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Building a GAN for Replicating Epithelial Impedance
Spectra for ML-based Pattern Recognition

Lena Jurkschat, Benjamin Schindler

Abstract: Impedance spectroscopy is a common method in the field of biotechnology to measure
electrical conductivity of special cell lines (i.e. ephitelial). Based on the measured impedance spectra,
machine learning (ML) techniques including random forests and feedforward networks are increasingly
used to determine physiological properties of the underlying cell tissue and to detect a wide range
of diseases. However, training ML models for this purpose typically requires large amounts of data
and real cell tissue measurements are costly to obtain due to their experimental setup. This paper
introduces a Generative Adversarial Network (GAN) which meets the high demand for training data
by replicating impedance spectra from a given data set. As a proof of concept, we show that GANs
are capable of generating spectra that have a similar shape to the original ones and could therefore be
used to overcome a lack of training data.
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1 Introduction

Artificial Neural Networks (ANNSs) cover a variety of tasks, such as classification, regression
and translation of texts. A special kind of ANNs are so called Generative Adversarial
Networks (GAN), which are composed of a Generator and a Discriminator subnetwork. As
generative models, GANSs learn distributions within a data set and, if trained successfully,
are able to generate new samples from them. GANSs are very well known for their capacity
of generating fake pictures of persons [Goo+14]. Trained on large sets of high-dimensional
data (e.g. pixels of an input image), a GAN is able to generate fake pictures that a human
cannot distinguish from real ones.

In the field of biotechnology, impedance spectroscopy is widely used in the investigation
of epithelial tissues to determine their electrical conductivity and the associated flow of
certain ions using so called Ussing Chambers [LSHO04]. Furthermore, measured impedance
spectra reveal information about physiological properties of the underlying cell tissue (e.g.
membrane capacitance and subepithelial resistance) and can be used for various medical
applications, such as detecting breast cancer [Rah+20] and muscular damage [Mty+19].
In the last decade, various cell cultures, e.g. HT29/B6 and IPEC-J2, were studied using
impedance spectroscopy, in which the complex valued impedance is determined as a function
of the frequency of an alternating current [Giin+12].

It has been shown that machine learning algorithms are able to analyse impedance spectra
and approximate the sought physiological properties through patterns in the data [SBG13].
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For this purpose, impedance spectra have been modeled to overcome the lack of expensive
measured data, which are needed in a great amount for the training process [Sch18]. Thus,
high accuracies in the determination could be achieved, but new synthesis methods are
needed that allow a more realistic modeling of the cell tissues based on real measurements.
Here we introduce a new approach to replicate impedance spectra using GANs in order
to enlarge the data quantity. In this paper, synthetic data is used for this purpose, but the
principle procedure could also be easily applied to real impedance measurements in the
future.

This paper describes the implemented GAN and presents some of the generated spectra.
Although the dimension of the data is comparatively low (84 values per sample against
pictures with thousands of pixels), it was possible to create a GAN that accomplishes that
challenge. We present an architectural small network that is able to create not distinguishable
artificial impedance spectra from four randomly chosen values of latent space.

Section 2 introduces the data and in section 3, the functionality of the GAN is explained.
The generated impedance spectra is presented and evaluated in section 4. A conclusion of
the approach is given in section 5.

2 Data

For this work, a data set of modelled impedance measurements on the epithelial cell line
HT?29/B6 under physiological control conditions was adopted from [Sch20]. HT29/B6 is a
well-studied carcinoma cell culture derived from the human colon. The synthesised data is
based on experimentally estimated value ranges and additional error modelling which are
both obtained from [Sch18]. The data set has the advantage that it has already been used to
predict epithelial properties using machine learning and is extensively characterised (cf.
[Sch20]).

The data set includes 150, 000 spectra, each consisting of 42 measurements taken at different
frequencies (1.3Hz — 16350Hz). As complex values, impedances comprise real and
imaginary parts. Impedance spectra are therefore often displayed in Nyquist representation,
in which the imaginary part is plotted against the real part (Fig. 2). Looking at real and
imaginary parts as separate features, this results in 84 values as input for the neural network.

3 Generative Adversarial Networks

Generative Adversarial Networks (GAN) are a special kind of Artificial Neural Networks
[Goo+14]. Generally it is build out of two separate models, that are trained against each
other.

There is a generator model G that takes random noise as input and is supposed to produce
realistic but synthetic data as output, in our case the generated impedance spectra. The
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Fig. 1: Overview of GAN functionality, here for impedance spectra

discriminator model D then distinguishes whether the given data belongs to the original
data or is fake data from the generator. The error of that model (i.e. incorrect identified fake
and real data) is then propagated to itself and the generator to train its recognition of fake
data and the production of synthetic data respectively. Here, the Binary Cross Entropy Loss
(BCE Loss) was used as the error function, calculated on the basis of the correctly and
incorrectly categorized data.

An overview of the GAN training for the special case of impedance spectra can be found in
figure 1.

The model was build using the PyTorch' neural network framework. The generator model
in this paper uses four randomly generated numbers (i.e. Noise) approximately in the range
of the impedances as an input for the generator to generate the impedance spectra.

Compared to many state-of-the-art ANNSs, its architecture is relatively small. It was build as a
fully connected feedforward neural network, using a combination of Linear and LeakyReLLU
(Leaky Rectified Linear Unit) layers [NH10] as a base model for both, generator and
discriminator. Additionally the discriminator uses the sigmoid function at the ouput layer
for classification into real and fake. For testing different architectures, an ELU (Exponential
Linear Unit) has been added to the generator of the base model. The differences of both
models are discussed in section 4.

However, ultimately 5 Layers for the generator were used and 7 for the discriminator
including input and output layer, so its training time was short although no GPU was used.
The Generator uses [4, 8, 16,42, 84] neurons belonging to the layers and the Discriminator
[84,64,32,16, 8,4, 1] respectively. The complete model was trained with all given data
samples and for 30 epochs with a batch size of 32, optimized using the AdaGrad optimizer
[DHS11] with an initial learning rate of 0.001.

! https://pytorch.org/docs/stable/nn.html
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4 Results

Within the process, two major GANs have been trained. Firstly, one GAN without an ELU
Unit within the Generator and secondly, one where the ELU Unit has been added to the
second-to-last layer due to the already successful training of other GANs [Agg+19]. For the
target of generating new impedance spectra, the generator functionality has to be proofed.
Therefore, the Results of the generator models have been compared graphically to the
training data (Fig. 2). Twenty generated impedance spectra and another twenty randomly
selected spectra from the original data set were chosen to be plotted.

While testing various units, the introduction of ELUs instead of solely using ReLUs was
the key to train the right contexts from the data. This improvement is shown in Figure 2.
Utilizing only ReLU units led to a generator model that learns a more linear structure than
the typical semi-circle shape it is supposed to generate ( Fig. 2(a)). Using an ELU Unit
additionally, it turns out that the generated data has the supposed semi-circle shape but
scales wider in its value range (Fig. 2(b)).

To validate the training process, the GAN losses were also recorded. Within the process,
the losses of the generator and discriminator should adapt to each other as the generator
improves and discriminator has a harder task to differentiate true from fake data. At the end
of the process, the discriminator is not able to distinguish fake from real, so the discriminator
gets ~ 50% right. As seen in figure 3, the Generator starts with a higher loss, but adapts to
the discriminator, as the generation of fake data gets better. Obviously, the discriminator
behaves vice versa. Note that it’s typical for a GAN that the loss is rising in the beginning
due to the adversarial training.
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Fig. 2: Comparison of original (red) and replicated (blue) impedance spectra generated with a GAN
using only LeakyReLU layers (a) vs. additional ELU layers (b).
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Fig. 3: Loss of the ELU Discriminator and Generator Model during the training process.

5 Conclusion

It has been shown that Generative Adversarial Networks are capable of replicating impedance
spectra from modeled data. Even though the generated data scales wider then the true one
(fig. 2(b)), it creates the right shape for various new data. Further data sets have to be
investigated to validate, if this model is able to replicate spectra for other cell lines and cell
conditions with more complex impedance curves.

Therefore, the method presented here can already be used to enlarge impedance data sets.
However, the procedure developed in this paper must be seen as a first step. For future work,
the won spectra have to be analyzed with proper quantitative metrics to determine if they
are reliable compared to measured spectra. Additionally, the impedance curves must be
mapped with the corresponding cell model parameters, in order to use the won data for
regression tasks and pattern recognition with biological application such as in [SBG13].
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