21a], an intermediate representation of models captures the
semantic domain of architecture description languages and behavioral specifications. This intermediary
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model is then mapped to Focus. Thus, a domain coupled with a corresponding domain specific
language (DSL) can be easily served, as long as the semantic domain is compatible. As one of
the concrete modeling languages realized by MontiBelle, SysML v2 is the successor of the de
facto standard language of systems engineering, SysML v1. SysML v1 is widely known, used, and
understood worldwide. The successor, SysML v2, offers many enhancements and improvements
thanks to its textual representation with the same graphical visualization and is therefore suitable as a
language for the domain of systems engineering and was used in the DLUF case study.

3.5 Additional Model Quality Indicators

This list of model quality indicators presented here is not exhaustive. Different domains might come
with their own set of quality indicators. We found the two below to be of particular interest for the
avionics domain.

Verifiability MontiBelle requires a certain degree of formalization of the models, as described
in the corresponding paragraph degree of formalization. Through this formalization, one gains
verifiability, as it enables machine assisted formal verification. Specifically, MontiBelle maps the
model to its Focus semantics via an intermediate syntax agnostic model. As a result, definitions and
theorems are encoded in a theorem prover and linked to the core definitions of Focus, which have
also been encoded in the theorem prover. The theorem prover allows reasoning over the semantics
of the models. The mathematical underpinning by Focus enables capturing underspecification and
abstraction. However, MontiBelle not only enables verifiability, but also improves the verifiability
through its development methodology. The methodology is based on the SPES methodology and uses
granularity layers and decompositon hierarchies in modeling. This enables not only the decomposition
of system requirements (which increases reusability), but leads to decomposed proof obligations,
as well. This leads to smaller and thus more automatable verification steps. The verification of the
overall system is ensured by the compositionality of the refinement in Focus. This property holds by
construction and can be checked automatically in our Isabelle encoding.

Transformability MontiBelle achieves transformability of models in the following way: First,
any data flow and structure modeling language is reduced to semantically well-founded models. In
MontiBelle, this is achieved for SysML v2 by a corresponding profile. This profile ensures, that all
models that correspond to the profile are transformable, i.e. semantically sound. The transformability
then allows the automated and therefore less error-prone translation of the models into a theorem
prover. This is detailed in the paragraph about verifiability. The textual representation of SysML v2
ensures, that this transformability is given for all SysML v2 models and is independent of any vendor
specific tool and data structure of the models. All models of the DLUF case study were transformed
and could subsequently be treated by the highest level of formal methods, i.e. deductive reasoning
(theorem proving).

4 Conclusion

In summary, modeling along the MontiBelle methodology has a positive impact on all model quality
indicators (answering RQ (02)) listed in Tab. 1. As argued previously in [FHR08], increasing model
quality can also enhance product quality and thus lead to more correct systems. Accordingly, the
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methodology is a good candidate for systems engineering, as it allows the verification and validation
of system properties in early development phases. This is especially important for the development of
highly safety-critical systems of the avionics domain. For this purpose the MontiBelle tool also offers
extensive automation to support the development engineers.

5 Outlook

In order to further reduce modeled redundancy, it is conceivable to increase the use of the extensive
parameterization possibilities of SysML v2. In particular, SysML provides the possibility to refer to
model elements by so-called references instead of repeating them. The extent to which, for example,
building blocks can be reused in the form of constraints is to be evaluated. We also plan to increase
the level of automation even more. A possible next step would be to consider the use of the references
to make it easier to check decomposed systems for correctness. Crucially, references to the same
constraints could simplify the proof of equivalence or implication between constraints. Additionally,
the construction of a library of standard model elements with accompanying certification artifacts
seems to be an interesting aspect. MontiBelle benefits from the fact, that the underlying formalism
Focus already follows exactly this idea. Re-use of development artifacts in an avionics development
processes could provide opportunities for a more economic development. Integrating the technique
of continuous verification introduced in this paper into avionics development processes might be
an incremental step towards this goal. Finally, we plan to evaluate our methodology on models of
systems in productive development. Some quality indicators are hard to measure and require the
measurement of proxy indicators instead. Furthermore, quantitative assertions are hard to prove. These
shortcomings should be further investigated.
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Abstract: Recent pre-trained Large Language Models (LLMs) have demonstrated promising Natural
Language Processing (NLP) and code generation abilities. However, the intrinsically unreliable output
due to the probabilistic nature of LLMs imposes a major challenge as validity can generally not
be guaranteed, making subsequent processing prone to errors. When LLMs are used to translate
natural-language specifications to formal specifications, this limitation becomes evident. We propose
a framework involving prompting and algorithmic post-processing that continuously interacts with the
LLM to ensure strict syntactic validity and reasonable content correctness. Furthermore, we introduce
a use-case in the domain of engineering processes for railway infrastructure and demonstrate that our
approach is sufficiently mature for implementation in an industrial environment.

Keywords: Generative AI; Large Language Models; Reliable Code Generation; Post-processing;
Domain-specific Languages; Engineering Processes

1 Introduction

Recent advances in AI research related to pre-trained Large Language Models (LLMs) have
caused a paradigm shift for numerous tasks in Natural Language Processing (NLP), such as
text classification, text generation, text processing, or information retrieval. Traditionally, a
latent feature representation must be designed or learned individually for each NLP task,
with the quality of the outcome being highly dependent on the training data. Since language
understanding is a common factor of many NLP tasks, the idea of pre-training this generic
and task-agnostic aspect became more widely adopted [Mi23].

Domain-specific languages (DSLs) are an approach to accelerate software development
in specialized domains. In contrast to general-purpose programming languages, DSLs are
tailored towards a specific task or problem. Writing DSL code requires knowledge of the
DSL itself as well as programming skills. Domain experts often lack these requirements
and collaboration with software developers becomes essential. Leveraging the outstanding
NLP abilities of LLMs, DSL code can be automatically generated from natural-language
specifications written by domains experts, presenting an opportunity to streamline devel-
opment processes in which DSLs are applied. LLMs have shown reasonable abilities in
machine-translation tasks from natural-language descriptions to code [Xu22].
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Two main challenges are imposed by the application of pre-trained LLMs to DSL code
generation [Li23b]:

Domain-specific knowledge: Pre-trained LLMs are a general-purpose solution. They lack
specific domain knowledge and the concrete syntax of the DSL.

Probabilistic nature: A specific output format or satisfaction of given constraints are
generally not guaranteed.

In this paper, we propose a framework to reliably generate DSL code from natural-language
specifications using a LLM. Furthermore, we evaluate our solution through a concrete
industrial use-case in the domain of engineering processes, and show that our post-processing
procedure ensures the satisfaction of validity constraints for the DSL code that is generated
by the LLM.

The paper is organized as follows: In Section 2, relevant background regarding LLMs is
explained. In Section 3 our framework is described, consisting of prompting, the model,
and our post-processor. Furthermore, the use-case of engineering processes in railway
infrastructure is introduced in Section 4.1, followed by the adaptation of the generic
framework to the use-case in Section 4.2, and extensive evaluations in Section 4.3. The
paper is concluded by listing related work (Section 5) and a summary (Section 6).

2 Background

Essential concepts used in our proposed reliable DSL code generation framework are
auto-regressive transformer models, domain-specific customization of pre-trained LLMs,
and specialized code LLMs.

2.1 Auto-regressive transformers

The use of LLMs for NLP tasks such as text classification, generation or processing was a
major paradigm shift. Instead of designing and learning feature representations individually,
pre-training the task-agnostic aspect of natural language understanding became widely
adopted, especially with the introduction of the Transformer architecture that allowed model
pre-training on a larger scale combined with further improvements, most notably the efficient
consideration of long-range dependencies within texts [Va17].

The decoder-only models are a subclass of Transformer-based architectures and always
output text. They are used for text continuation or prompting and are most commonly
trained auto-regressively. Auto-regressive models predict the next single token (sub-word)
by maximizing the log-likelihood given all previous words and the model parameters [Va17].
Two state-of-the-art examples are GPT-4 [Op23] and Llama 2 [To23].
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2.2 Domain-specific customization

Pre-trained LLMs are typically trained on a large publicly available text corpus and are
a general-purpose solution. Therefore, they are not easily capable to operate in a highly
specialized domain as expert knowledge may not be freely available. Domain-specific
customization quickly becomes a necessity when applying LLMs to practical tasks and can
be achieved by employing techniques like prompting and fine-tuning [Li23b].

Prompts are task-specific input texts, and prompt crafting is the technique of carefully
designing prompts to guide the LLM towards a desired output. Discrete prompting uses
static prompt texts without updating inner model parameters and is categorized as zero-shot
or few-shot. While zero-shot prompts only contain the prompt text itself, few-shot prompts
also contain a few concrete examples to specify the expected output [Li23b].

Fine-tuning is the technique of applying additional training on a smaller, more specialized
dataset to a pre-trained model to enhance its performance in a specific domain [Li23b].

2.3 Code LLMs

A crucial aspect of LLMs is the pre-training corpus. Increasing its size and diversity improves
model performance, if the quality of the training data remains sufficiently high. Recent
models are trained on a vast amount of publicly available data from the web [Mi23]. Although
general-purpose pre-trained LLMs have shown reasonable performance in completing or
synthesizing code from natural language descriptions, specialized models trained on code
with a variety of programming languages together with natural-language descriptions are
more suitable [Xu22]. Examples of such code LLMs are the proprietary Codex [Ch21]
model, a GPT-3 variety that was fine-tuned on code, and Code Llama [Ro23], an open-access
code LLM based on Llama 2.

3 Framework for Reliable Code Generation

Our proposed framework, depicted in Figure 1, addresses both challenges, the lack of
domain-specific knowledge as well as the probabilistic output generation. The natural-
language specification is provided by the domain expert. Together with context, the formal
syntax definition of the DSL, and representative DSL code examples, it is handed over to
the LLM. The post-processor continuously interacts with the LLM in each generation step
and strictly guides it towards generating valid DSL code. The result is a valid DSL code
instance.
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Valid
DSL code

Post-processor

Prompt

ExamplesDSLContext

Natural-language
specification Model

Fig. 1: Framework

3.1 Prompt

Knowledge of the domain is introduced through a combination of three well-known
prompting techniques:

Context. General pre-defined instructions for the LLM [NLL23] describe the translation
task from natural language to DSL code and tell the LLM to comply with the context
and user input.

DSL. The formal specification of the DSL itself is provided as an input to the LLM. Each
language element and property is enriched by a natural-language description to enable
the LLM to map the contents of the natural-language description provided by the
domain expert to appropriate DSL constructs.

Examples. A small set of diverse DSL code instances is attached as pairs of natural-
language process descriptions and corresponding code (few-shot prompting). It has
been shown that with advanced prompting techniques, in particular similarity-based
selection of few-shot examples from a larger example pool together with schema and
context information, performance similar to fine-tuning can be achieved in specific
domains [Na23]. Effective fine-tuning is dependent on the amount and quality of
available datasets [Bu23], and was not considered due to the need for a large amount
of training data.

3.2 Model

Our framework relies on open-access auto-regressive transformer models from Hugging Face,
a machine learning platform where many models are published by the (research) community.
While the current implementation uses the Hugging Face Transformers API, the general
concept is not limited to a specific technology. Regarding the concrete model choice,
requirements imposed by the DSL, performance and quality considerations need to be taken
into account. The pre-training corpus of the concrete model determines its basic ability to
understand the task at hand. Therefore, the pre-training corpus should include programming
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languages that are similar to the DSL, and natural-language descriptions in the language
used by the domain experts. For instance, if the DSL is JSON-based, the quality of the
generated DSL code will increase, if the model was additionally trained on JSON files.

As models become larger (number of parameters), the quality of the generated code usually
improves [Xu22]. However, larger models require more processing power, and the speed of
model inference (generation of DSL code) depends on model architecture, model size, and
hardware, requiring an appropriate trade-off between these factors.

3.3 Post-processor

Our post-processing algorithm, depicted in Figure 2, controls the output generation of the
LLM. The auto-regressive transformer model generates its output step-by-step as tokens
(sub-words). The post-processor engages into every generation step: For each step, the model
generates hundreds or thousands of candidates for the next token based on the prompt and
the generated output so far. Sorted by priority as evaluated by the LLM, the post-processor
determines whether the token candidate represents a valid continuation of the partial output
sequence (partial DSL code) according to the given DSL specification. The valid token
candidate with the highest priority is then selected, handed back to the LLM, and added
to the partial DSL code, extending it one step further towards a full and valid DSL code
instance. A stop criterion is employed and evaluated after every step to determine, if the
DSL code instance is complete according to the DSL specification.

DSL
specification

Complete
DSL code

Post-processor Partial
DSL code

Next
token

Stop criterionList of token
candidates

LLM

Fig. 2: Post-processing

4 Use-case & Evaluation

We evaluate our framework for reliable DSL code generation on an industrial use-case in
the domain of engineering processes for railway infrastructure.
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4.1 Introduction to SHAPE Engineering Processes

Engineering processes consist of a set of sequential or parallel tasks with greatly varying
diversity and complexity. Common approaches to describe and implement such processes
are graphical notations or domain-specific languages. A leading general-purpose solution is
the Business Process Modeling Notation (BPMN) [CT12].

Industrial applications introduce highly specific requirements. The implementation of
engineering processes in railway infrastructure aims to guide engineers through rigorous,
extensive and safety-critical processes to optimize their execution and ensure compliance
with safety rules in the domain. For example, appropriate resources must be assigned to tasks,
work must be traceable and verifiable for future audits, and documentation requirements
must be satisfied [Ba16].

The SHAPE4 application framework enables the specification of such processes through
a flexible Java API. The application then executes the specified processes, collects and
monitors data from diverse data sources, continuously evaluates data consistency and
completeness through constraints, automates repeated tasks, creates virtual documents,
and more. Application users, typically engineers or managers, access the graphical user
interface via a standard web browser.

A simplified domain-specific language (SHAPE-DSL) was defined as an abstraction over
the SHAPE Java API and enables process designers to model the structure, data, and input
forms of SHAPE engineering processes. Technologically, the SHAPE-DSL is JSON5-based
and a JSON schema defines its syntax. The core language elements of the SHAPE-DSL are
listed below, and appendix 1 shows an example of a SHAPE-DSL code instance.

Process. As the overarching structure, the process serves as a container for the set of tasks
and general metadata.

Task. A task is a work unit that, during the execution of the process, is assigned to a person
and has a state (created, started, or finished). Depending on the state, dynamic forms
are displayed. Tasks can consist of multiple sub-tasks.

Form. Forms contain persistent data items (string, number, boolean, date, file, or user)
and corresponding form fields.

Field. User inputs are collected through different types of fields (standard text input
fields, dropdowns, file selectors, buttons, tables) that contain a user-facing label and
description as well as other field-related metadata.

Constraint. Data validations on fields are defined through constraints.
4 Safety-critical Human- and Data-centric Process Management in Engineering Projects
5 JavaScript Object Notation
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4.2 Post-processor for the SHAPE-DSL

To reliably generate valid SHAPE-DSL code, our framework requires a specialized post-
processor (see Section 3.3). In the context of the SHAPE-DSL, a partial JSON object needs
to be validated against a JSON schema. General-purpose libraries that validate JSON objects
against a schema are limited to validating complete JSON objects. However, given any
generation state, i.e., any partial SHAPE-DSL code, our post-processing algorithm evaluates
whether a generated token is a valid continuation. To achieve this, our streaming JSON
validator is able to strictly validate any such partial JSON object against the SHAPE-DSL
JSON schema. Each generic JSON language element (object, list, string, number, etc.) is
represented by a deterministic finite automaton (DFA), keeping track of the current state.
The token generated by the LLM is broken down to single-character inputs for the JSON
validator. Depending on the dynamically parsed JSON schema and the current state, only a
set of characters is accepted. If a character is rejected, the current token is considered invalid,
and the validator state is rolled back to the last valid token. State changes are triggered by
characters until the final state is reached. When the DFA is finished, the generated valid
SHAPE-DSL code is complete, and the LLM is signaled to stop.

4.3 Evaluation

Since the generated result is DSL code, the evaluation was done through automated unit
tests because other similarity-based comparison methods commonly used to evaluate text
are less suitable for code [Ch21]. Our hand-crafted dataset of 54 diverse test cases comprises
two categories: create (creation of a new engineering process from scratch) and modify
(modification of an existing engineering process in given DSL code). To ensure reasonable
variety, five basic test classes (structure, forms, fields, properties, and combined) were
defined, each consisting of between three and nine single test cases. The combined test
class contains more complex instances with multiple tasks and sub-tasks in up to three
levels, forms, and different types of fields. Two additional test classes (german and wording)
test the german language understanding and the dependence on specific wording or text
structure. The wording test class uses less structured natural-language input and less common
synonyms for certain keywords, e.g., ’part’ or ’phase’, instead of the well-known keyword
’task’.

Each unit test consists of a natural-language description, and specific content assertions
that are imposed by the natural-language description. We evaluate syntactic and semantic
correctness. Syntactic correctness is given, if the generated SHAPE-DSL code passes the
validation against the SHAPE-DSL JSON schema. Semantic correctness is given, if the
generated SHAPE-DSL code is syntactically correct, and the content of the generated DSL
code is correct, i.e., if all content assertions in the concrete unit test are passed.

We evaluated our framework on generating SHAPE-DSL code with two code models,
StarCoderBase [Li23a] and CodeLlama [Ro23]. Both showed state-of-the-art performance
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on common benchmarks, and were trained on multiple programming languages, including
basic JSON syntax. The models are available in multiple sizes. All 54 test cases were
evaluated for each model/size combination.

Summarized evaluation results are depicted in Figure 3, plotted as accuracy (percentage of
passed test cases) against model size (amount of model parameters). We demonstrated that
an increase of model parameters yields better results. We also showed that CodeLlama 13B
performs best in our scenario among the models we tested with an accuracy of 91%.

Fig. 3: Evaluation results per model size
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Detailed evaluation results per test class of the two best-performing models and with/without
post-processing are listed in Table 1. Especially noteworthy is the consistent syntactic
validity of 100% when post-processing is enabled. However, semantic correctness still
highly depends on the concrete model, particularly in more complex instances. For example,
StarCoderBase is unable to process less structured textual descriptions (test class Wording)
while CodeLlama reaches up to 60% accuracy in this test class. CodeLlama also performs
better with German natural-language descriptions. An observation that needs to be further
investigated is the Create/Combined test class for CodeLlama: While the evaluated result
achieves a semantic validity of 100% without post-processing, it falls to 75% with post-
processing enabled. An explanation for this performance degradation is that the concrete
post-processing implementation uses constraint checks that are stricter than necessary, and
wrongly identifies a syntactically correct solution that would be also semantically valid as
incorrect. Improvements to the implementation could mitigate this effect.
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Tab. 1: Evaluation results per test class, model, and post-processing.
S = Syntactic validity, C = Content/Semantic validity.

Model > StarCoderBase 15.5B CodeLlama 13B
Post-processing > No Yes No Yes
Test class [#cases] S [%] C [%] S [%] C [%] S [%] C [%] S [%] C [%]

Create (35)

Properties (5) 100 60 100 80 100 80 100 100
Structure (4) 100 100 100 100 100 100 100 100
Forms (3) 100 100 100 100 100 100 100 100
Fields (9) 100 89 100 100 100 89 100 100
Combined (4) 100 75 100 75 100 100 100 75
German (5) 100 40 100 40 40 40 100 100
Wording (5) 80 0 100 0 100 40 100 60

Modify (19)

Properties (5) 100 100 100 100 100 100 100 100
Structure (3) 100 100 100 100 100 100 100 100
Forms (3) 100 100 100 100 100 100 100 100
Fields (5) 100 80 100 80 100 80 100 80
Combined (3) 100 100 100 100 100 100 100 100

5 Related Work

Text-to-SQL. Translating natural language questions to SQL showed up to 67% accuracy
using the Codex model (GPT-3) without any additional domain-specific training.
Although Codex provides a strong baseline for direct prompting, providing sample
data in the prompt greatly improves the accuracy. A critical aspect is prompt design.
Without priming the model with context including schema and content examples, the
accuracy dropped below 10% [RLB22].

Text-to-Automation. Definitions of process automations were generated through interme-
diary Constrained Natural Language (CNL) definitions from natural language inputs
using a fine-tuning approach with 100 training samples and prompting techniques.
Fine-tuning yielded better results [De22].

nl2spec. In the translation of natural language to temporal logic, the framework nl2spec
achieved strong results of up to 86% accuracy. The central concept is the automatic
identification of sub-translations using OpenAI’s Codex model followed by interactive
modifications by the user through a graphical interface [Co23].

Synchromesh. Using a few-shot prompting technique, semantically similar examples
are selected from a larger pool for a given natural language prompt via a similarity
metric named Target Similarity Tuning. Constraints are enforced through Constrained
Semantic Decoding to verify syntax validity, scoping or type checks. During the
token-by-token construction of the LLM output, a Completion Engine provides
all valid tokens that can further extend a partial program towards a full correct
program [Po22].
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6 Summary, Limitations, and Future Work

Enabling domain experts without technical knowledge in software development to write
specifications in natural language that are then machine-translated to DSL code has the
potential to accelerate development as needs for individual programming and excessive
communication decrease. Reasonable performance with 100% syntactic and up to 91%
semantic validity was demonstrated in our use-case evaluation. Therefore, the approach
presented in this paper is promising to achieve a no-code or low-code goal.

The presented framework ensures syntactic validity, making DSL code generation with
LLMs more reliable. However, the translation of the content and intention from natural
language to DSL code can currently not be constrained generically with custom rules beyond
the implementation of the post-processor. Also, the quality of the translation highly depends
on the concrete LLM. Scalability to more complex real-world instances needs to be assessed
further. Individual programming remains essential for highly specific requirements that are
not easily covered by a simplified DSL.

Future extensions will be: (i) introduce further advanced techniques to the framework;
(ii) expand testing to verify that this approach scales to larger, more complex instances;
(iii) evaluate the performance of more LLMs; (iv) conduct practical user evaluations with
domain experts.
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Appendix 1: Example of a SHAPE-DSL code instance

{

"name": "Austria Rail",

"version": 1,

"roles": ["Process Engineer", "Reviewer"],

"rootTask": {

"name": "at_rail",

"label": "Austria Rail",

"type": "root-process-task",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"],

"children": [

{

"name": "staff",

"label": "Project Staff",

"type": "sub-process-task",

"description": "Assemble a team",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"]

},

{

"name": "planning",

"label": "Planning",

"type": "sub-process-task",

"description": "Collect planning data",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"],

"children": [

{

"name": "contract",

"label": "Contract Data",

"type": "sub-process-task",

"description": "",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"]

},

{

"name": "check",

"label": "Check",

"type": "data-task",

"description": "Verify planning data",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"],

"forms": [

{

"name": "created",

"data": [

{

"name": "check_done",

"type": "bool"

},

{

"name": "check_doc_id",

"type": "long"

},

{

"name": "check_date",

"type": "date"

}

],

"fields": [

{

"name": "check_done",

"label": "Check done by commercial officers",

"type": "bool"

},

{

"name": "check_doc_id",

"label": "ID of the check document",

"type": "long",

"constraints": [

{

"level": "error",

"text": "required"

}

]

},

{

"name": "check_date",

"label": "Date of the check",

"type": "date",

"constraints": [

{

"level": "error",

"text": "required"

}

]

}

]

}

]

}

]

},

{

"name": "engineering",

"label": "Engineering",

"type": "sub-process-task",

"description": "",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"]

},

{

"name": "verification",

"label": "Verification",

"type": "sub-process-task",

"description": "",

"hasReadAccess": ["Process Engineer", "Reviewer"],

"hasWriteAccess": ["Process Engineer"]

}

]

}

}

Reliable Generation of Formal Specifications using Large Language Models 153





6th Workshop on Software
Engineering for Cyber-Physical

Production Systems (SECPPS’24)





cbe

Herausgeber et al. (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 1

Modularization Guidelines to Support Control Software
Variability in IEC 61499

Shubham Sharma1, Anna-Lena Hager, Alois Zoitl

Abstract: In the field of Cyber-Physical Production System (CPPS), a substantial number of control
software components are integrated with legacy software. This legacy control software has existed in
industries for decades and faces maintenance problems due to sub-optimal tool support. Consequently,
rigid software structures have emerged, making maintenance difficult and necessitating better support
for managing variability. These legacy systems contain an enormous volume of control software,
making it impractical to transform manually in terms of variability management. Additionally, there
is a growing demand for variability to accommodate to customer-specific requirements. Control
software must be flexible and modular enough to fulfill diverse project-specific needs. Guidelines are
required to assist control system engineers in determining which control software components must be
refactored and which can be left unchanged. We investigated legacy control software from industrial
use cases, identified problem areas, and gathered lessons learned. These lessons have been translated
into guidelines for future control software modularization. Hence, in this paper, we present a set of
guidelines aimed at modularizing IEC 61499 control software, specifically focusing on enhancing
control software variability for variability-intensive CPPS.

Keywords: Modularization; Control-Software; Guidelines; Variability

1 Introduction

Legacy software in the Cyber-Physical Production System (CPPS) domain faces multiple
problems due to its large volume, rigid control software structures, and non-optimal
maintenance support. The extensive volume of legacy software is the result of decades
of continuous control software development and its components in the industry. It is a
demanding and time-consuming task to maintain this body of control software. The task
becomes even more complex when variability is taken into account. As a result of variability,
additional dimensions must be considered, such as customization, adaptation, and possible
deviations in behavior or requirements between different software instances or variants.
These considerations entail additional requirements that may pose practical challenges. On
the one hand, there is a shortage of tools to handle variability factors in the maintenance
process. On the other hand, there is also an increased workload, such as the need for in-depth
expertise in the field of variability management and extensive training on interdisciplinary
project management.
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In parallel, other industries have made progress in adopting software product lines to manage
variability management [Be20]. For instance, the automotive domain has successfully
created flexible products, reducing time to market and increasing component reuse. Due to
the sub-optimal tool support and the lack of specialized skills in variability management,
the control software often remains unaltered from the perspective of variability management
in the CPPS domain. However, industries in the CPPS domain are similarly motivated to
master variability, seeking to decrease overall development and maintenance costs [RZ21].

The predominant approach to improving variability management in the CPPS domain is
the development and utilization of visualization techniques [So22]. Software visualization
gives developers a new perspective, enabling them to visualize large-scale software systems,
including legacy systems.

Tackling the granularity problem in the legacy software is the other approach. The service
and system domains have already analyzed the effect of granularity and developed strategies.
For instance, [DB15] investigated the effect of the system’s granularity on the system’s
modularity and found a positive correlation. Similarly, [Ch11] tackled the granularity
problem by extending the framework for service modularization.

Guidelines are essential to assist control system engineers in determining which control
software components must be refactored and which can be left unchanged. If problem areas
in the software are identified manually or with visualization tools, guidelines can also serve
as a means to assess the quality of the identified issues. Guidelines find application in
various domains to cater to different requirements. For example, [LYL14] introduced five
guidelines in function block programming, emphasizing dependable programming. These
guidelines aimed to eliminate ambiguity and incorrect usage of Function Blocks (FBs),
contributing to a reduction in program faults in safety-critical systems. Legacy software
also contains sub-optimal structures and patterns that best suit the conventional tool support.
[So21] identified these sub-optimal structures that can result in bad modularization and
provided a catalog of bad smells. Thus, modularization guidelines with a dedicated focus on
variability management are needed. The needed guidelines for CPPS can also incorporate
lessons from other works in the FB programming domain. For instance, insights from legacy
software visualization, experiences in dependable programming within the reactor domain,
and identifying bad smells in legacy software can all contribute valuable perspectives to the
development of comprehensive and effective guidelines.

In this paper, we present modularization guidelines for control software variability in the
IEC 61499 domain, derived from an industrial use case. By overcoming challenges in
modularizing legacy software — addressing issues like comprehensibility and scattered
functionalities — we have gained valuable insights that form the base of our proposed
guidelines. Thus, these guidelines offer practical improvement steps for managing legacy
software, grounded in real-life scenarios, aiming to drive progress in software development
and address industry-specific problems effectively.
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Furthermore, these guidelines are versatile and can be applied individually or in combination,
depending on the specific aspects relevant to the control software. Moreover, the principles
outlined are not confined to the IEC 61499 domain and can also be applied in other domains,
such as function block programming in IEC 61131-3.

We structured the paper as follows: In Section 2, we delve into the background and explore
related work on control software modularization within the IEC 61499 standard. Then, we
present the modularization guidelines in Section 3. We conclude our paper and outline
future work in Section 4.

2 Background & Related Work

Modularity is the structuring principle that reduces complexity, enhances clarity, provides
flexibility, and allows organizational advantages [ME98]. It acts as a mechanism to balance
standardization and customization, concepts that are often regarded as opposing [LM96].

2.1 Control Software Encapsulation Level

The control software in IEC 61499 can be expressed with the different FB types that offer
different encapsulation levels [Zo14]. These FB types provide users the flexibility to design
control software functionalities with varying granularity and complexity of algorithms
within the FB. For instance, a Simple FB is constrained by the standard to one algorithm,
while a Basic FB can accommodate multiple algorithms. Additionally, multiple instances of
FBs can be encapsulated within a Subapplication or a Composite FB to define functionality.
Subapplication can be Typed after encapsulation and stored in the type library for future reuse.
Encapsulating process sub-functionalities into Composite FBs or Typed Subapplications
allows users to set variation points based on different process functionalities. Users can also
determine the hierarchy level based on encapsulation requirements.

2.2 Control Software Modularization

Earlier work on control software modularization in the IEC 61499 domain is based on
code smells [So21]. The objective was to minimize one of the code smells, Feature Envy,
in IEC 61499 control software. Another exploration involved the utilization of graph
clustering algorithms to re-modularize IEC 61499 control software [Ba23]. The authors
analyzed existing software architectures and applied semantic clustering in an attempt
to enhance modularity. In this approach, the authors took the application and clustered
control software sub-components with different levels of modularity. This re-modularization
initiative successfully reduced the Feature Envy factor and improved the overall coupling
between modules. It is worth noting that they did not consider the evolution factor and the
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effect of re-modularization on different control software variants. With the growing number
of system variants, it is essential to consider how this may affect existing modules that have
already been re-modularized.

2.3 Functionality Granularity

The functionality granularity expressed in FBs plays an important role in control software
expression. For instance, the same functionality can be expressed by using multiple instances
of Simple FB which support only one algorithm or with a single Basic FBs with multiple
algorithm support. Refactoring the FB network involves considering how the FBs are
combined and the functionality of the individual composed FB. Within [Pa18], the author
refactored the function block application and reported the impact on software metrics
before and after refactoring. The authors observed an increase in FBs after refactoring, but
these FBs had lower vocabulary, shorter length, and reduced complexity compared to the
original system. While the understandability of the refactored FB improved, it also led to an
overall increase in maintenance due to the higher number of FBs. Additionally, refactoring
increased the depth of encapsulation, indicating higher design complexity.

Similarly, the control software of two process variants was modularized [Sh23b]. The work
followed the three basic drivers behind modularization: creating variety for customization,
utilizing similarity to gain rationalization benefits, and reducing complexity to improve
handling [LM96]. These drivers were applied to the two control software variants, which
led to the identification of variation points and the creation of variant modules. The variant
modules comprise of the granular sub-functionalities in both control software variants and
are consistently used in a similar manner. Subsequently, these granular sub-functionalities
were encapsulated inside the subapplication, provided with meaningful interface names,
and stored as a type in the type library. This module creation established variation points in
the control software based on process functionality and reduced the overall complexity of
the application.

The authors of [Sh23a] identified the core components and proposed a modularization
control software design for mechatronic variants. The approach involved transforming the
conventional clone-and-own design into a Standardized Core Functionality (SCF) design,
comprising four steps. As part of the SCF design, the author encapsulated the core process
functionality within a FB and named the interface elements. The choice of using a FB of
type Basic was made, considering the need for multiple algorithms. The core interface
elements were assigned meaningful names based on their interaction with mechatronic
sub-components. Furthermore, the functionality of diverse mechatronic sub-components
was expressed within the subapplication. While the core functionality could have been
expressed with multiple instances of Simple FBs, the author chose a Basic FB with multiple
algorithms. This decision aimed to maintain the core functionality, keeping the functionality
encapsulated within a single FB.
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The various works highlighted in this section focused on different attributes of control
software within the IEC 61499 domain, addressing: (1) re-modularization to enhance
cohesion between FBs, (2) refactoring to decrease system complexity, volume, and program
effort, (3) identifying process modules between process variants for systematic reuse, and
finally, (4) identifying and developing core functionality in the case of mechatronic variants.

Based on the described work, it is evident that process and mechatronic functionality can be
expressed through various approaches, involving different types of encapsulation levels,
granularity levels, and FB types. Achieving the right balance among these factors is crucial
to express the process functionality, ensuring that the overall control software remains
maintainable as the number of variants increases.

3 Modularization Guidelines in IEC 61499

We describe six modularization guidelines derived from insights gained through the analysis
of industrial control software developed in the IEC 61499 standard. The different guidelines
are based on: (1) the proper naming of FB interface elements, (2) structuring FB based on
variants, (3) positioning FBs based on execution order inside an application, (4) encapsulating
process functionalities, (5) choosing the correct encapsulation level, and finally, (6) avoiding
over-modularization.

3.1 Guideline 1: Interface Naming

Legacy control software often consists of FBs with short names for interface elements,
i.e., Input (I) and Output (O). The FB interface elements are named In and On, where n
represents the number of interface elements. For example, if you have an Input_FB with five
inputs and six outputs, you would have interface elements labeled (I1 to I5) for inputs and
(O1 to O6) for outputs. The naming of interface elements is done in the manner mentioned
due to the legacy system tool support and is often followed by a comment for each interface
element. These comments can contain information about the usage of interface elements,
for instance, the source and destination of the interface elements.
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(a) Original FB. (b) Original FB modified.

Fig. 1: Guideline 1 - Interface Naming.

The clarity of FB usage is compromised when the interface is given an ambiguous
name. While IEC 61499 allows comments for interface elements, we recommend users
to appropriately name the FB interface based on the source and destination for input and
output interface elements. Fig. 1a shows the original FB from legacy software, whereas
Fig. 1b is the same original FB, but modified with the proper interface names.

Input_FB_M is a modified version of Input_FB with a proper interface name based on the
input it receives and the output it sends. Input_FB_M receives input from Sensors X1 and
Y2, and Machines X, Y, and Z, and outputs data to Actuators X1 and Y2, Machines 1, 2,
and 3, and Freeze_NOT, respectively.

We encourage users to align the names of the FB interface with the source and destination
of input and output interface elements. Proper interface naming guides the developer in
using the FB correctly, as chances of misconnection are reduced due to a well-defined
source and destination.

3.2 Guideline 2: FB Structure

FBs in the IEC 61499-based tool, Eclipse 4diac IDE2, have a feature allowing users to set
pins’ visibility. Fig. 2a shows the input FB for Variant 1 and it has output interfaces required
for the Actuators X1 and Y2 and Machines 1, 2, and 3 and Freeze_NOT. In contrast, Variant
2, as shown in Fig. 2b, has output interfaces required for Actuator X1, Y2, Machine 1 and
Freeze_NOT. Since the output interfaces for Machines 2 and 3 are not used, the developer
hides the interface elements Machine_2 and Machine_3 of the Input_FB_M as seen in
Fig. 2b. The FB with hidden interfaces contains a Hidden Pin Marker at the bottom right in
blue as shown in Fig. 2b.

Hiding FB interfaces may lead to three effects. Firstly, both variants might contain the same
algorithm, resulting in unused extra code for Variant 2, resembling the Unused Data bad

2 https://eclipse.dev/4diac/
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smell [So21]. This Unused Data might be due to the absence of process functionalities in
Variant 2. Secondly, locking the unused code for Variant 2 with parameters can complicate
the maintenance process and, thus, is not desired for variability management [Sh23b]. Thirdly,
hiding FB interfaces proves suboptimal for managing variability, requiring additional effort
for engineers to identify all variant cases and document which interface elements should be
hidden.

(a) Input FB Variant 1. (b) Input FB Variant 2.

Fig. 2: Guideline 2 - FB Structure with hidden interfaces.

To mitigate these possible effects of the FB in Fig. 2, we recommend creating separate FBs
for each variant. Fig. 3 depicts the revised FBs, with separate FBs for Variant 1 and Variant
2, each having their own algorithms. Unused interface elements in Variant 2 are removed
rather than hidden, addressing the issue of Unused Data. This approach also eliminates the
necessity for parameters to lock unused functionality, resulting in an improved FB structure
from a variability management perspective.

(a) Explicit Input FB Variant 1. (b) Explicit Input FB Variant 2.

Fig. 3: Guideline 2 - Improved FB Structure.

The results from Guideline 2 promote the development of explicit FBs. These FBs, designed
based on the variants, serve as the initial solution to address the three side effects of
hiding interface elements. As a result, the FBs have an improved structure with well-defined
interface elements for both variants.
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3.3 Guideline 3: FB Execution order in the FB Network

In modularization, an irregular distribution of functionalities across FBs within an ap-
plication can lead to challenges in the maintenance process. Thus, we recommend to
ensure that related FBs are appropriately placed together based on the execution order.
This will promote logical organization of FBs and execution of functionalities inside an
application. For instance, Fig. 4a depicts FB F_NOT_Machine_1 which is placed between
Logic_Block and Output. FB F_NOT_Machine_1 receives data from Freeze_Machine_1
and sends its output data to Output when an event is triggered. Apart from the above
data interaction, FB F_NOT_Machine_1 is independent of other FBs. Fig. 4b represents
reordered F_NOT_Machine_1 after Freeze_Machine_1 in the FB network. Such reordering
is advantageous as it brings FBs corresponding to certain functionalities together without
affecting the overall process functionality. The same can be followed for other FBs in the
application if they belong together with similar data interaction.

(a) FB network with functionality spread.

(b) FB better structuring.

Fig. 4: Guideline 3 - FB Execution Order in FB Network.

Reordering allows to group FBs by functionality and define variation points, ultimately
reducing functionality spread in the application. This organization is vital from the
perspective of variability management, facilitating a more structured and streamlined
system.

3.4 Guideline 4: What to encapsulate from the FB Network?

When components are not properly encapsulated, making changes to one component
may inadvertently impact others, making variability management and maintenance more
complex. To address this challenge, we recommend identifying control software components
consistently used together in all variants. Then, they can be encapsulated into more
meaningful types that represent process functionality. Fig. 5a displays three instances where
the combination of F_AND and F_NOT are used in the FB network. The combination
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of FBs can be encapsulated together as they always exist together and similarly interact
with each other through data and event connections. Encapsulating the FBs into a module
will provide an increased overview, which can be saved in the type library and used in all
variants [Sh23b].

We compose the FB F_AND and F_NOT inside a subapplication and save it as a type
Freeze_Machine_Value in the type library. Fig. 5b represents the FB network after encapsu-
lating it as a Typed Subapplication. If FBs are encapsulated within a subapplication, their
hierarchy level is reduced by one. The encapsulated FBs are not accessed directly, but via
interfaces of the subapplication. Overall, the visual complexity of the network is reduced
with the use of three instances of Freeze_Machine_Value in Fig. 5b compared to the FB
combination in Fig. 5a.

(a) FB network before Encapsulation.

(b) FB network after Encapsulation.

Fig. 5: Guideline 4 - What to encapsulate from FB Network?

We recommend identifying control software components consistently used together in all
variants and encapsulate them as modules. Guideline 4 reduces the overall visual complexity
of the FB network while leaving the process functionality unchanged.

3.5 Guideline 5: Encapsulation Level

Developers can achieve functional consistency by utilizing a range of encapsulation levels.
This may be useful when the developer to seeks to keep the same hierarchy level, for
instance, based on company directions. To encapsulate without changing the hierarchy
level, the developer can choose different available FB types that can be used at the same
hierarchy level. Different encapsulation levels, Subapplication, Typed Subapplication and
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Simple FB, to represent the same process functionality are shown in Fig. 6. For example,
Freeze_Machine_Value is a new FB of type Simple, which can perform the same functionality
as Typed Subapplication Freeze_Machine_Value, all while maintaining the same hierarchy
level.

Fig. 6: Guideline 5 - Different Encapsulation Level.

Guideline 5 is practical when developers want to keep the same hierarchy of the FBs. It is
an alternative to introducing a new hierarchy as described in Guideline 4. Both approaches
result in the creation of new types in the type library with different levels of encapsulation
and serve as alternatives to the FB combination (F_AND and F_NOT).

3.6 Guideline 6: Don’t Over-Modularize

After examining the approaches for organizing control software into modules, it is pertinent
to explore how this can be efficiently achieved without falling into the trap of excessive mod-
ularization. Fig. 7 depicts an example of an over-modularized control software, where three
variant-based modules are created, which use different instances of Freeze_Machine_Value.
Specifically, Freeze_Machine uses one instance, Freeze_Machine_1_2 uses two instances
connected in series, and Freeze_Machine_1_2_3 uses three instances connected in series
within the subapplication, as shown in Fig. 8. Later, the subapplications are converted to
Typed Subapplications. These typed subapplications are named based on the variant, and
interface names are provided to interact with the Freeze_Machine_Value modules. However,
this encapsulation results in three separate modules that need to be maintained. In the
future, if modifications are required, the developer must make changes in three modules,
Freeze_Machine_Value, Freeze_Machine_1_2 and Freeze_Machine_1_2_3, separately in
Fig. 7.

Fig. 7: Guideline 6 - Example of Over-Modularization based on variants.
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Instead, we recommend using subapplications when multiple instances of the same module
are required for variants. Fig. 8 demonstrates the same functionality as the three modules
created through over-modularization in Fig. 7. In the future, if modifications are required,
the developer only needs to make changes in one module, i.e., Freeze_Machine_Value, and
those changes will be applied automatically to all three subapplications in Fig. 8.

Fig. 8: Guideline 6 - Subapplication instead of creating types for every variant.

Do not create a module as a typed subapplication if the variants require multiple instances
of the same module. Instead, use a subapplication with the proper name to compose the
required instances for the variant. Utilizing subapplications will help prevent type explosion
in the type library as the number of variants increases.

4 Conclusion

We introduced six initial guidelines to improve the control software modularization for
better managing variability. Guidelines 1 and 2 showcased the importance of having a
proper interface name and explicit FB based on variants. While having variant-based explicit
FBs can increase the types in the type library, it offers a favorable trade-off compared to
using the same FB with an algorithm locked by parameters. Guideline 3, which allows the
restructuring of the FB within the application, serves as a starting point for identifying
process-related variation points. Alternatively, we found that encapsulating functionalities as
Typed Subapplications in Guideline 4 or upgrading to a new type, as suggested in Guideline
5, reduced the visual complexity of the application. Finally, Guideline 6 provided insights
on avoiding over-modularization in control software.

Next, we will gather feedback on the developed guidelines from our industrial partner.
Currently, we are examining the quality of legacy software architecture with and without these
modularization guidelines. While the presented modularization guidelines primarily focus
on managing variability and result in the creation of variant explicit modules, we anticipate
that they may increase maintenance efforts, as they are not specifically maintenance-focused.
In our future work, we will also aim to achieve a balance between maintenance and variability
management.
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Message from the SE’24 Student Research Competition
Chairs

Leif Bonorden1, Sören Henning2

Abstract: The Software Engineering 2024 conference (SE’24) features a Student Research Competi-
tion. This volume includes summaries of the nominated student works.

1 The SE’24 Student Research Competition

The Student Research Competition takes place as part of the SE’24 program. It aims to
give students a forum to present their results at a conference and to establish contacts with
researchers and practitioners from the German-speaking software engineering community.

We called on students to submit summaries of their bachelor’s or master’s theses on software
engineering topics for the SE’24 Student Research Competition. The summary should have
outlined the topic, motivation, objective, implementation, and results of the thesis. All
works that were completed after January 1, 2022, and have not already been submitted to
the Student Research Competition of an earlier SE edition were eligible.

All submissions received were assessed for their relevance to software engineering research.
From these, we made a pre-selection of contributions that were invited to present their work
with a poster and a short talk at SE’24 conference. An expert jury with representatives from
academia and industry awards prizes to the best submissions based on the evaluation of the
written contributions, the poster, and the presentation.

2 Nominated Student Theses

In total, we nominated seven students to present their works at the SE’24 Student Research
Competition. We would like to point out that all received submissions are of excellent
quality. The following bachelor’s and master’s theses were nominated and are included as
summaries in this volume:

• Ulrike Engeln: Code Smell Detection using Features from Version History
1 Universität Hamburg, Germany, leif.bonorden@uni-hamburg.de
2 Johannes Kepler University Linz, Austria, soeren.henning@jku.at
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• Robin Kimmel: Large Language Models for Engineering Web Applications

• Nathan Hagel: Modeling and Simulation of Dynamic Containerized Software Archi-
tectures using Palladio

• Maximilian Kreb: Prädiktive, statische Energieverbrauchsanalyse basierend auf
experimentell ermittelten Energiemodellen

• Thomas Larcher: CORE: Code Once, Run Everywhere. Engineering Serverless
Workflow Applications with High-Level of Abstraction

• Jingxi Zhang: Towards the Transformation of heterogeneous Language Components

• Niklas Krieger: HyLiMo: A Textual DSL and Hybrid Editor for Efficient Modular
Diagramming
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student theses.
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Code Smell Detection using Features from Version History

Ulrike Engeln1

Abstract: Code smells are indicators of bad quality in software. There exist several detection
techniques for smells, which mainly base on static properties of the source code. Those detectors
usually show weak performance in detection of context-sensitive smells since static properties hardly
capture information about relations in the code. To address this information gap, we propose a strategy
to extract information about interdependencies from version history. We use static and the new
historical features to identify code smells by a random forest. Experiments show that the introduced
historical features improve detection of code smells that focus on interdependencies.

Keywords: code smells detection; machine learning; mining sofware repositories

Code smells are structures in code that commonly require re-engineering. In literature, there
exist several attempts to automate the time-consuming and costly process of code smell
detection. Most of them are based upon static properties of the software, e. g., code metrics.
However, not all design flaws are of structural nature. There exist three different kinds of
code smells. They target coding style, responsibilities, and interdependencies of classes
or methods. While smells that target coding style are of structural nature only, smells that
describe interdependencies, e. g., Feature Envy, cannot be detected by structural properties.
For identification of such smells, Palomba et al. [Pa15] propose using the version history of
the code as source of information. Smells targeting responsibilities affect both, code metrics
and version history. For example, God Classes usually have many lines of code and appear
frequently in the version history.

Machine learning techniques that learn based on features, e. g., code metrics, are well suited
for the development of a smell detector. To enable a classifier to detect all three kinds of
smells, Barbez et al. [BKG20] introduce a hybrid, ensemble learning-based smell detection
technique, which combines classifiers using code metrics and information from version
history. We propose a different approach of combining the two sources of information,
which, rather than combining existing detectors, directly learns identification of smells from
the two sources of information.

Since in their work Palomba et al. do not draw features from version history but apply
heuristic rules, one major issue of our machine learning approach is to decide how to
express information from the version history by features. The introduced method of feature
extraction from version history builds the core of our work. Figure 1 illustrates our general
idea of feature extraction. We measure how often files or methods change simultaneously.
1 Hamburg University of Technology, Institute for Software Systems ulrike.engeln@tuhh.de
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Fig. 1: Concept for distributing weights from git history
for file_c. Relevant commits are colored. Right: different
weighting concepts.

We introduce three design parameters
to determine which parts of version
history are considered as simultaneous:
orientation, window size, and weight-
ing. For each file, we create a vector
containing entries for all available files.
We identify all commits containing the
file and sum up the weights of all files
that appear within the defined win-
dow (here: forward oriented of size 4
starting from commit 2). As historical
features we use the statistical description of the normalized weight vectors.

By experiments, we investigate whether using metrics and historical features allows for better
code smell detection than using only code metrics. We evaluate the code smells God Class and
Feature Envy, since we expect smells targeting responsibility and interdependencies to show
in version history. We cross-validate a random forest of 100 decision trees based on data from
previous work [ML20; Pa15]. The experiments show that historical features contain infor-
mation about code smells. The main results are given in Table 1. For God Class, we observe

Tab. 1: Performances with and without historical features.

Feature Envy God Class
code
metrics

with his-
tory

code
metrics

with his-
tory

Accuracy 90.79% 92.18% 95.95% 96.22%
F1-Score 43.03% 54.36% 74.87% 75.72%
Precision 57.20% 70.20% 77.22% 76.83%
Recall 42.37% 49.94% 73.96% 75.74%
AUC 0.6885 0.7323 0.8651 0.8737

improvements of only 0.3% to
1.8% in all performance mea-
sures but precision. For Feature
Envy, improvements are signif-
icant, e. g., F1-score increases
from 43.03% to 54.36%. Those
results show that historical fea-
tures allow for better detection
of smells targeting interdepen-
dencies, while for responsibili-
ties, the observed improvement
is too small to assume an im-
pact.
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Large Language Models for Engineering Web Applications

Robin Kimmel1

Abstract: This work examines the potential of blending traditional programming methods with
artificial intelligence, specifically large language models (LLMs), to automate the creation of web
applications. The primary focus is on defining the necessary software architecture and components to
transform diverse inputs, such as natural language and Unified Modeling Language (UML) notations,
into functional web applications. The core concept involves a software agent built around a Large
Language Model, equipped with tools to autonomously address tasks. While demonstrating promise,
this approach exhibits certain limitations that demand further exploration and refinement.

1 Fundamentals

Large language models utilize billions of parameters and are trained with large quantities of
mostly natural language text. They are successfully used in a variety of language-based tasks
like summarization, translation, text generation and more [Mi23]. The behavior of LLMs
can be engineered using prompts that influence future responses. This is called prompt
engineering. It is also possible to fine-tune models by retraining them with specific datasets.
Changes to the model through fine-tuning tend to deliver more reliable results than just
prompt engineering. However, due to the stochastic nature of LLMs, they may produce
falsely formatted or factually false content.

A software agent acts on behalf of a third party or an objective and tries to fulfill this
objective as well as possible. Each agent must have a certain amount of autonomy to do this;
otherwise, it would simply be a pre-defined instruction list [Gr97]. In the context of this
work, a software agent will be a pseudo-personification of a digital assistant that thrives to
create a web application according to the user’s specifications. The agent can take multiple
steps to get closer to its final goal while continuously checking its environment and the
effect of its own actions on it.

2 Realisation

The whole application can be separated into three main components: the agent, a parser
and the tools. The agent component includes all the functionality needed to get an answer
from the LLM. When given a task, the agent will give an answer on what to do to solve
the provided objective. The parser then takes this completely text-based answer and tries
1 University of Stuttgart, ISW, Seidenstr. 36, D-70174 Stuttgart, Germany Robinkimmel98@gmx.de
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to convert all the information into a machine-readable format. After that, either a tool is
called or the agent thinks it is done and has finished its objective. A tool is basically a
function that interacts with the environment on behalf of the agent. All the tools need to
generate text-based feedback that can be fed back to the agent in order for him to decide
what to do next. For creating web applications, the most important tools consist of read and
write functions. This loop of calling the agent, parsing the answer and using a tool can be
repeated N times. The UML activity diagram, representing the high-level view of the whole
application’s lifecycle, is shown in Figure 1.

Action
End

Tool

LLM agent Parser

Tool

Initial prompt Agent answer

Tool answer

Tool input

EndStart

Fig. 1: The UML activity diagram for the agent lifecycle, from when it is started to when it terminates.

The main challenges arising during the implementation of the above-mentioned high-level
structure are: creating the prompt engineering for the agent itself, including a schema of
what a step includes as well as a format for the text answer, a robust parser that can handle
deviations from the desired format and multiple error handling mechanisms to make the
whole process more robust.

3 Results

This approach results in an architecture that can create web applications based on the
Django framework fully autonomously, solely based on specifications in natural language
provided by the user. However, the current implementation is not yet sufficient to be used in
real-world applications, but it functions as a proof of concept that this kind of architecture
can be used to solve the underlying task. In the future, for example, multi-agent approaches
will be introduced to further improve performance.
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Modeling and Simulation of Dynamic Containerized
Software Architectures using Palladio

Nathan Hagel1

Abstract: Nowadays, distributed applications are often not statically deployed on virtual machines.
Instead, a desired state is defined declaratively. A control loop then tries to create the desired state in
a cluster. To predict the impact on the performance of a system using these deployment techniques
is difficult. This paper introduces a method to predict the performance impact of the usage of
containers and container orchestration in the deployment of a system. Our proposed approach enables
system simulation and experimentation with various mechanisms of container orchestration, including
autoscaling and container scheduling using the Palladio-Component-Model (PCM). We validated
this approach using a Kubernetes reference cluster which we modelled using a workflow defined in
the authors bachelor thesis [Ha22] [Ha23]. Our findings suggest, that the most common concepts in
container orchestration can be modelled and simulated using Palladio and the PCM-Extension of
[Ha22].

Keywords: Container; Performance Prediction; Container Orchestration

1 Motivation

In recent years, container technologies have become increasingly important for software
developement and deployment [Zh18]. Beyond the mere use of containers, container or-
chestration tools like Kubernetes play a significant role. They allow a declarative description
of the desired system state, which the container orchestrator then automatically creates and
monitors. The question arises, how these technologies impact a software’s performance and
which scaling and allocation strategies are the most appropriate.
Gaining these insights from real-world experiments can be costly or restrict the user
experience. Using the software architecture simulator Palladio [Re16], component-based
applications can already be analyzed. Extending it with container and container orchestration
concepts can improve early stage performance analysis and simplify the decision-making
process regarding a possible containerization of a system or architecture.

2 Goal and Methodology

To simulate dynamic, containerized software architectures using Palladio, we need to be
able to model not only the concept of containers but also the main concepts of container
orchestration. The selection of these cocepts was based on Kubernetes as the de facto
1 Karlsruhe Institute of Technology, Chair of Modelling for Continuous Software Engineering (Prof. Dr. Anne

Koziolek), Kaiserstraße 12, 76131, Karlsruhe, Germany, nathan@hagel.dev
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standard in this area. The mapped concepts are: Clusters, Nodes, Pods, Ressource-Requests
and Limits, Services, Ingress, Deployments, Pod-Scheduling and Autoscaling. Besides a
mapping to model the concepts, a solution had to be found to analyze dynamic Deployments.
After defining which concepts were needed to realistically simulate containerized systems
in Palladio, a requirements-analysis was conducted for each concept to determine which
properties and capabilities are required for the model and the simulation. Then, the existing
PCM-Elements were analyzed to find out where existing concepts could be reused or
extended. To implement the dynamic concepts like Pod-Allocation, Autoscaling etc., we
looked at model transformations and developed a concept to implement capabilites like
automatic Pod-Allocation and a Horizontal-Pod-Autoscaler (HPA). Futhermore, a Pod-
Allocation-Scheduler for PCM-Models was implemented and tested. For evaluation purposes,
we determined the share of implemented and for the analysis relevant concepts. Additionally,
we defined a reference cluster based on an existing application and modeled this cluster
to determine the limits of our extension. Finally, the decisions of the implemented Pod-
Allocation-Scheduler were compared to the decisions of a standard Kubernetes scheduler.

3 Results

Based on the defined requirements for each Kubernetes’ concept, we were able to find or
define a mapping for almost all the concepts into the PCM. The only exception is the Replica
Set which has a strong overlap with the Deployment definied in our extension and was
therefore not mapped. For the implemented Pod-Allocation-Scheduler, tests showed that it
behaves the same as the Kubernetes standard implementation. The defined reference cluster
could be fully modeled using the workflow to use the PCM-Extension which was also defined
in [Ha22]. A solution was proposed to implement the relevant control loops using model
reconfigurations under consideration of possible transient effects. In a follow-up project the
proposed dynamic simulation concept for this extension is currently implemented.
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Prädiktive, statische Energieverbrauchsanalyse basierend auf
experimentell ermittelten Energiemodellen

Maximilian Krebs1

Abstract: Die Bestimmung des Energieverbrauchs moderner Rechensysteme stellt Entwickler:innen
vor neue Herausforderungen. Bisherige Verfahren verlangen komplizierte Messaufbauten und lassen
sich schwer in bestehende Workflows einbetten. Im Rahmen meiner Bachelorarbeit wurde daher ein
Tool entwickelt, dass den Energieverbrauch eines Eingabeprogramms statisch approximiert und für die
ausführende CPU beschreibt. Der Prozessor wird dazu mithilfe von Intel RAPL und LLVM auf seinen
charakteristischen Energieverbrauch untersucht. Eine Analyse berechnet anschließend näherungsweise
auf Grundlage der charakteristischen Energiewerte die Energie, die das Eingabeprogramm verbrauchen
würde. Die Evaluation der bestimmten Energiewerte zeigt das Potenzial der statischen Analyse des zu
erwartenden Energieverbrauchs, legt aber nahe, dass das verwendete Programmmodell noch erweitert
und verbessert werden sollte.

Keywords: LLVM, Intel RAPL, Energieverbrauch, Statische Analyse, Green Coding

1 Statische Analyse des zu erwartenden Energieverbrauchs

Die statische Analyse des zu erwartenden Energieverbrauchs eines Programms stellt eine
Möglichkeit dar, um Entwickler:innen direkt im Entwicklungsprozess mit Metriken zum
Energieverbrauch ihres Programms zu versorgen. Eine Entwicklung hin zu einer energie-
bewussteren Programmierung stellt dabei im Kontext des Klimawandels eine sinnvolle
Erweiterung bisheriger Analyseaspekte dar. Zur Bestimmung des Energieverbrauchs wurde
im Rahmen meiner Bachelorarbeit eine Analysepipeline entwickelt, die unter Aufteilung in
einen Profiling- und in einen Analyse-Teil den Energieverbrauch eines Eingabeprogramms
approximiert. Mithilfe von LLVM wurde dabei ein Compiler Pass entwickelt, der durch die
Entwicklung weiterer Tools in gängige Programmierumgebungen wie z.B. Visual Studio
Code eingebettet werden kann.

2 Ablauf der Analyse

Der Energieverbrauch eines Programms kann letztlich auf den Energieverbrauch der ein-
zelnen Instruktionen zurückgeführt werden. Dabei unterscheiden sich die Kosten der
Instruktionen je nach verwendeter Hardware. Damit eine Analyse unabhängig vom zugrun-
deliegenden Setup durchgeführt werden kann, baut die hier vorgestellte Methode auf einer
Profiling-Phase auf, bei der die Kosten der einzelnen Instruktionen quantitativ bestimmt

1 Technische Universität Dortmund, Informatik, Otto-Hahn-Straße 14, 44227 Dortmund, Deutschland,
maximilian.krebs@cs.tu-dortmund.de
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werden. Dafür werden die einzelnen Instruktionen des x86-Instruktionsets mithilfe von
LLVM in unterschiedliche Gruppen eingeteilt. Die Gruppen wurden dabei so gewählt,
dass diese sich durch die im Prozessor verrichtete Arbeit unterscheiden. Zu jeder dieser
Gruppen wurde eine x86 Instruktion als Repräsentant ausgewählt. Die einzelnen Reprä-
sentanten werden auf der CPU wiederholt ausgeführt. Mithilfe einer Mittlung wird dann
der charakteristische Energiewert der zugehörigen Gruppe bestimmt. Die Energiewerte
der Gruppen bilden zusammen das Energieprofil des ausführenden Rechners. Die Analyse
eines Eingabeprogramms nutzt dieses Profil, um den Energieverbrauch der verwendeten
Instruktionen abzuschätzen und um so den Energieverbrauch des Programms im Worst-,
Average- und Bestcase zu beschreiben. Grundlage dafür ist ein auf Basis von LLVM
entwickelter Compiler-Pass, der die Energiewerte der einzelnen Instruktionen miteinander
verrechnet.

3 Ergebnisse

Programm Worst Case Average Case Best Case Mittelwert Std. Abweichung Messung

rsa_encrypt 1, 3349 0, 66188 0, 35362 0, 78347 0, 40973 0, 18668
aeskeywrap 0, 86682 0, 19204 0, 15357 0, 40414 0, 32754 0, 1375
hmac_sha512 0, 4613 0, 19254 0, 16688 0, 27357 0, 13315 0, 12156
x25519 3, 62504 1, 00986 0, 25681 1, 63057 1, 44342 0, 13166
EVP_RSA_keygen 1, 07166 0, 16083 0, 10932 0, 44727 0, 44201 15, 4282

Tab. 1: Vergleich der Analyseergebnisse mit einer Vergleichsmessung für Demoprogramme von
OpenSSL. Angaben in Joule

Die Analyse kann unter gewissen Beschränkungen Aussagen über den Energieverbrauch eines
Programms bereitstellen. Tabelle ?? zeigt die Ergebnisse der Analyse für Demoprogramme
der Kryptografie Bibliothek OpenSSL 2. Die Ergebnisse der einzelnen Teilanalysen werden
dabei mit einer Vergleichsmessung gegenübergestellt. Der direkte Vergleich zeigt, dass die
bestimmte Energie relativ nah an dem gemessenen Energieverbrauch liegt. Bei näherer
Betrachtung und insbesondere im Vergleich zu den Ergebnissen der Analyse für einfache
Programme (Sortieralgorithmen, Suchalgorithmen etc.) fällt jedoch auf, dass die Analyse
nicht alle relevanten Teile der Programme betrachtet. Bestimmte Kontexte wie Aufrufe von
Bibliotheksfunktionen und Speicherverwaltung führen zu einer Verzerrung der Ergebnisse.
Ungenauigkeiten in den Energieprofilen, die höchstwahrscheinlich auf Störimpulse des
umliegenden Systems zurückgeführt werden können, führen bei der Analyse von Schleifen
und komplexeren Kontrollstrukturen ebenfalls zu Ungenauigkeiten.
Insgesamt kann die Analyse den Energieverbrauch von Programmen für Entwickler:innen
greifbarer machen. Die festgestellten Ungenauigkeiten führen aber zu einer Verzerrung der
bestimmten Messwerte und erlauben keine gesicherte Aussage über die verbrauchte Energie
eines Programms. Zukünftige Arbeit in diesem Bereich könnte jedoch die zugrundeliegende
Pipeline verbessern und erweitern, um verlässlichere Energiewerte zu liefern.

2 Sourcecode der betrachteten Programme: https://github.com/openssl/openssl
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CORE: Code Once, Run Everywhere. Engineering Serverless
Workflow Applications with High-Level of Abstraction

Thomas Larcher, University of Innsbruck, Austria

This master thesis is supervised by Ass. Prof. Sashko Ristov and defensio is on 30.10.2023.

Abstract: To keep the serverless functions lightweight, a significant portion of the computing is
typically offloaded to already pre-trained AI-based Backend-as-a-Service (BaaS) cloud services, such
as speech recognition. The recent rise of federated serverless computing offers cost and performance
advantages for these BaaS-enabled serverless workflows by deploying them across different cloud
providers. However, due to the lack of interoperability among cloud providers, many challenges
remain to setup the BaaS-enabled serverless workflows in federated serverless infrastructures.

Contribution. To bridge these gaps, this master thesis introduces CORE – a novel framework to
code portable functions with interoperable BaaS services in a uniform manner, including text-to-
speech, speech-to-text, translate, and OCR, together with a globally-federated storage infrastructure,
comprising AWS and Google cloud providers CORE’s programming model introduces a novel
concept of ServerlessIntents, which abstract BaaS services from different providers. The CORE SDK,
supported by CORE runtime heuristics and mechanisms, enables dynamic selection of BaaS services
during runtime, without the need to rewrite and redeploy the serverless functions. Finally, the CORE
platform provides a novel mathematical model and a scheduler that selects where to run workflow
functions and which BaaS services should be used to optimize their performance.

Experimental results. CORE improves lines of code, maintainability index, and workflow execution
time by up to 94.87 %, 41.27 %, and 57.87 %, respectively.

CORE programming model defines ServerlessIntent (Fig. 1), which contains intentInput
and intentOutput, represented with values for location and the way data is passed. The main
novelty is the set of intentFeaturesScope that can be selected, regardless of which provider
supports them. For each intentFeature, developer can code the values, which also may be
supported by some providers.

serverlessIntent intentData
intent intentInput1:1

intentOutput
1:1

1:n

1:1
1:1

1:1

intentConfigModel

values

passing

location

provider

region

intentFeaturesScope
intentFeatures values1:n

Abb. 1: ServerlessIntent structure.

CORE runtime mechanisms (Fig. 2) support the full life-cycle of the ServerlessIntent:
developer APIs of the CORE programming model that are exposed to developers to code
the ServerlessIntent; provider selector to dynamically determine which implementations
of the BaaS service to call; input adapter to adapt the interoperable input into the inputs
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recognized by the SDKs of the selected BaaS service implementations, BaaS invoker to call
the selected BaaS service implementations, and output adapter to adapt the output of the
executed BaaS services into the interoperable output of the ServerlessIntent. CORE moves
data between storages to allow users to use e.g., AWS Transcribe from Google Storage.

function Federated BaaS
CORE BaaS

invoker
fed. SpeechRecogn.

Speech-to-Text

Provider
selector

Amazon
Transcribe

GCP
SDK

AWS
SDK

Heuristics

Manual

APIs
2

fed. storage

1

3

Features

Serverless
Intent API

call

input adapt.

relocation

semantic

syntactic

output adapt.

relocation

format

merge 1'

Abb. 2: CORE SDK with runtime mechanisms.

CORE platform (Fig. 3) has two internal representations of serverless workflows. Abstract
serverless workflow (Fig. 3 left), contains all the functions, BaaS services, and data flow
dependencies according to the CORE model but attaches them to no BaaS and storage
backends. Deployed serverless workflow (Fig. 3 right) enhances the abstract serverless
workflow with the BaaS and storage attachments configured to each function deployed on a
cloud region by the CORE scheduling algorithm.

Fed. storage
infrastructure

output
abstract
storage

input
abstract
storage

ext. workflow system:
    federated FaaS CORE

SDK

CORE scheduler
scheduling

model

RTT, ct

fed. FaaS
IT, CT

fed. storage

DT, UT

fed. BaaS

ST

output
storage

input
storage

CORE
SDK

Fed. BaaS
infrastructure

Abb. 3: Overview of CORE platform.

Initially, a function developer uses the CORE BaaS and storage attachment SDK to attach
an abstract BaaS and storage to each function. While coding, the function developer
does not need to know the underlying BaaS and storage details, such as the cloud region,
storage provider, or provider SDK, as CORE abstracts them away and provisions them
during runtime. In the second step, the developer composes the functions into a serverless
workflow through control and data flow dependencies, based on the CORE model. CORE is
workflow composition language and execution engine agnostic. After composing the abstract
serverless workflow, the developer forwards it to the CORE scheduler for deployment onto
concrete computational regions, together with BaaS service and storage attachments.
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Towards the Transformation of Heterogeneous Language
Components

Jingxi Zhang1

Abstract: The expanding number of language workbenches (LWB) has opened up numerous ways of
developing domain-specific languages (DSL). Essential components of a DSL are grammar, generator
and validation rules. However, the diversity of these DSLs presents challenges when composing
language components across LWBs. Our work is dedicated to connecting these disparate language
components into a homogeneous DSL. With our transformation concept, we propose a novel way
to transform DSLs and demonstrate its practicality on XText and MontiCore, while highlighting
encountered challenges and valuable insights. Our work advances the understanding of composing
heterogeneous language components by providing a framework for transforming DSLs across the
boundaries of LWBs.

1 Motivation

To enhance the collaboration among stakeholders, exhibiting preferences for distinct
Language Workbenches (LWBs), the reuse of domain-specific languages (DSLs) serves as a
pivotal strategy. Key components of a DSL identified in prior work [Bu20] include validation
rules, code generators, and a defined grammar. Within the scope of this work, we delve
into a detailed investigation of the transformation of DSL across heterogeneous LWBs, and
propose a solution for facilitating a seamless transformation. We provide a demonstration
of our concept through the transformation between XText [Be16] and MontiCore [Ru21]
DSLs while highlighting inherent challenges.

2 Challenges for Language Component Transformation

The reuse of language components across the boundaries of LWBs necessitate the Abstract
Syntax Tree (AST) as an additional component along the trio of components, as it is required
by both the generator as well as the validation rules. Therefore, the interconnection between
these ASTs is also examined, leading to the following three challenges:
Challenge 1: Feature Analysis of LWBs The first challenge entails an inspection of the
chosen LWB pair. This examination is underscored by an analysis of features within the
underlying DSL’s components.
Challenge 2: Reuse of Generator and Validation Rule Components The second challenge
revolves around the implementation phase. By utilizing templates for the target LWB’s
1 University of Stuttgart, Institute for Control Engineering of Machine Tools and Manufacturing Units, Seidenstraße

36, 70174 Stuttgart, Germany jingxi.zhang@isw.uni-stuttgart.de
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generator and validation rule, a connection to the source LWB can be established, facilitating
the reusability.
Challenge 3: Connecting the Underlying Data Structures The central contribution of
this research pertains in establishing a bridge between the ASTs of the LWBs.

3 Developing a Transformation Framework for Language Components

As for the first challenge, in previous investigations [Da19] the transformation of grammars
between XText and MontiCore was extensively investigated. Our concept handles the
second and third challenges in a generative way. This entails the systematic generation of
wrappers around the AST, generator and validation rules, which enables the reuse of the
DSL components. As a demonstration, we utilize the XText LWB as the source and the

Fig. 1: Workflow after the integration of XText Language Components into MontiCore

MontiCore LWB as the target. We then adapt MontiCore’s workflow, depicted in Figure
1, by converting between the ASTs and utilize XText generator and validation rules from
wrappers. This allows for a seamless integration of XText components within of MontiCore
and ensures the seamless reuse of DSL components.
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HyLiMo: A Textual DSL and Hybrid Editor for Efficient
Modular Diagramming

Niklas Krieger1

Abstract: Diagramming with precise layouting for scientific publications and technical documentations
is time-consuming and cumbersome. Therefore, this work briefly presents HyLiMo, a tool for blended
graphical and textual diagramming including live-synchronizing. This allows diagrammers to define
diagrams textually and then adjust the layout graphically. An evaluation via two case studies confirmed
the tool’s practicality in creating class diagrams with precise layouts. However, feedback suggests
several features for future work.

Keywords: Hybrid diagramming; Graphical-textual diagramming; UML class diagram

Fig. 1: Web-based hybrid graphical-textual editor.

Introduction and Goals: In Software Engineering, a variety of diagrams are used to
create visual representations of systems, processes or concepts. In particular, UML class
diagrams are a type of structural diagram used to model classes and their relationships in
object-oriented systems. For diagramming, two main approaches exist: First, visual tools like
diagrams.net and Visio allow graphically creating diagrams. Users place diagram elements
on a canvas, creating the layout of the diagram manually. In contrast, tools like PlantUML
and Mermaid are used to create diagrams using a textual syntax. For most such tools, the
diagrammar does not specify the layout, instead, elements are auto-layouted. Therefore, this
approach is insufficient when manual and precise layouting is required, e.g., for scientific
publications and technical documentation. While textual tools supporting manual layouting
exist, in particular TikZ UML, defining positions textually can be cumbersome and time-
consuming. Hence, users benefit from graphical tools’ ability to directly drag diagram
elements to the desired location.
1 University of Stuttgart , Institute of Software Engineering, niklas.krieger@iste.uni-stuttgart.de
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Hybrid graphical-textual approaches allow us to bridge this gap. Recent research in modeling
introduces the blended modeling concept, which uses multiple notations, including textual
and graphical, to manipulate an underlying model [Ci19]. Depending on the task, modelers
choose the view most beneficial, thus improving efficiency. Our goal is to bring the benefits
of hybrid graphical-textual modeling to diagramming. In particular, users should be able to
define diagrams textually initially, but then modify the layout graphically. To achieve this,
we envision a hybrid live-synchronized editor, with side-to-side textual and graphical views.

Method: First, we collect and evaluate requirements with different stakeholders. Following,
we worked out the concept in detail and created an architecture. After implementing the
framework and editor, we evaluated the result in two case studies, as described in Results.
After collecting initial requirements, to identify further requirements, we conducted expert
interviews with 14 current and former software engineering researchers. Based on a survey,
where 13 of them participated, we prioritised requirements, and finalized design decisions.

Concept: Fig. 1 shows the hybrid editor2 created based on these requirements. It is split
into two parts: On the left side, the diagram is defined using a textual notation. To improve
flexibility and extensibility, we decided to incorporate programming language features, in
particular custom functions and control flow constructs. Thus, we decided to implement our
textual notation as an internal DSL in a custom general-purpose programming language,
SyncScript. The textual notations serve as the single source of truth, including styling and
layout information, allowing diagrammers to use tooling made for regular code, in particular
version control to store and share diagrams easily. To give the user immediate feedback,
textual and graphical views are live-synchronized. On each edit of the textual definition, the
code is executed, and the diagram is updated if the execution is successful. As in graphical
tools, users can manipulate the layout of the diagram by interacting with the graphical view.
In particular, users can move diagram elements, or rotate such elements. On each edit, the
textual definition is updated, and as a result, the diagram is rerendered. Yet, in practice,
executing the code and generating the diagram introduced lag, worsening user experience.
Consequently, we introduced predictions updating the graphical diagram before the code is
executed. While the modular architecture of our framework allows us to support different
diagram types in the future, currently, only UML class diagrams are supported.

Results: To evaluate our tool, we conducted two case studies in which a doctoral researcher
and an undergraduate student created several class diagrams. Used features include custom
styling, and a variety of diagram elements, including classes, associations, etc. Both case
studies showed that our tool can be used in practice to create class diagrams with precise
layouting. However, given feedback includes several feature requests, e.g., pdf export.
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