
Incremental Development of 	usiness Process Models

Carlo Simon
Universität Koblenz-Landau

Universitätsstraße 1, D-56070 Koblenz
simon@uni-koblenz.de

Abstract\ The purpose of formal and so called semi-formal approaches to business
process modeling is to provide a general technique for the development of workflow
based information systems. For this, a concise and repeatable transformation of initial
requirements into the final system must be achieved. Moreover, there is also a need
for complex models to include justifications that explain the meaning and purpose
of each component of the entire model. However, this is not sufficiently supported
by current graphical methods. This paper therefore introduces a formal language for
process modeling which allows incremental development, graphical visualization of
the model, and adding justifications to the model.

1 Introduction

Nowadays, business processes are central for building information systems. Finding and
formulating of requirements must be done by computer scientists, business process ana-
lysts and domain experts. Especially this last group is typically not familiar with formal,
mathematical notations. This motivates the use of more intuitive graphical methods such
as event-driven process chains (EPC) by Scheer [HKS93, KNS92, Sc00], Workflow nets
by van der Aalst [Aa96, AH02], UML diagrams [RJB99], or the models of the MEMO
approach by Frank [Fr02]. Oberweis [Ob96] and Hagen/Stucky [vHS04] also discuss
Petri nets as a graphical language for business process modeling. This list is surely not
complete.

Oberweis propagates visual models in contrast to pure textual methods, but also points out
that the appropriateness of the models’ granularity with respect to the addressed reader
must be given [Ob96, p. 33-34]. The contradiction that lies between these two require-
ments is discussed in the next section. As will be shown, even small business processes
lead to graphical business process models which are difficult to read due to the natural
restriction of humans’ reception. Formal textual representations could be helpful for a
more precise specification of the required behavior as long as visualizations can also be
generated from these specifications.

This paper therefore introduces a formal process language and a novel approach to incre-
mentally develop business process models with the aid of this language. The meaning of
the words of this language is defined via their implementation as Module nets which are
closely related to Workflow nets. The textual representation of business processes allows to

222

formulate the processes rapidly and to easily augment the specification by justifications for
each aspect of the process. Moreover, it allows producing a graphical visualization which
is assumed to be easier to understand than the textual form. As a result, this approach
does not enforce a contemplator to comprehend the entire model at once. Alternatively,
a presentation of the model can incrementally visualize each specified aspect step-by-step
together with reasons why this aspect has been included.

The paper is organized as follows: using two EPC business process models taken from the
literature, problems concerning their interpretation that result from the absence of justifi-
cations are discussed. One of them is then used as a base for the definition of a Workflow
net which specifies the behavior precisely. This model, however, is difficult to read be-
cause of its complexity. As a consequence, a process specification language is introduced
and applied to the example. This offers the opportunity to add justifications and to develop
and present the model incrementally explaining each of its aspect hereby. The paper pro-
ceeds with an explanation on how to integrate other views on information systems such as
information objects or resources into the process specification. It ends with a conclusion.

2 Complexity of �raphical 	usiness Process Models

The first business process model of this paper shown in Figure 1 is taken from Krcmar
who describes a decision process with the aid of an EPC [Kr00, p. 115].

Reengineering

demand checked

Unmodified IS

service

Check: basic structure

reconstructable?

XOR

Basic structure

reconstuctable

Check

profitableness

Basic structure

notreconst.

XOR

Concept: new

modules or structure

XOR

New modules or

structure imposs.
New modules or

structure possible

Completely

newdevelopment

XOR

Reengineering

impossible

Reengineering

possible

Start

reengineering

Figure 1: Decision on a software reengineering project according to [Kr00, p. 115]

223

While in its basic structure the EPC has the shape of a binary decision diagram [Ak78] it
encloses a submodule for profitability evaluation used under two conditions: if the basic
structure can be reconstructed or otherwise new software modules or a new structure can be
developed. The integration of the profitability evaluation in different contexts is achieved
by an or-connector which precedes the respective part of the model.

Although the model gives a good overview of the decision process, there are some ques-
tions left open. What happens if a reconstruction of the basic structure or the development
of new modules is not profitable? If the basic structure cannot be reconstructed profitably,
is the development of new components probably more reasonable? And if this is impossi-
ble, what about the development of a completely new system? Obviously, the model lacks
some additional documentation that gives answers to these questions.

Request

received

Check production

capacity

XOR

Check storage

capacity

XOR

Capacity

sufficient

Accept

request

Customer

received assent

Capacity

sufficient

Capacity

not sufficient

Capacity

not sufficient

Reject

request

Customer

received refusal

Figure 2: EPC: evaluation customer request

The second business process model is part
of a real-world scenario described by Staud
[St01, pp. 67-79]. Figure 2 shows the EPC
model of, again, a decision situation. In
the scenario, a manufacturer produces spe-
cial machines on customers’ requests. For
a decision whether a request can be fulfilled
or not, both storage and production capac-
ity have to be taken into account. If one of
them is insufficient, then the request must
be rejected but is accepted otherwise.

Again, the EPC model gives a good
overview over the problem, but, does not
answer questions concerning the detailed
process flow especially in situations where
only one resource is insufficiently given
(called single failure case): if one type of
capacity - for example the storage capacity
- is sufficiently given, then this will initiate
a reservation of that capacity for the request.
If now the other type of capacity is insuffi-
cient, then this previous reservation must be
released, i.e. there is a need for a rollback on
the reservation data. Such a rollback, how-
ever, is not represented in the model.

A second aspect under which the model is
not yet precise is the situation in which one
of the capacities is recognized to be insuf-
ficient while a check for the other one has
not been conducted yet. Must this check be
conducted afterwards or not?

224

Unfortunately, the situation is not improved if the model is transformed automatically into
a model with state semantics as proposed by Kindler [Ki04, CK04], because the absence of
a rollback mechanism in the EPC model also prevents the existence of such a mechanism
in a model with state semantics. What can be done is to take the EPC as a requirements
document for the development of a Workflow net. Figure 3 shows this Workflow net.
Within this model, three failure situations for the case where the customer request cannot
be fulfilled are distinguished. Moreover, rollback transitions are introduced which support
the rollback of storage and production capacity. Finally, the model is sound [Aa96], i.e.
each reachable state allows a legal termination of the started process.

Check produc-

tion capacity

Accept

request

Request

received

Reject for pro-

duction reasons

Reject for

storage reasons

Double failure

Check storage

capacity

Production

insufficient

Storage

insufficient

O

Rollback

production

Rollback

storage

i

Figure 3: Workflow net with process termination in case of insufficient capacities

The price that has to be paid for precision and soundness is that the model is definitely
harder to read than the previous one. For example, the role of the rollback transitions is
incomprehensible without the previous explanation, because the model does not contain
such reasons. Also the various failure recognition and handling situations appear unmoti-
vated in the final model and surely need to be explained.

3 Modeling Processes with a Formal /extual Language

The simple examples in the previous section motivate a new approach that separates mod-
eling from presentation and supports a step-by-step presentation style which explains the
model to a viewer. Especially this last reason is beyond the requirements formulated in the
principles of proper modeling (Grundsätze ordnungsgemäßer Modellierung, GoM, [Sc98,

225

pp. 119-137]), because these principles neither cover dynamic aspects of the model de-
velopment nor its presentation. The requirements formulated by Oberweis [Ob96, p. 34]
explicitly mention dynamic aspects of the modeling tasks, but do not include the dynamic
presentation of reasons as part of the documentation.

The formal process modeling language introduced here combines textual specification and
graphical visualization. The textual formalization goes back onto prior work on a Logic
of Actions (LoA) where modules specify sets of sequential processes [Ge73, Ge78, Fi93,
LS00, Si01]. In the past, applications of this theory have mainly been in the specification
and verification of process behavior as described in [SR04, SD04]. Two extensions of LoA
discussed here allow the application of this formal language to business process modeling:

• In LoA, modules - the formulas of the logic - are interpreted by sets of sequential
processes which are explicitly defined. The process sets are, however, very complex
and are difficult to read. The new approach presented here is based on canonical
building rules over modules which take modules as input and generate Module nets
out of them. Now, the sequential processes specified by a module are defined as the
processes of its Module net implementation. Hereby, processes are specific firing
sequences as explained later.

• LoA modules do not support the specification of exceptional behavior in addition to
norm behavior. The examples of the previous section, however, have demonstrated
the necessity of exceptions for the specification of business processes. Moreover,
each of these exceptions is based on reasons which need to be explained while they
are added to an existing module.

In the process language introduced here, processes are specified with the aid of mod-
ules. Existing modules are probably extended by exceptional behavior. The initial def-
inition of modules is formulated by elementary actions which either occur or are for-
bidden ([a] or [a]). With respect to two modules M1 and M2, non-elementary modules
are built for sequence ([M1�M2] and [M1�M2]), exclusive alternative and alternative
([M1�M2] and [M1�M2]), concurrent behavior which is, however, joined over shared
actions ([M1�M2]), iteration ([M∗

1], [M+
1] and [Mn

1]), and complement building ([M1]).
Finally, the coincident occurrence of actions or their prohibition in a single synchronized
step is defined with a further operand ([M1�M2]).

Start a Goal

Start a Goal

Figure 4: Elementary Module nets over an action a

Modules are implemented by Module nets. The close relationship of these nets with Work-
flow nets has been shown by Dehnert [De03, p. 82]. Module nets have an explicit start
transition with empty preset and an explicit goal transition with empty postset. Processes

226

of Module nets are all firing sequences which reproduce the empty initial marking by firing
start and goal transition exactly once.

The Module net implementations of elementary processes are predefined as shown in Fig-
ure 4. In principle, these implementations consist of only a single transition which repre-
sents the occurrence or prohibition of an action a framed by process start and end.

For non-elementary modules, canonical implementation rules take the operands’ Mod-
ule net implementations as input and generate composite Module nets upon them. The
building rules are left away here in order to have more space for the demonstration of the
application. Now, the semantic of a module is defined as the set of (sequential) processes
of its implementation. Figure 5 shows how these concepts are related to each other.

implemented
by

Sequence over
elementary
processes

Processes of
modules

Processes of
Module nets

Non-sequential
modules

Module
nets

corresponding
concepts

interpreted
by

via Module nets
interpreted by

interpreted
by

interpreted
by

Figure 5: Relationship between the concepts

The norm behavior of the second example of Section 2 can now be defined as follows:

hec� := ,equest received �(

hec� production capacitÞ �
hec� storage capacitÞ

)� Accept request

Within this module, both chec� actions describe that production or storage capacity are suf-
ficiently given and reserved (in the information system) for the specific customer request.
Figure 6 shows the Module net implementation of the norm behavior.

Check production

capacity

Check storage

capacity

Accept

request

Request

received
Start Goal

Figure 6: Module net of the norm behavior

227

Now, this norm behavior must be extended incrementally by exceptional behavior. Such
an exception to the norm process

• has to be recognized,

• causes an exceptional behavior, and finally

• has to enable the goal transition immediately or alternatively, must produce a mark-
ing from which the subsequent firing of the goal transition is enabled.

Since a module only specifies processes over elementary actions, the only (process) state
information expressible in a module is also related to actions or refers to process start
or end. A process state related to an action a can either be a• which indicates the state
reached immediately after a has occurred or •a which indicates the state immediately
before a can occur. Moreover, start• indicates the state at process start and •goal the state
at process end. With these process state related information, a module M is extended by
an expression

M ·=pre �
Ýceptional Lehavior � post

where pre is the process state the exception starts from,
Ýceptional Lehavior is the in-
tended behavior in case of the exception, and post is the process state in which norm and
exceptional behavior are conjoined.

In the example, the recognition of an insufficient production capacity is specified by

hec� ·= •
hec� production capacitÞ �(
Production insufwcient � ,e�ect for prod. reasons

)�•goal

The related Module net implementation is shown in Figure 7. The figure emphasizes the
recognition of the exceptional behavior.

Check production

capacity

Check storage

capacity

Accept

request

Request

received

Production

insufficient

Reject for

prod. reasons

Start Goal

Figure 7: Module net with recognition of insufficient production capacity

Unfortunately, in the Module net implementation of Figure 7 no process exists in which
,e�ect for prod. reasons occurs, because whenever the corresponding transition fires one of
the places belonging to the check of the storage capacity stays marked and the empty initial
marking cannot be reproduced. What is needed in this case is a second kind of extension

228

which alternatively synchronizes concurrent behavior if the synchronization within the
norm behavior fails. In general, a module M must be extended by an expression

M ·=pre � SÞnchroniâing action

where pre is a process state concurrently enabled besides an exceptional behavior and
Synchronizing action is an action of the exception which, by this extension, implements
an alternative synchronization.

In the example, this can be achieved by

hec� ·= •
hec� storage capacitÞ � ,e�ect for prod. reasons

Figure 8 shows the implementation of module Check so far and emphasizes all aspects of
the exceptional behavior in the case of an insufficient production capacity.

Check production

capacity

Check storage

capacity

Accept

request

Request

received

Production

insufficient

Reject for

prod. reasons

Start Goal

Figure 8: Module net with process termination in case of insufficient production capacity

The recognition and handling of an insufficient storage capacity is now specified analo-
gously by

hec� ·= •
hec� storage capacitÞ �(
Storage insufwcient � ,e�ect for storage reasons

)�•goal

hec� ·= •
hec� production capacitÞ � ,e�ect for storage reasons

Finally, the double failure situation can also be described by two extensions

hec� ·= •,e�ect for prod. reasons �(,e�ect douLle failure)�•goal

hec� ·= •,e�ect for storage reasons � ,e�ect douLle failure

Figure 9 shows the implementation of this module so far. In order to document the stepwise
model development, the added exceptions are emphasized.

Still firing sequences exist which do not reproduce the empty initial marking. This is the
case if one resource - storage or production - is recognized to be insufficient after the other

229

Check produc-

tion capacity

Accept

request

Request

received

Goal

Start

Reject for pro-

duction reasons

Reject for

storage reasons

Double failure

Check storage

capacity

Production

insufficient

Storage

insufficient

Figure 9: Module net with process termination in case of insufficient capacities

one has already been recognized to be sufficient. Then there must be a rollback on the
already reserved resources which is formalized by two extensions

hec� ·=
hec� production capactiÞ•�(
,ollLac� production

)�•
hec� production capacitÞ

hec� ·=
hec� storage capacitÞ•�(
,ollLac� storage

)�•
hec� storage capacitÞ

The final Module net is shown in Figure 10. It equals the Workflow net of Figure 3,
however, in contrast to the Workflow net it can be presented step-by-step in accordance
with its definition. For this, the incremental changes must be emphasized as demonstrated.
In an appropriate tool, also the reasons for each extension can simply be explained. This
improves the overall comprehension of such a model significantly.

230

Check produc-

tion capacity

Accept

request

Request

received

Reject for pro-

duction reasons

Reject for

storage reasons

Double failure

Check storage

capacity

Production

insufficient

Storage

insufficient

Rollback

production

Rollback

storage

Start

Goal

Figure 10: Module net with process termination in case of insufficient capacities

4 6iew Integration and Semantic

Although applied to business process modeling, the process language introduced in the
previous section is an abstract one. The semantic of its words is defined by specific firing
sequences of the modules’ implementations. This allows to verify the process structures
of modules concerning soundness and completeness against given process specifications.

In business process management, the consideration of the pure process aspect is not suf-
ficient. In the architecture of information systems (ARIS), Scheer distinguishes the four
perspectives organization, data, function, and control (this is the process view) [Sc00].
Jablonski und Bussler distinguish the perspectives data flow and control flow which are
implemented in workflows, workflow applications (i.e. functions), and the organization
[JB96, pp. 123-182]. Further perspectives are only shortly discussed. Also Leymann and
Roller emphasize process logic, organization and IT infrastructure (the functional and the
data view are included into this dimension) as the three dimensions of workflows [LR00,
p. 8]. Like these approaches to business process modeling, all others also distinguish their
specific views on businesses. They have in common that besides the processes also data,
resources, and processing logic need to be represented and, even more important, have to
be integrated into each other.

The approach presented here allows such integration by specifying for each action its
effect on data objects and other resources, i.e. data flow aspects. The control flow part

231

is completely specified by modules and their Module net implementations. The resulting
separation of control and data flow within a single net - however without a formal process
specification language - was already discussed by Marx [Ma98].

Data flow aspects of business processes can be added to Workflow nets with the aid of high-
level places which might carry structured information [GL81, Ge87, Je92]. Also Vossen
points out the important role of high-level nets for business process modeling [Vo05]. As
known from database theory, the typical data flow operations are select or test, insert,
delete, and update or modify. The implementation of these operations in high-level nets
is shown in Figure 11. The data type of a place is specified with the aid of data diagrams
or organizational diagrams. Possible bindings of variable X are defined with the aid of
transition inscriptions. Finally, a transition is not restricted to access only a single place
(i.e. a single type of resource) but might access several resources at once.

< X >

< X >

< X >

< f(X) >

< X >

Operations Resource

Select/Test

Insert

Delete

Update/Modify

Operations Resource

Figure 11: Operations on structured objects with high-level Petri nets

If in addition to the process specification the effect of each action is described with high-
level net concepts, a further semantic enrichment of the model is achieved: the (pure)
process semantic is extended by a data flow semantic. Consequently, the process language
introduced in Section 3 in conjunction with a semantic definition of the actions is called
Semantic Process Language (SPL).

5 Conclusion

Using two (small) examples taken from the literature this paper shows three weaknesses
of (purely) graphical business process modeling languages:

• Either the models leave room for interpretation, or if they are precise, they reach
such a degree of complexity that they are difficult to read and understood by some-
body who has not developed the model on her/his own.

• If justifications for each single component of the business process would be added
for example with the aid of memos, the readability of graphical models would be
further reduced.

• Finally, an incremental presentation of the model together with the arguments for
the specific structure is impossible.

232

Therefore, this paper presents a formal process language as an alternative approach. In
contrast to other process languages such as process algebra [Fo00] the graphical visualiza-
tion of the specified processes is explicitly defined (the problem that process algebra terms
cannot be visualized appropriately is widely discussed in the process algebra community,
for example in [Ba03, p. 382]). The ability to visualize the processes is achieved with the
aid of canonical implementation rules which transform modules - the words of the process
language - into Module nets, a variation of Workflow nets. The language supports the def-
inition of norm behavior as well as exceptional behavior. Furthermore, explanations can
be added to each definition and extension. These can be presented step-by-step together
with each increment. The last section has demonstrated that the approach is open to the
integration of data flow aspects.

The semantic process language introduced here also supports an evolution of business
processes over time. Gadatsch [Ga03, p. 52] points out the importance of this aspect in his
workflow life-cycle model shown in Figure 12.

Monitoring

Execution

Business process
modeling

Business process
analysis

Workflow modeling

Simulation
and analysis

Workflow
optimization

Business plan
development

Business process
optimization

Figure 12: Workflow life-cycle model according to [Ga03, p. 52]

If a business process model has to be adapted to a changed reality, each of these changes
can be specified and explained as well with the aid of the presented process language.
Consequently, the approach introduced in this paper also supports the documentation of
business processes throughout their life-cycle.

References

[Aa96] Aalst, W. M. P., van der: Structural Characterizations of Sound Workflow Nets. Comput-
ing Science Reports 96/23. Eindhoven University of Technology. 1996.

[AH02] Aalst, W. M. P., van der and Hee, K., van: Wor�yoÜ Management - Models] Methods]
and SÞstems. MIT Press. Cambridge, Massachusetts. 2002.

[Ak78] Akers, S. B.: Binary Decision Diagrams. �

 /ransactions on
omputing. C(27):509–
516. 1978.

[Ba03] Basten, T.: Verifying Petri net Models using Process algebra. In: Girault, C. and Valk, R.
(Hrsg.), Petri nets for SÞstems
ngineering. chapter 16.5. Springer. Berlin. 2003.

233

[CK04] Cuntz, N. and Kindler, E.: On the semantics of EPCs: Efficient calculation and simula-
tion. In: Nüttgens, M. and Rump, F. J. (Hrsg.),
P� 2ää{\ �eschdaftsproâessmanagement
mit
reignisgesteuerten Proâess�etten] Proceedings. S. 7–26. Luxembourgh. 2004.

[De03] Dehnert, J.: A MethodologÞ for Wor�yoÜ Modeling - �rom Lusiness process modeling
toÜards sound Üor�yoÜ speciwcation. PhD thesis. TU Berlin. 2003.

[Fi93] Fidelak, M.: �ntegritdatsLedingungen in Petri- etâen. PhD thesis. Universität Koblenz-
Landau. 1993.

[Fo00] Fokkink, W.: �ntroduction to Process AlgeLra. Springer. Berlin. 2000.

[Fr02] Frank, U.: Multi-perspective enterprise modeling (memo) - conceptual framework and
modeling languages. In: Îxth Annual �aÜaii �nternational
onference on SÞstem Sci-
ences] ��
SS. S. 75–84. 2002.

[Ga03] Gadatsch, A.: �rund�urs �eschdaftsproâess-Management. Vieweg. Wiesbaden. 3rd.
2003.

[Ge73] Genrich, H. J.: Formale Eigenschaften des Entscheidens und Handelns. Interner Bericht
09/73-11-29. GMD. St. Augustin. 1973.

[Ge78] Genrich, H. J.: Ein Kalkül des Planes und Handelns. In: Ansdatâe âur Organsiationstheorie
rechnergestdutâter �nformationssÞsteme. GMD Bericht 111. S. 77–92. Oldenbourg Verlag.
1978.

[Ge87] Genrich, H. J.: Predicate/Transition Nets. In: Brauer, W., Reisig, W., and Rozenberg, G.
(Hrsg.), Petri ets\
entral Models and their Properties] Advances in Petri ets £�nÈ]
Part �. Lecture Notes in Computer Science 254. Springer. 1987.

[GL81] Genrich, H. J. and Lautenbach, K.: System Modelling with High-Level Petri Nets. /heo-
retical
omputer Science. 13. 1981.

[HKS93] Hoffmann, W., Kirsch, J., and Scheer, A.-W.: Modellierung mit Ereignisgesteuerten
Prozeßketten, Methodenhandbuch. Technical report. Universität des Saarlandes. Institut
für Wirtschaftsinformatik, Saarbrücken. 1993.

[JB96] Jablonski, S. and Bussler, C.: Wor�yoÜ Management - Modeling
oncepts] Architecture
and �mplementation. International Thomson Computer Press. London. 1996.

[Je92] Jensen, K.:
oloured Petri- ets. Band 1. Springer Verlag. Berlin. 1992.

[Ki04] Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Circle.
In: Desel, J., Pernici, B., and Weske, M. (Hrsg.), 	usiness Process Management ­	PM
2ää{®. volume 3080 of �ecture otes in
omputer Science ­�
S®. S. 82–97. Potsdam,
Germany. 2004. Springer.

[KNS92] Keller, G., Nüttgens, M., and Scheer, A.-W.: Semantische Prozeßmodellierung auf der
Basis Ereignisgesteuerter Prozeßketten (EPK). Technical Report 89. Universität des Saar-
landes. Institut für Wirtschaftsinformatik, Saarbrücken. 1992.

[Kr00] Krcmar, H.: �nformationsmanagement. Springer. Berlin. 2. 2000.

[LR00] Leymann, F. and Roller, D.: Production Wor�yoÜ -
oncepts and /echniques. Prentice
Hall. Upper Saddle River, NJ. 2000.

[LS00] Lautenbach, K. and Simon, C.: Verification in a Logic of Actions. In: Ç. Wor�shop
Algorithmen und Wer�âeuge fdur Petrinetâe ­AWP ää®. Koblenz. 2000.

234

[Ma98] Marx, T.: et
ase - SoftÜareentÜurf und Wor�yoÜ-Modellierung mit Petri- etâen. PhD
thesis. Universität Koblenz-Landau. 1998.

[Ob96] Oberweis, A.: Modellierung und Ausfduhrung von Wor�yoÜs mit Petri- etâen. Teubner
Studienskripte. Stuttgart. 1996.

[RJB99] Rumbaugh, J., Jacobson, I., and Booch, G.: /he 1nwed Modeling �anguage ,eference
Manual. Addison Wesley. Reading, Mass. 1999.

[Sc98] Schütte, R.: �rundsdatâe ordnungsmda~iger ,eferenâmodellierung. Gabler. Wiesbaden.
1998.

[Sc00] Scheer, A.-W.: A,�S - 	usiness Process �rameÜor�s. Springer-Verlag. Berlin. 3rd. 2000.

[SD04] Simon, C. and Dehnert, J.: From Business Process Fragments to Workflow Definitions.
In: Feltz, F., Oberweis, A., and Otjacques, B. (Hrsg.),
M�SA 2ää{ - �nformationssÞs-
teme im
-	usiness und
-�overnment. Gesellschaft für Informatik, Lecture Notes in
Informatics P-56. S. 95–106. Luxemburg. 2004.

[Si01] Simon, C.: A �ogic of Actions and �ts Application to the �evelopment of ProgrammaLle

ontrollers. PhD thesis. Universität Koblenz-Landau. 2001.

[SR04] Simon, C. and Rebstock, M.: Integration of Multi-attributed Negotiations within Busi-
ness Processes. In: Desel, J., Pernici, B., and Weske, M. (Hrsg.), 	usiness Process Man-
agement ­	PM 2ää{®. volume 3080 of �ecture otes in
omputer Science ­�
S®. S.
148–162. Potsdam, Germany. 2004. Springer.

[St01] Staud, J. L.: �eschdaftsproâessanalÞse. Springer. Berlin. 2. 2001.

[vHS04] von Hagen, C. R. and Stucky, W.: 	usiness-Process- und Wor�yoÜ-Management. Teub-
ner. Stuttgart. 2004.

[Vo05] Vossen, G.: Was Informatiker und Wirtschaftsinformatiker zu Prozessen beitragen. �M�
- PraÝis der Wirtschaftsinformati�. Business Engineering(241):5–6. feb 2005.

235

