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Abstract: Efficient data structures for in-memory indexing gain in importance due to
(1) the exponentially increasing amount of data, (2) the growing main-memory capac-
ity, and (3) the gap between main-memory and CPU speed. In consequence, there are
high performance demands for in-memory data structures. Such index structures are
used—with minor changes—as primary or secondary indices in almost every DBMS.
Typically, tree-based or hash-based structures are used, while structures based on
prefix-trees (tries) are neglected in this context. For tree-based and hash-based struc-
tures, the major disadvantages are inherently caused by the need for reorganization
and key comparisons. In contrast, the major disadvantage of trie-based structures in
terms of high memory consumption (created and accessed nodes) could be improved.
In this paper, we argue for reconsidering prefix trees as in-memory index structures
and we present the generalized trie, which is a prefix tree with variable prefix length
for indexing arbitrary data types of fixed or variable length. The variable prefix length
enables the adjustment of the trie height and its memory consumption. Further, we
introduce concepts for reducing the number of created and accessed trie levels. This
trie is order-preserving and has deterministic trie paths for keys, and hence, it does
not require any dynamic reorganization or key comparisons. Finally, the generalized
trie yields improvements compared to existing in-memory index structures, especially
for skewed data. In conclusion, the generalized trie is applicable as general-purpose
in-memory index structure in many different OLTP or hybrid (OLTP and OLAP) data
management systems that require balanced read/write performance.

1 Introduction

Index structures are core components of typical data management systems. While this

area has been studied for a long time, many aspects need to be reconsidered in the con-

text of modern hardware architectures. Due to the increasing main-memory capacity and

the growing gap between CPU speed and main-memory latency [MBK00], especially, in-

memory indexing gains in importance. The specific characteristics of in-memory indexing

compared to disk-based indexing are that (1) pointer-intensive index structures with small

node sizes can be preferred instead of page-based structures due to smaller block gran-

ularities of main memory, and that (2) the number of required key transformations and

comparisons as well as efficient main memory management and cache consciousness are

crucial influencing factors on the overall performance. For update-intensive in-memory

indexing in the context of online transaction processing (OLTP), typically, tree-based or

hash-based techniques are used, while tries are usually neglected.

All of those structures have their specific drawbacks. Tree-based structures require re-
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organization (tree balancing by rotation or node splitting/merging) and many key com-

parisons compared to hash-based or trie-based techniques. Hash-based techniques heavily

rely on assumptions about the data distribution of keys and they require reorganization (re-

hashing) as well. Tries are typically only designed for string operations, they often require

dynamic reorganization (prefix splits), and they can cause higher memory consumption

compared to tree- or hash-based structures. The disadvantages of tree-based and hash-

based techniques are caused inherently by their structure. In contrast, the disadvantages of

tries can be addressed appropriately. This optimization potential enables us to generalize

existing trie structures in order to make them applicable for efficient in-memory indexing.

While tree-based and hash-based structures still have their application areas, we argue that

a generalization of existing trie structures for in-memory indexing can, in particular with

regard to a balanced read/write performance and for skewed data, achieve performance

improvements compared to existing index structures. This trie generalization focuses on

the goals of (1) trie-indexing for arbitrary data types, (2) order-preserving key storage,

(3) deterministic trie paths (no need for dynamic reorganization, except leaf splits), and

(4) efficient memory organization. Our primary contribution is the reconsideration and

adaptation of prefix trees for efficient in-memory indexing. Furthermore, we make the

following more concrete contributions, which also reflect the structure of this paper:

• First of all, in Section 2, we survey array-based, tree-based, hash-based and trie-

based index structures and discuss their main drawbacks.

• Then, in Section 3, we describe the generalization of prefix trees. This includes the

formal foundation and a physical realization of the generalized trie.

• Subsequently, in Section 4, we introduce the optimization techniques bypass jumper

array and trie expansion. Furthermore, we provide insights into important read and

write algorithms as well as additional memory optimization concepts.

• We present selected results of our experimental evaluation in Section 5.

• Finally, we conclude the paper and mention future work in Section 6.

2 Analysis of Existing Solutions

In order to give an overview of related index structures, we briefly survey the main cate-

gories of in-memory index structures but refer for more details to a comparison of basic

in-memory structures [LC86] and a detailed time analysis, which also includes the number

of required key comparisons [LDW09].

As the notation, we use the set of records R, where N denotes the number of records, with

N = |R|. Each record ri ∈ R exhibits the structure ri = (ki, αi), where ki denotes the

key and αi denotes the associated information (payload). Furthermore, all records of R
exhibit the same data type, where k with k = |ki| denotes the length of all keys in terms

of the number of bits. If data types of variable length are used, the key length denotes the

maximum key length. For example, a VARCHAR(256) results in k = 2,048.
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Essentially, index structures are distinguished into the categories: (1) sorted arrays, (2)

trees, (3) hash-based structures, and (4) prefix-trees (tries). In the following, we survey

existing work according to these categories.

Sorted Arrays. The simplest index structure is an array of records. Unsorted arrays cause

linear time complexity of O(N). Hence, often sorted arrays are used in combination with

binary search [Knu97]. It is known that the worst-case time complexity of binary search is

O(logN). We have recently presented a k-ary search algorithm [SGL09] that uses SIMD

instructions, yielding a significant improvement over binary search. However, the worst-

case complexity is still O(logN). Although sorted arrays are advantageous for several

application scenarios, they fall short on update-intensive workloads due to the need for

maintaining the sorted order of records (moving records). In case of partitions of many

duplicates, the shuffling technique [IKM07] (that moves as few as possible records of a

partition) can minimize the costs for order maintenance. Another approach is to use sorted

arrays with gaps according to a used fill factor such that only few tuples might be moved

but the space requirements are increased. While a linked list would allow for more efficient

updates, it is not applicable for binary search.

Tree-Based Structures. Typically, tree-based structures are used for efficient in-memory

indexing. These structures are distinguished into unbalanced and balanced trees. The

binary tree [Knu97] is an unbalanced tree where a node has at most two children. This

structure can degenerate, causing more nodes to be accessed than for a balanced tree. In

contrast, especially for in-memory indexing, balanced tree-structures are used. There is a

wide variety of existing structures such as B-trees [BM72], B+-trees [Jan95], red-black-

trees [GS78], AVL-trees [Knu97] and T-trees [LC86]. With the aim of tree balancing, rules

for node splitting/merging or tree rotation are used. Current research focuses on cache-

conscious tree-structures for T-Trees [LSLC07] and B-Trees [CGMV02, RR99, RR00]

and on exploiting modern hardware like SIMD instructions [ZR02] or architecture-aware

tree indexing on CPUs and GPUs [KCS+10]. All of those balanced tree structures exhibit

a logarithmic time complexity of O(logN) in terms of accessed nodes for all operations.

Additionally, they require a total number of O(logN) key comparisons. This is especially

important when indexing arbitrary data types such as VARCHAR.

Hash-Based Structures. In contrast to tree-based structures, hash-based structures rely on

a hash function to determine the slot of a key within the hash table (an array). Depending

on the used hash-function, this approach makes assumptions about the data distribution

of keys and can be order-preserving. For chained bucket hashing [Knu97], no reorgani-

zation is required because the size of the hash table is fixed. However, in the worst case,

it degenerates to a linked list and thus, the worst-case search time complexity is O(N).
In contrast to this, there are several techniques that rely on dynamic reorganization such

as extendible hashing [FNPS79], linear hashing [Lit80, Lar88], and modified linear hash-

ing [LC86]. Current research focuses on efficiently probing multiple hash buckets using

SIMD instructions [Ros07]. Due to reorganization, those structures exhibit a search time

complexity of O(1). However, additional overhead for dynamic hash table extension and

re-hashing (worst case: O(N)) is required and thus it can be slower than tree-based struc-

tures. In conclusion, hash-based structures are advantageous for uniformly distributed

keys rather than for skewed data.
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Trie-Based Structures. The basic concept of prefix trees (tries) [Fre60]—also called digital

search trees [Knu97]—is to use parts of a key ki (with key length k) to determine the path

within the trie. Prefix trees are mainly used for string indexing, where each node holds an

array of references according to the used character alphabet [HZW02] and therefore they

were neglected for in-memory indexing of arbitrary data types [LC86]. With that concept,

the worst-case time complexity is O(k) for all operations because, in general, the number

of accessed nodes is independent of the number of records N (independent of the trie fill

factor). However, the maximum number of indexable records is N ′ = 2k. Compared to

tree-based structures, more nodes are accessed because k ≥ logN , where k = logN only

if N ′ = N . However, only partial key comparisons are required per node, where in the

worst case, a single full key comparison is required in total for any operations. The most

recognized trie structure is the radix tree [Knu97], where radix tree, patricia trie [Mor68]

and crit-bit tree (critical bit) are used as synonyms. Essentially, these structures maintain

a tree of string prefixes. Each node represents the string position, where the strings of the

left and the right sub-trie differ. Thus, a node has at least two children and each edge can

encode multiple characters [Mor68]. In contrast to traditional tries (using one character

per trie level), this yields a significant string compression. Typically, this structure is

only used for string indexing and efficient string operations. This data type restriction

was addressed with the extension Kart (key alteration radix tree), where bit positions,

rather than single character positions, are used for difference encoding. This allows for

indexing arbitrary data types but due to the encoding of different prefix lengths within a

trie, there is still the need for reorganization (arbitrary prefix splits). In conclusion, the

advantage of trie structures is the good time complexity of O(k) with only few (partial)

key comparisons, which is especially useful when indexing strings. Existing trie-based

structures are therefore mainly designed for those string operations rather than for indexing

arbitrary data types.

Hybrid Structures. Furthermore, there are several hybrid index structures such as pre-

fix hash trees [CE70] (trie and hash), HAT-tries [AS07] (trie and hash), ternary search

trees [BS97] (trie and binary tree), prefix B-trees [BU77] (trie and B-tree), partial keys

[BMR01] (trie and B-tree/T-tree), J+-trees [LDW09] (trie and B-tree/T-tree), CS-prefix-

trees [BHF09] (trie and CSB-tree), and Burst-tries [HZW02] (trie and arbitrary structure

for containers). Interestingly, all of these here mentioned hybrid structures use to some

extend trie-based concepts.

3 Generalized Prefix Trees

Due to the disadvantages of existing structures, we outline our so-called generalized trie

as a new in-memory data structure. It is a generalization of prefix trees (tries) for indexing

arbitrary data types of fixed and variable length in the form of byte sequences. The novel

characteristic compared to existing trie-based structures is an assembly of known and some

new techniques. In detail, we use (1) a prefix size of variable length, (2) a bypass struc-

ture for leading zeros, (3) dynamic, prefix-based trie expansion, and (4) optimizations for

pointer-intensive in-memory indexing. In this section, we focus on the formal foundation

of this trie generalization, the core operational concepts, and still existing problems.
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Figure 1: Example Generalized Trie with k = 16

3.1 Formal Foundation

As the foundation of this work, we define the generalized trie as follows:

Definition 1 Generalized Trie: The generalized trie is a prefix tree with variable prefix

length of k′ bits. We define that (1) k′ = 2i, where i ∈ Z
+, and (2) k′ must be a divisor of

the maximum key length k. The generalized trie is then defined as follows:

• Given an arbitrary data type of length k and a prefix length k′, the trie exhibits a

fixed height h = k/k′.

• Each node of the trie includes an array of s = 2k
′

pointers (node size).

The generalized trie is a non-clustered index with h levels. The root node describes level

h, while nodes of level 1 are leaf nodes and point to the data items. Thus, leaf nodes are

identified by the trie structure. The trie path for a given key ki at level l is determined with

the (h− l)th prefix of ki. The single nodes of the trie are only created if necessary.

As a result, we have a deterministic prefix tree that indexes distinct keys of arbitrary data

types without the need for (1) multiple key comparisons or (2) reorganization. The prefix

length k′ can be used to adjust the required space of single nodes and the number of

accessed nodes for an operation. The following example shows the resulting spectrum.

Example 1 Configuration of Generalized Tries: Assume the data type SHORT(2) with a

key length of k = 16. On the one side, we can set k′ = 1, where each node contains two

pointers (bit set/ bit not set). This would result in a structure similar to a binary tree with

a trie height h = 16. On the other side, we could set k′ = 16, which results in a height

h = 1 node containing an array of 65,536 pointers to keys. In the latter case, the complete

key determines the array index. Figure 1 illustrates this configuration possibility using

k′ = 1 (Figure 1(a), binary prefix tree), k′ = 4 (Figure 1(b), well-balanced hierarchical

configuration), and k′ = k = 16 (Figure 1(c), a sorted array with gaps).

Clearly, when configuring k′, this is a trade-off between the number of accessed nodes and

space consumption. An increasing k′ will cause decreased node utilization and thus, in-
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creased memory consumption, while the steps from the root to the leafs are reduced for all

operations. Furthermore, the generalized trie has the following two important properties:

• Deterministic Property: Using a prefix length of k′, a single node contains s = 2k
′

pointers. Each key has then only one path within the trie that is independent of any

other keys. Due to these deterministic trie paths, only a single key comparison and

no dynamic reorganization are required for any operations.

• Worst-Case Time Complexity: Based on the given key type of length k, the general-

ized trie has a time complexity of O(h) and hence, has constant complexity in terms

of the fill factor of the trie (the number of tuples N ). Due to the dynamic configura-

tion of k′, we access at most h = k/k′ different nodes (where h however might be

higher than logN ), and compare at most O(1) keys for any operations.

In contrast to the original trie [Fre60], we use a variable prefix length (not single charac-

ters) and have a deterministic trie of fixed height. The fixed height allows the determination

of leaves. If the root level is given by h = k/k′, leaves are only present at level 1.

For data types of variable length such as VARCHAR, the trie height is set to the maximum

key length rounded up to a factor of k′. In order to ensure that leaves are only present at

level 1, keys with length k < h · k′ are logically padded with zeros at the end because

padding at the beginning would lead to loosing the property of being order-preserving.

3.2 Physical Data Structure and Existing Problems

Based on the formal definition of the generalized trie, we now explain the IXByte that

is a physical data structure realizing such a trie generalization. We describe the main data

structure and its most important operational concepts.

The IXByte is designed as a hierarchical data structure in order to leverage the determin-

istic property of the generalized trie. A single index (L0Item) is created with the data

type length as a parameter. In order to support also duplicates of keys, we use a further hi-

erarchical structure of key partitions ki (L1Item) and payloads αi (L2Items). Then, the

single keys are indexed as a generalized trie, while the payloads of all records associated

with the same key are maintained as a list of L2Itemswithin this L1Item partition. Fur-

thermore, the node data structure used within the IXByte is defined as an array of s = 2k
′

void* pointers. We use generic void* pointers in order to refer to both inner nodes and

L1Items (leaves), where the fixed maximum trie height h determines the leaves. The

IXByte works on order-preserving byte sequences (big-endian) and therefore arbitrary

data types can be supported as long as their keys can be transformed accordingly.

Example 2 IXByte Operations: Assume an index of data type SHORT(2) with k = 16
and a prefix length of k′ = 4. We insert the record ri = (107, value3), where the resulting

key parts are illustrated at the left side of Figure 2 and by emphasized pointers. We start

at the root node (level 4) and use the value of bits 0-3 as array index in order to determine

the child pointer. We repeat this with bits 4-7 on level 3, and with bits 8-11 on level 2.

Finally, on level 1, we use the value of bits 12-15 as our array index. We know that this
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Figure 2: Example IXByte for k = 16, k′ = 4, h = 4

pointer must reference an L1Item (key partition). If no partition exists, we create a new

one; otherwise, we just insert the payload into the partition.

The deterministic property, where the trie path depends only on the key itself, implies that

this structure is update-friendly because no reorganizations (prefix splits) are required. At

the same time it also allows efficient lookups because no key comparisons are required.

However, two typical problems arise when using such a trie structure:

Problem 1 Trie Height: A problem of this general trie solution is the height of the trie

(number of levels). For example, a VARCHAR(256) index with k′ = 4 would result in a

trie height h = 512. In this scenario, keys with a variable key length k smaller than h · k′

are logically padded with zeros at the end in order to ensure an order-preserving determin-

istic structure. The advantage of tries—in the sense of constant time for all operations—

might be a disadvantage because the constant number of nodes to be accessed is really

high (512). This problem has two facets, namely the number of accessed trie nodes (oper-

ational) and the number of created nodes (memory consumption).

Problem 2 Memory Consumption: Due to the fixed trie height, an inserted key can cause

the full expansion (creation of trie nodes) of all levels of the trie if no prefix can be reused.

In the worst case, an insert causes the creation of h − 1 nodes. Furthermore, each node

requires a space of 2k
′

· size(ptr) byte. For example, on a 64bit architecture, where a

pointer ptr requires 8 byte, and with a prefix length of k′ = 4, the node size is 128 byte.

In the following, we tackle these problems. The trie height is reduced by the techniques trie

expansion and bypass jumper array. There, trie expansion implicitly leads to decreased

memory consumption as well. In addition, we also apply an explicit memory reduction by

pointer reduction and memory alignment (structure compression).

4 Selected Optimization Techniques and Algorithms

In this section, we present selected optimization techniques that address the problems

of the potentially large trie height and memory consumption. We also discuss selected

algorithms.
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4.1 Bypass Jumper Array

Approaches that reduce the large height of the trie (e.g., h = 512 for k = 2048 and k′ = 4)

are required, while preserving the properties of the generalized trie.

The core concept of the technique bypass jumper array is to bypass trie nodes for leading

zeros of a key. In order to enable this, we (1) preallocate all direct 0-pointers (nodes where

all parents are only referenced by 0-pointers) of the complete trie, and we (2) create a so-

called jumper-array of size h, where each cell points to one of those preallocated nodes.

Finally, we (3) use the jumper array to bypass higher trie levels if possible. We show the

concept of this bypass jumper array using our running example:

Example 3 Bypass Jumper Array: Recall Example 2. For this index of height h = 4
(Figure 3), we (1) preallocate all four direct 0-pointers, (2) create the jumper array c of

size four, where cell cj corresponds to the trie level l with j = l. Then, we (3) use the

jumper array to jump directly to level l = ⌈|ki|/k
′⌉ that is determined by counting leading

zeros (clz). For example, when inserting the key ki = 107, we can directly jump to the

preallocated node at level 2.

With regard to the applicability, we distinguish data types of fixed and variable length:

First, for data types with variable-length |ki| (e.g., VARCHAR), we change the index layout.

Keys with a length smaller than h ·k′ are now logically padded with zeros at the beginning

and thus, we loose the property of being order-preserving. However, if this is acceptable

the benefit is significant. We assume that the key length |ki| is uniformly distributed in

the interval [1, k]. As a result, the number of accessed trie nodes is reduced from h to h/2
in expectation. This causes significant performance improvements due to fewer accessed

nodes (logical partitioning into h subtries but with prefix sharing). However, the time

complexity is still O(h).

Second, this technique also works for fixed-length data types such as INT, by counting

leading zeros and without any index layout modification. Unfortunately, for uniformly

distributed keys, the impact is lower because the probability of having a key length |ki| < k
depends on k′ with P (⌈|ki|/k

′⌉ < k/k′) = 1/2k
′

. For example, if k′ = 4, only 1/16 of all

keys would benefit at all from this technique. The probability of a specific length is given

by P (⌈|ki|/k
′⌉ = k/k′ − x) = (1/2k

′

)x, where x denotes the number of nodes that can

be bypassed. However, numerical values are typically non-uniformly distributed and rather

small (e.g., key sequences) and hence, they could also benefit from this technique.

In the description of algorithms, we will refer to this technique as bypass top levels.

4.2 Trie Expansion

Another reason for the huge trie height is that the index has a fixed height according to

its data type and thus, each record is stored on level 1. This is also a reason for the huge

memory consumption, because a single record can cause the creation of h− 1 new nodes.

Based on this problem, we investigated the dynamic trie expansion. The core concept is

to defer the access to and creation of trie nodes during insert operations until it is required
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Figure 3: Example IXByte for k = 16, k′ = 4, h = 4 with bypass jumper array and trie expansion

with respect to the deterministic property. In other words, a tuple can now be referenced

on any level rather than only at the leaf nodes. It is possible to reference a record instead

of an inner node if and only if there is only one record that exhibits a particular prefix

(that is given by the position in the trie). A similar concept has already been used within

the original algorithm [Fre60] for string indexing. For data types of variable length (e.g.,

VARCHAR), the logical padding with zeros at the end (or beginning, respectively) ensures

the deterministic property even in case of trie expansion. We use the following example to

illustrate the idea of trie expansion:

Example 4 Trie Expansion: Recall our running example of a SHORT(2) index with h =
4. Figure 3 includes an example of the trie expansion. Consider the keys k1 = 61,451
and k2 = 65,409. If we insert k2 = 65,409, we can refer to it on level 4 instead of on

level 1 because so far, no other key with a first prefix of 11112 exists. Further, if we insert

k1 = 61,451, we need to expand the third level for this sub-trie because k1 and k2 both

share the same prefix 11112. However, we do not need to expand any further because the

second prefix of both keys (00002 and 11112) differs. This still ensures the deterministic

property because we only expand the deterministic trie path of keys if it is required.

In contrast to the bypass jumper array, this technique does not only bypass existing nodes

but influences the number of created nodes. While the dynamic trie expansion significantly

reduces the trie height and therefore also the memory consumption for sparsely populated

subtries, it requires changes of the trie node data structure. A node is now defined as an

array of s = 2k
′

void* pointers and an array of ⌈s/8⌉ bytes to signal the expansion

of a sub-trie. The ith bit of this byte array determines if the ith pointer references an

inner node; otherwise, the pointer directly references a record or is NULL. This is required

due to the generic pointers. However, the evaluation of this flag is a simple bit mask

operation. In the algorithmic description, we refer to this as isExpanded. While so

far, we have required 2k
′

· size(ptr) byte for a node, now a single node has a size of

size(node) = 2k
′

· size(ptr) + ⌈2k
′

/8⌉ = 2k
′

· size(ptr) + ⌈2k
′
−3⌉. As an example,

for k′ = 4 without trie expansion, the node size was 128 byte; enabling trie expansion

adds two more bytes to the node. The downside of this technique are costs for splitting

and merging of nodes (but still no inner prefix splits) as well as an unaligned data structure
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with the drawback that the node size is no longer a factor or divisor of the cache line size.

However, due to the significant reduction of created nodes, the total memory consumption

is significantly reduced, which improves the performance for all operations.

4.3 Memory Optimization

The solution presented so far still has the drawbacks of (1) creating many small data struc-

tures (many malloc calls), (2) a fairly high memory consumption, and (3) an unaligned

data structure (expanded flags). Hence, we apply several memory optimization techniques.

First, we use memory preallocation in order to address the many small data structures.

Each instance of an index includes a byte array of configurable size that is created using

virtual memory upon index creation. We hold a pointer to this array (mem ptr) and the

allocation position pos as well as we use lists of free objects for reusing memory. We

benefit because the operating system only maps physical pages of this array when they

are accessed. Second, we reduce the memory consumption of trie nodes with the concept

of reduced pointers, which store only the offset within the preallocated memory instead

of the pointer to a certain memory position itself. The real pointer is then computed by

the reference to the full array (mem ptr) plus the given offset (reduced pointer), which

reduces the required size of a pointer; for example (for a preallocated memory of less

than 2GB), from 8 byte to 4 byte on 64bit architectures. Third, cache-consciousness has

significant influence on the overall performance. We align the trie node size to factors of

the cache line size. Based on the concept of reduced pointers, the idea is to use the first

bit of such a pointer as internal flag to indicate whether or not this pointer is an expanded

node. Following this, we do not need any additional flags per node. As a result, the final

structure of our trie node is defined as an array of s = 2k
′

uint reduced pointers resulting

in a node size of size(node) = 2k
′

· size(rptr) = 2k
′

· 4. For example, using k′ = 4, we

get a node size of 64 byte, which is equal to the cache line size of modern processors.

4.4 Algorithms

So far, we have mainly discussed structural properties of the IXByte; now, we focus on

the operational aspects. The main operations are get(key) (point query), getMin(),

getNext(key1) (scan), insert(key,payload), and delete(key,payload).

Updates are represented by a delete/insert pair. It is worth mentioning that keys of arbitrary

data types are converted into byte arrays such that all operations are only implemented

once according to this byte representation. All algorithms to search and modify gener-

alized tries include the optimization approaches bypass jumper array and trie expansion.

We use the operations get and insert as illustrative example algorithms.

Algorithm 1 shows the get algorithm. A single index instance ix includes the root trie
node and the level of this root node (given by h = k/k′). First, the bypass jumper array

is used to jump directly to the trie node of level ⌈|ki|/k
′⌉ if required (line 2). Here, level

and node are passed by reference and set accordingly. Then, the get algorithm mainly

comprises a while loop (lines 3-10). For each iteration, we go one level down the trie,
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Algorithm 1 get (non-recursive)

Require: index ix, key ki, key length |ki|
1: node ← ix.trie, level ← ix.level

2: bypass top levels(node,level,|ki|,ix)
3: while (level ← level − 1) > 0 do

4: pos ← computePosition(level,ki,|ki|)
5: if ¬ isExpanded(node,pos) then

6: if node.ptr[pos].key = ki then

7: return node.ptr[pos]
8: else

9: return NULL // null if no key or different key

10: node ← node.ptr[pos] // go one level down

Algorithm 2 insert (non-recursive)

Require: index ix, key ki, key length |ki|
1: node ← ix.trie, level ← ix.level

2: bypass top levels(node,level,|ki|,ix)
3: while (level ← level − 1) > 0 do

4: pos ← computePosition(level,ki,|ki|)
5: if ¬ isExpanded(node,pos) then

6: if node.ptr[pos] �= NULL then

7: entry ← node.ptr[pos]
8: if entry.key = ki then

9: return entry

10: while true do

11: tmp ←createNode() // node prefix splitting

12: node.ptr[pos1] ← tmp

13: setExpanded(node,pos)

14: node ← tmp, level ← level − 1
15: pos1 ← computePosition(level,entry.ki,|ki|)
16: pos2 ← computePosition(level,ki,|ki|)
17: if pos1 �= pos2 then

18: node.ptr[pos1] ← entry

19: return node.ptr[pos2] ←createL1(ki,|ki|)
20: else

21: pos ← pos1
22: else

23: return node.ptr[pos] ←createL1(ki,|ki|)
24: node ← node.ptr[pos] // go one level down

where the loop terminates if level = 0. For each iteration, we first compute the position

within the pointer array (computePosition, line 4). It is determined by the (h − l)th

prefix of key ki. If the pointer specified by pos is not expanded (see trie expansion), there

must be a reference to a key, or the pointer is NULL. Hence, by checking for the right

key (line 6), we could simply return this key partition or NULL. Otherwise (the pointer is

expanded), there must be a reference to another trie node.
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Similar to the get operation, Algorithm 2 uses the same core concept for the insert

operation. After we have jumped to the lowest possible trie node in case it is applicable

(line 2), the algorithm comprises a main while loop (lines 3-24). The structure of this

loop is similar to the get operation. However, we maintain the dynamic trie expansion

of sub-tries. If a pointer is not expanded and not NULL, we have reached a record. In

case the keys are equivalent, we simply return the existing entry. Otherwise, we use an

inner while loop (lines 10-21) to expand the sub-trie as long as it is required (leaf node

splitting). Basically, we can stop splitting such nodes if we reach a level where the prefixes

of both keys are different (lines 17-19). If the current pointer is already expanded, we

follow this pointer and go one level down (line 24). Note that this splitting does not require

any dynamic reorganization because we just go down the trie as long as it is required.

Both algorithms use the computePosition multiple times in order to compute the

current prefix at each trie level. If many levels of the trie are expanded, it is advantageous

to pre-compute all positions in advance in one run over the key.

The other algorithms work similar to the presented ones. For getMin, getNext, and

delete, we additionally maintain a stack of parent nodes and current positions on each

level in order to realize non-recursive algorithms. The getNext searches for the current

key, and starting from this position, it returns the minimum key that is greater than this.

Further, the delete searches a specific record and then deletes the given (key,value) pair

and recursively collapse trie nodes if required.

The index can also store NULL keys, which is required if used as a secondary index.

Therefore, an additional single key partition (L1Item) is referenced by the index instance.

Furthermore, all algorithms include related NULL checks at the beginning.

4.5 Discussion of Related Work

The closest work compared with our approach is the Prefix Hash Tree [CE70], which was

defined by Coffmann and Eve from a theoretical perspective. They use a hash function hj

to map the key ki into a hash code bi of fixed length j. Thereafter, the prefix hash tree uses

prefix-based tree nodes that contain s = 2k
′

child references. In the case of the simplest

hash function of bi = hk(ki) = ki, this is comparable to the generalized trie.

In contrast to this, we presented the generalized trie that does not rely on any hash function,

i.e., it does not require related indirections for overflow lists of different keys and it can

index keys of variable length. Furthermore, we explained the IXByte as a physical real-

ization of the generalized trie including optimizations for the large trie height and memory

consumption as well as the description of efficient algorithms using this data structure.

5 Experimental Evaluation

In this section, we present selected experimental results concerning the performance, scal-

ability, memory consumption, and the comparison with existing index structures. We used

synthetically generated data, a real data set as well as the MIT main-memory indexing
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benchmark [Rei09]. In general, the evaluation shows the following results:

• Data Types: The IXByte achieves high performance for arbitrary data types, where

an increasing key length causes only moderate overhead.

• Skew Awareness: It turns out that the IXByte is particularly appropriate for skewed

data (sequence, real) because many keys share equal prefixes, while uniform data

represents the worst case.

• Prefix Length: A variable prefix length (specific to our IXByte) of k′ = 4 turned

out to be most efficient and robust due to (1) a node size equal to the cacheline size

(64 byte) and (2) a good trade-off between trie height and node utilization.

• Comparison: The IXByte shows improvements compared with a B+-tree and a

T-tree on different data sets. Most importantly, it exhibits linear scaling on skewed

data. Even on uniform data (worst case) it is comparable to a hash map.

As a result, the IXByte can be used as a general-purpose data structure because, espe-

cially for skewed in-memory data, it is more efficient than existing tree-based or hash-

based solutions. The complete C source code (including all experiments) is available at

wwwdb.inf.tu-dresden.de/dexter. Our core data structure IXByte is part of

an overall index server, which is able to maintain an arbitrary number of indices (of dif-

ferent data types) in a multi-threaded fashion. Essentially, it implements the API, defined

by the MIT main-memory benchmark [Rei09] including memory management, synchro-

nization and transaction logging (transient UNDO-log). All reported results were measured

from outside the index server—except the comparison with B+-trees.

5.1 Experimental Setting

As our test environment, we used a machine with a quad core Intel Core i7-920 processor

(2.67GHz) and hyper-threading (two threads per core). It uses Fedora Core 14 (64bit) as

operating system and 6GB of RAM are available. Furthermore, we used the GCC compiler

with the following flags: -O3 -fPIC -lpthread -combine.

While the proposed IXByte is able to index arbitrary data types, here, we used only

the types SHORT (4 byte), INT (8 byte) and VARCHAR(128) (128 byte). In order to

evaluate the influence of skew and other data properties we used the following data sets:

• Key Sequence (best-case synthetic data): We generated a key sequence (highest

skew) of N records with values [1..N ] in sorted order. For the data type VARCHAR,

we convert this value into a string representation.

• Uniform Data Distribution (worst-case synthetic data): In opposite to the key se-

quence, we additionally generated N records with uniformly distributed keys with

values [1..2k] in unsorted order. For VARCHAR(128), we first determined a ran-

dom length in the interval [1..128]. For each position, we then picked a random

character out of the alphabet of 52 printable characters.

• Real Data: Aside from the synthetically generated data, we also used the DBLP

data set [Ley09] as a real data set. In more detail, we indexed all 2,311,462 distinct

key attributes of this data set as a VARCHAR(128) index instance.
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We evaluated the different operations insert, get, getNext (scan), and delete.

Further, we varied the prefix length with k′ ∈ {1, 2, 4, 8}. In addition, we compared our

generalized prefix trie against other index structures: We used an unoptimized B+-tree

[Avi09] and optimized it (memory optimizations) similar to our index structure in order

to ensure a fair comparison. Furthermore, we used the MIT benchmark as well as the

optimized hash map and T-tree implementations from the winner (Clement Genzmer) and

another finalist (Cagri Balkesen) of the SIGMOD Programming Contest 2009.

5.2 Synthetically Generated Data

The first set of experiments uses the synthetically generated data sets sequence and uni-

form. We fixed a prefix length of k′ = 4 as well as enabled trie expansion and the de-

scribed memory optimizations. Then, we measured the execution time for the mentioned

operations. Figure 4 shows the results of this set of experiments.

Experiment S.1: The first experiment uses the sequence data set. The goal was to evaluate

the performance with an increasing number of records N . For each database size, this

comprises N inserts, N point queries (get), a scan of N elements (getNext) as

well as N deletes, where we used all keys of the generated sequence. We repeated

this experiment for the three different data types. Figure 4 (first row) shows the measured

results. First, SHORT(4) shows the best performance due to the lowest trie height (h =
8). Note that for sequences, the complete trie height is expanded. We further observe

that INT(8) (h = 16) shows only a minor overhead, while for VARCHAR (h = 256),

this overhead is higher. Those differences are caused by the trie height and additional

memory requirements for the larger keys. From an operation type perspective, delete

always has the worst performance, followed by insert, which is reasoned by memory

management in addition to the search operations. Further, getNext is typically slower

than get, because for a getNext, a similar point query is used in order to find the old

key, and from there, it finds the next key, which was required by scans with concurrent

updates. Interestingly, getNext is better than get for VARCHAR indices, which was

reasoned by cache displacement on get due to the huge height for the VARCHAR indices.

Furthermore, get, insert, and delete require additional overhead for key generation

and copying of keys into the local memory of our index server. The technique bypass

jumper array led to an improvement (not included in the figures) between 9% and 17% for

the different operations. However, and most importantly, all operations show (1) a linear

scaling according to the number of tuples (constant time for a single operation) due to the

fixed number of accessed nodes and (2) a moderate overhead according to the key size.

Experiment S.2: For a second experiment, we repeated Experiment S.1 with the uniform

data set but exactly the same configuration. Figure 4 (second row) illustrates the measured

results of this experiment. We observe similar characteristics—with some exceptions—

compared to the sequence data set. In general, the index is notably slower for uniform

key distributions. This has different reasons. Recall that uniform data is the worst case

regarding space requirements, while this is the best case with respect to the average number

of accessed nodes per operation. The costs for allocating/loading more memory are higher

than the benefit reached by the lower number of trie nodes. Due to uniformly generated
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Figure 4: Basic Performance Results

keys, each single operation (except the scan operation) accesses different nodes. As a result

of uniform access and the higher memory consumption, many nodes are emitted faster

from the cache. Another difference of uniform keys to key sequences is that the execution

time increases slightly super-linear with an increasing number of tuples (logarithmic time

for a single operation). This effect is caused by the logarithmically increasing number of

accessed nodes with an increasing number of tuples. The second difference concerns the

scan performance, where the getNext is faster than get for all data types. Essentially,

this is a caching effect because the scan is the only operation that accesses the records in

sequential order. Hence, the higher trie nodes are cached across multiple operations. The

technique bypass jumper array lead to an improvement (not shown in the figures) between

4% and 7% for the different operations, which is lower than in experiment S.1 because the

trie does not use the full height for uniform data and thus fewer nodes are bypassed.

As a result, our index shows good performance and an almost linear scaling for sequences

(best-case) and uniform data (worst case). However, it is best suited for skewed data.

5.3 Real DBLP Data

The sequence and uniform data sets are extremes in terms of skew and thus give upper

and lower bounds for the number of accessed nodes as well as required space. We now

additionally use the real-world DBLP data set that lies within this spectrum.

Experiment R.1: As a preprocessing step, we extracted all distinct publication keys,

which are concatenations of the type of publication, the conference/journal name, and the

short bibtex key (e.g., conf/sigmod/LarsonLZZ07). We used a VARCHAR(128)

index and truncated all keys that exceeded this key length (only a few). The number of dis-

tinct items was 2,311,462. Then, we inserted this data set (in sorted order) and evaluated
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(a) Time VARCHAR (sorted) (b) Space VARCHAR (deterministic) (c) Time VARCHAR (unsorted)

Figure 5: Performance on Real Data Set (DBLP)

execution time and space requirements. Figures 5(a) and 5(b) show the results. We observe

an almost linear scalability with increasing data size, similar to our other experiments.

However, in contrast to sequences and uniform keys, there are two main differences. First,

the getNext operation shows the worst performance compared to all other operations,

while in the other experiments, it was usually faster than insert and delete, because

many prefixes are shared such that insert and delete become more efficient. Similar

to this, get is also slower than in other cases compared to the insert/delete func-

tions. This effect is caused by long keys, where we need to access many nodes for each

point query. Note that due to transactional requirements each getNext also includes such

a point query, which reasoned that getNext was the slowest operation. Furthermore, we

see three main parts. Up to 700,000 records, there is a linear scaling. Then, from 700,000
to 1,600,000 records, we see a slower increase. From there to the end, we observe a scaling

similar to the first part. This is caused by the huge number of conferences that all share the

same prefix (e.g., conf/sigmod/), which results in good compression. It is also worth

to note that the performance is strongly correlated to the required memory.

Experiment R.2: As a comparison, we repeated the experiment with unsorted keys (see

Figure 5(c)). Due to the deterministic property, the total memory consumption was equiva-

lent to the previous experiment. In contrast to sorted keys, we observe that the performance

was much lower due to cache displacement because created nodes are distributed over the

memory. The getNext operation now performs best because it is the only one with a

sequential access pattern with regard to the trie nodes. Most important, we still observe a

linear scaling due to the good compression.

As a result, the trie works also well for real-world data. We conclude that the higher the

skew, the higher the performance because we require less memory.

5.4 Comparison with Existing Structures

For comparison with existing structures, we used a general-purpose B+-tree. We optimized

the implementation with memory preallocation in order to achieve a fair comparison. For

the IXByte, we used a prefix length of k′ = 4, while we configured the B+-Tree as a tree

of order four (pointers per node [Knu97]) because experiments with different configura-

tions showed that this leads to highest performance for this experimental setting.
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Experiment C.1: Due to
Sequence Uniform

Figure 6: SHORT(4) Comparison IXByte and B+-Tree

the data type restriction of

the used B+-tree, we used

SHORT(4) only. We var-

ied the number of tuples N
and measured the execution

time for insert and get

as well as the memory con-

sumption. The delete oper-

ation of the B+-tree was simi-

lar to the insert and a scan

operation was not supported.

We first used the sequence

data set. In contrast to our

other experiments, we mea-

sured the time for the opera-

tions of the core index struc-

tures rather than from outside

the index server because the

B+-tree does not implement

the MIT main-memory benchmark API. Figure 6 (left column) shows the results. We

yield an execution time improvement of up to factor 5 due to key comparisons and node

splitting/merging within the B+-tree. Interestingly, the IXByte also requires three times

less memory than the B+-tree. However, this is the best case for the prefix trie.

Experiment C.2: In addition, we repeated the experiment with the uniform data set. Fig-

ure 6 (right column) shows the results. The IXByte is still three times faster than the

B+-tree. Both index structures are slower for this uniform data set. Due to different mem-

ory allocation behavior (uniform data is the worst case for IXByte), the B+-tree required

only 50% of the memory that was required by IXByte.

Most importantly, the IXByte shows a linear scalability on skewed data with increasing

number of tuples, while the B+-tree shows a super-linear scalability for both data sets.

5.5 MIT Benchmark

With regard to repeatability, we provide the results of the MIT main-memory indexing

benchmark [Rei09] that was designed during the SIGMOD Programming Contest 2009

(see Figure 7(c) for a comparison with the winning implementation, where the uniform

data distribution is the best case for the hash map, while it is the worst case for our

IXByte). The benchmark is designed with uniform key distributions but there are also

test cases for skewed data—namely the test cases of varying low bits (VLB) and vary-

ing high bits (VHB). In general, the benchmark creates a random set of indices (of types

SHORT(4), INT(8), and VARCHAR(128)) and runs a transaction workload in a con-

current fashion, where each transaction comprises between 5 and 200 single operations

(point queries, range queries, inserts and deletes). With regard to the repeatability of the
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(a) Indices/Threads (b) Varying k
′ (c) Contestants Comparison

Figure 7: MIT Main-Memory Indexing Benchmark

(a) SHORT(4) (b) INT(8) (c) VARCHAR(128)

Figure 8: Contestants Comparison for Different Operations and Data Sets

obtained benchmark results, we used the same seed (1468) for all sub-experiments. We

conducted a set of experiments varying the benchmark parameters, which include the num-

ber of indices and threads NUM IX, the number of initial inserts per index NUM INSERTS,

and the total number of transactions NUM TX over all indices. The results are shown in

Figure 7, where we measured the overall benchmark execution times.

Experiment M.1: We varied the number of indices and threads, respectively. There,

we fixed NUM INSERTS=4,000, NUM TX=800,000 (contest configuration) and measured

the execution time for the three different data distributions. The results are shown in

Figure 7(a). We observe that the index performed best on the VHB benchmark because

there, the varied bits are represented by the first two node levels. In contrast, for VLB we

fully expanded a long path because the varied bits are represented by the last two node

levels. However, for both benchmarks, many keys are shared such that they both exhibit

lower execution time than the uniform benchmark; the differences are moderate. Although

our test machine has only eight hardware threads, our index server scales pretty well with

an increasing number of threads. Note that we reached a CPU utilization of 800% (up

from a number of 25 threads).

Experiment M.2: Beside the benchmark parameters, we also evaluated the influence of

the prefix length k′ on the execution time. We fixed NUM IX=50, NUM INSERT=4,000,

and NUM TX=800,000 and varied the prefix length k′ ∈ (1, 2, 4, 8). Figure 7(b) shows the

results of this second sub-experiment. Essentially, for different data distributions, different

prefix lengths are advantageous. For example, while for uniform data (and VHB), the best

prefix length is k′ = 4, for VLB it is k′ = 8 because there the index is fully expanded for

a certain key range. In general, for skewed data (e.g., sequence), larger prefix lengths are

advantageous because certain subtries are fully expanded.
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Experiment M.3: Finally, we use the optimized hash map and T-tree implementations of

the mentioned other contest finalists for a more detailed comparison regarding different op-

erations (insert, get), data types (SHORT(4), INT(8), VARCHAR(128)) and data

sets (sequence S and uniform U ), where the results are shown in Figure 8. The hash map

did not terminate within 10min on the sequence data set such that these experiments were

aborted. In contrast, we observe that our index performs best on sequence data, where the

relative improvement over the T-tree is highest for VARCHAR due to the higher influence

of the number of required key comparisons. On uniform data, the hash map performed

best but our IXByte achieves only slightly worse performance and still outperforms the

T-tree. In conclusions, the IXByte is especially beneficial in case of skewed data.

6 Conclusions

In-memory data structures are gaining importance but still exhibit certain disadvantages.

While these are inherently given for tree-based and hash-based structures, we addressed

the drawbacks of trie structures in order to make them applicable for in-memory indexing.

To summarize, we presented a generalized prefix tree (trie) for arbitrary data types that

uses a variable prefix length. The major advantage is the deterministic property that elim-

inates the need for dynamic reorganization (prefix splits) and multiple key comparisons.

Furthermore, we presented optimization techniques for reducing the number of accessed

and created trie nodes (bypass jumper array and trie expansion). Additionally, we briefly

discussed memory optimization techniques and efficient algorithms. In conclusion, the

generalized trie is advantageous compared to existing solutions. The major benefit is an

almost linear scalability with respect to the number of tuples, especially for skewed data.

Using this generalized trie, several further research issues arise, which include, for exam-

ple, the (1) adaptive determination of the optimal prefix length k′ during runtime, (2) a

hybrid solution with different prefix lengths on different levels of a generalized trie (e.g.,

{16, 8, 4, 4} for SHORT(4)), and (3) query processing on prefix trees, where database

operations such as joins or set operations can exploit the deterministic trie paths.
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